
Identifying plausible adverse drug reactions using knowledge 
extracted from the literature

Ning Shanga,*, Hua Xua, Thomas C. Rindfleschb, and Trevor Cohena

aSchool of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, 
United States

bNational Library of Medicine, Bethesda, MD, United States

Abstract

Pharmacovigilance involves continually monitoring drug safety after drugs are put to market. To 

aid this process; algorithms for the identification of strongly correlated drug/adverse drug reaction 

(ADR) pairs from data sources such as adverse event reporting systems or Electronic Health 

Records have been developed. These methods are generally statistical in nature, and do not draw 

upon the large volumes of knowledge embedded in the biomedical literature. In this paper, we 

investigate the ability of scalable Literature Based Discovery (LBD) methods to identify side 

effects of pharmaceutical agents. The advantage of LBD methods is that they can provide 

evidence from the literature to support the plausibility of a drug/ ADR association, thereby 

assisting human review to validate the signal, which is an essential component of 

pharmacovigilance. To do so, we draw upon vast repositories of knowledge that has been 

extracted from the biomedical literature by two Natural Language Processing tools, MetaMap and 

SemRep. We evaluate two LBD methods that scale comfortably to the volume of knowledge 

available in these repositories. Specifically, we evaluate Reflective Random Indexing (RRI), a 

model based on concept-level co-occurrence, and Predication-based Semantic Indexing (PSI), a 

model that encodes the nature of the relationship between concepts to support reasoning 

analogically about drug-effect relationships. An evaluation set was constructed from the Side 

Effect Resource 2 (SIDER2), which contains known drug/ADR relations, and models were 

evaluated for their ability to “rediscover” these relations. In this paper, we demonstrate that both 

RRI and PSI can recover known drug-adverse event associations. However, PSI performed better 

overall, and has the additional advantage of being able to recover the literature underlying the 

reasoning pathways it used to make its predictions.
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1. Introduction

An adverse drug reaction (ADR) is an “appreciably harmful or unpleasant reaction, resulting 

from an intervention related to the use of a medical product” [1]. ADRs were reported to be 

between the fourth and sixth leading cause of death in the United States in 1994 [2], 

accounting for 3–7% of medical hospital admissions [3,4] and a substantial number of health 

care visits [5]. They have a considerable negative impact on health and the healthcare 

system, despite the fact that extensive pre-marketing clinical trials are designed to test drug 

safety and efficacy. For example Phase III clinical trials have been estimated to cost 86.3 

million U.S. dollars and last 30.5 months on average [6]. Nonetheless, rare ADRs may not 

be detected due to the limited duration and sample size of such trials, and others may occur 

on account of idiosyncratic characteristics of individuals excluded from the evaluated 

sample. The continued monitoring for ADRs after drugs are released into the market, called 

pharmacovigilance (PV), is therefore an important tool to monitor and improve drug safety.

Over the last decade, drug safety data obtained from spontaneous reporting systems (SRSs) 

have been analyzed using quantitative data mining procedures to retrieve strongly associated 

drug/ ADR pairs [7–9]. These highlighted associations are subsequently reviewed and 

scrutinized by domain experts. Unfortunately, research suggests data collected by SRS are 

limited by long time latency, incorrect or incomplete clinical information, underreporting 

and reporting bias [10,11]. Consequently, clinicians and researchers have also utilized 

existing healthcare data sources such as Electronic Health Records (EHRs) to attempt to 

identify previously unreported ADRs [12–15]. However, these data are inherently noisy as 

drugs and potential side effects may co-occur in the EHR for many reasons. In addition, the 

EHR often contains free-text data, and the accuracy of Natural Language Processing (NLP) 

tools is not perfect. New methods are required to selectively identify potentially hazardous 

drug/ADR associations. Consequently, the development of computational approaches to 

more accurately detect potential side effects is currently an active area of research [16–20]. 

These approaches have predominantly focused on improving signal detection using 

statistical methods, machine learning (ML) or some combination thereof.

In this paper, we develop an approach that is conceptually different than, and 

complementary to, such efforts. Methods of literature- based discovery (LBD) are used to 

detect potential drug/ ADR associations and to retrieve literature that supports their 

plausibility. The paper proceeds as follows. First we discuss the significance and challenges 

of pharmacovigilance, and how LBD methods might address these. We then provide 

relevant background on recent developments in LBD; and introduce the NLP tools that were 

used to extract knowledge from the literature for our experiments. We then discuss these 

experiments, in which we attempt to identify known ADRs using knowledge from the 

biomedical literature, and discuss their implications for pharmacovigilance practice.

2. Background

2.1. Pharmacovigilance: post-marketing drug surveillance

Vioxx (Rofecoxib) was withdrawn voluntarily from market by Merck in 2004, after it was 

found that the use of this agent increased the risk of myocardial infarction [21]. Avandia 
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(Rosiglitazone) was suspended from the European market in 2010 [22–24] on account of an 

increased risk of cardiovascular complications. These high-profile examples illustrate that 

PV is an important supplement to existing drug safety profiles because clinical drug trials 

cannot be large or long enough to identify all problems related to a new drug [7]. 

Additionally, subjects are pre-selected by eligibility criteria and therefore may not fully 

represent the patient population after the drugs are put to market [25]. Consequently, it is 

highly unlikely that instances of all possible ADRs will be detected during pre-marketing 

clinical trials.

The fact that more than 75 drug products were removed from the market due to safety 

problems between 1964 and 2002 further emphasizes the importance of post-marketing drug 

monitoring, known as PV – “the science and activities relating to the detection, assessment, 

understanding and prevention of adverse effects or any other drug-related problem after 

drugs are on market” [26]. PV is designed to detect any rare or long-term adverse effects 

over a very large population and a long period of time. To advance this aim, health 

departments and organizations (such as the World Health Organization (WHO), U.S. Food 

and Drug Administration (FDA), and European Medicines Agency (EMA)) encourage 

physicians, other health care professionals, and patients to report voluntarily about any 

observed ADRs. In addition to voluntarily reporting, pharmaceutical companies are required 

to report serious adverse events [27]. These bodies have Spontaneous Reporting Systems 

(SRSs) to enable the efficient submission of reports electronically [28,29].

In general, the PV process proceeds as follows [30,31]:

1. Reported drug-related problems are collected in SRSs nationally or internationally.

2. Quantitative data mining procedures are used to analyze these data and retrieve 

relatively strongly correlated drug/ ADR pairs (drug/ADR associations).

3. These highlighted associations are then reviewed and evaluated by domain experts 

making up an expert clinical review panel.

4. Associations considered to be of clinical interest are then annotated as signals.

Specifically, signal is defined as “reported information on a possible causal relationship 

between an adverse event and a drug, the relationship being unknown or incompletely 

documented previously” [32]. Overall, the PV process includes two components – a 

statistical component (quantitative signal detection, steps (1) and (2)) and a qualitative 

component (expert clinical review, steps (3) and (4)) [31].

Through PV, international and national health institutions gather large amounts of data from 

SRS for further analysis. In addition, researchers have leveraged the opportunity provided 

by broader availability of EHRs by utilizing EHR data for signal detection [12,33]. These 

authors argue that EHR data can compensate for some of the deficiencies of SRS, such as 

under-reporting, misclassification, a long lag time between observation and reporting, 

reporting bias and the provision of incomplete clinical information [7,8]. Regardless of 

source, statistical algorithms are applied to both SRS [34–39] and EHRs [12] to measure the 

strength of observed drugevent associations.
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It has been argued, though, that causality assessment is lacking in pharmacovigilance 

practice [25]. While expert clinical review is designed to verify potential ADRs, it is a 

human-intensive and time-consuming process. The available human resources are 

inadequate to review the large amount of noisy signal detected in SRS and EHR data, 

creating a bottleneck in the PV process. More research is needed to develop methods to 

automate, or assist with, the knowledge-intensive task of expert clinical review.

2.2. Assessment of causality

To address the issue of causality assessment, general principles exist that can be applied to 

evaluate the causality of potential ADRs [40]. The theoretical basis for these principles was 

proposed by Sir Austin Bradford-Hill in 1965 [41]. Bradford-Hill, an English epidemiologist 

and statistician, was the first to demonstrate that cigarette smoking contributes toward lung 

cancer using what are now referred to as the “Bradford-Hill criteria” [42]. The Bradford- 

Hill criteria provide viewpoints from which to evaluate evidence indicative of causality. 

These criteria are named ‘strength’, ‘consistency’, ‘specificity’, ‘temporality’, ‘biological 

gradient’ (referring to dose–response relationships), ‘plausibility’, ‘coherence’, 

‘experimental evidence’, and ‘analogy’ [41,43,44]. Since then, the criteria have been widely 

used in epidemiology and may be applied to assess the causality of drug/ADR relationships 

[25,40,45]. Three of these criteria seem particularly pertinent to the development of 

pharmacovigilance methods:

• The strength criterion reflects that strong associations are more likely to be causal 

than weak associations [40]. Quantitative statistical data mining methods evaluate 

adverse drug reaction signal from the strength of association point of view.

• The plausibility criterion relates to evidence about mechanisms that may be 

involved to support a causal relationship.

• The coherence criterion relates to the consistency of the hypothesis in question 

with contemporary medical knowledge.

Review by domain experts is required to evaluate a signal from the above points of view 

using their knowledge and judgment to find a signal with clinical significance. However, on 

account of the human-intensive nature of this task, automated assistance is desirable. In this 

study, we attempt to partially automate this aspect of the signal evaluation process. We do so 

using methods that leverage knowledge extracted from the biomedical literature as a means 

to assess the plausibility of an observed association. As one of these methods involves 

automated analogical reasoning, it is interesting to note that Bradford-Hill also permitted 

reasoning by analogy as an indicator of causality.

2.3. Literature-based discovery

Processing published biomedical literature to uncover implicit relationships among entities 

is referred to as literature-based discovery (LBD) [46–49]. LBD involves finding new 

knowledge by analyzing the literature, rather than through scientific experimentation. This is 

accomplished by identifying hidden connections between entities described in the published 

literature [46,50]. The origins of LBD may be traced to the serendipitous discovery that fish 

oils can be therapeutically useful in the treatment of Raynaud’s syndrome (poor circulation 
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in the peripheries) by information scientist Don Swanson [46,50]. Weeber describes two 

types of LBD [48].

One type, referred to as “open LBD”, starts from a known term or concept (generally called 

A, although also referred to as C in Swanson’s early work) and tries to find an interesting 

hypothesis in the form of a previously unrecognized connection to some other term. If an 

article argues that A is associated with B and a second article mentions that B is associated 

with C; A may treat C. For example dietary fish oil (A) affects platelet aggregation, blood 

viscosity and vascular reactivity (B), and these biological factors (B) play a role in 

Raynaud’s syndrome (C) [50]. Consequently, it is reasonable to hypothesize that A treats C. 

The open LBD process proceeds from the source term A to an unknown target term C and 

culminates in the generation of a new hypothesis.

The second type of LBD is referred to as “closed LBD”. In a closed LBD process the goal is 

to evaluate an existing hypothesis. Closed LBD starts with known terms A and C, with the 

goal to identify intermediate terms B that provide the bridge between A and C [48]. For 

example, in 1988 Swanson found intermediate concepts to explain a hypothetical 

relationship between migraine and magnesium [51]. Smalheiser and Swanson used closed 

LBD to propose an explanation for epidemiologic evidence that estrogen might protect 

against Alzheimer’s disease [52].

LBD methodologies generally utilize statistical information derived from the frequency with 

which terms, or discrete concepts extracted from the literature using automated tools (e.g. 

MetaMap) or assigned to it by human annotators [53], co-occur [54,55]. This has been 

referred to as the co-occurrence model [56]. These cooccurrence statistics are interpreted by 

correlation mining and ranking algorithms [55,57].

A limitation of these methods is that they generally do not consider the nature of the 

relationship between the terms or concepts concerned. To address this limitation, Hristovski 

et al. [54] propose using semantic relations to eliminate spurious relationships introduced by 

frequently co-occurring concepts that are not meaningfully related. In their initial work, the 

semantic relations concerned were extracted from the literature by two Natural Language 

Processing (NLP) systems: SemRep [58] and (specifically to extract phenotypic 

information) BioMedLEE [59]. Their approach involved the specification of “discovery 

patterns”, patterns of relationships between concepts that may indicate an implicit 

therapeutic relationship [60]. These conditions can be specified as sets of semantic 

predicates. For example, Ahlers et al. [61] defined the May_Disrupt pattern as follows:

Substance X 〈inhibits〉 Substance Y

Substance Y 〈causes|predisposes|associated with〉 Pathology Z

Substance X 〈may disrupt〉 Pathology Z

Variants of this approach have been applied to generate or support the hypotheses that fish 

oil treats Raynaud’s disease [54], insulin treats Huntington disease [54], and antipsychotic 

agents prevent cancer [61]. Recently, this approach was also adapted to provide evidence to 

support the plausibility of an observed drug/ ADR association [62,63], providing proof-of-
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concept that LBD methods can be applied within the problem domain of pharmaco-

vigilance. Regardless of the application domain, knowledge used to populate discovery 

patterns is extracted from the biomedical literature using NLP.

2.4. MetaMap and SemRep

MetaMap is a widely-used NLP tool that identifies concepts from the Unified Medical 

Language System (UMLS) in biomedical text [64,65]. SemRep [58,66] is a rule-based 

Natural Language Processing tool [67] that draws on concepts extracted by MetaMap and 

medical domain knowledge in the UMLS to extract semantic predications [58]. Its input 

consists of sentences from the literature; its output is a series of semantic predications 

identified in the respective text. A semantic predication is a subject-predicate-object triple in 

which the subject and object are UMLS concepts and the predicate is a semantic 

relationship. For example, metformin (UMLS Concept C0025598) TREATS diabetes 

mellitus (C0011849) is a semantic predication extracted from the phrase “Treatment of 

diabetes mellitus with metformin”. Evaluations of SemRep reveal a precision between 0.73 

and 0.81, and a recall of 0.55 on the biomedical literature [67–69]. Semantic predications 

benefit the LBD process in several respects. The additional information provided by 

semantic predications makes the LBD results easier to interpret. In addition, it has been 

noted that a large number of uninformative co-occurrences must be manually reviewed 

when LBD is based on lexical statistics alone [70]. In contrast, semantic predications 

provide the means to isolate relationships between concepts that are logically connected in a 

meaningful way.

2.5. Semantic vectors for scalability

Regardless of whether co-occurrence relations or discovery patterns are used, LBD systems 

must explore large numbers of possible reasoning pathways to identify explanatory 

hypotheses (for closed discovery) or previously unrecognized relationships (for open 

discovery). Consequently, the process of LBD can be computationally expensive, and thus 

faces scalability issues in the context of the rapid growth of the biomedical literature. In 

contrast, the field of distributional semantics has produced corpus-derived statistical models 

that can measure the relatedness between two concepts by comparing vector representations 

of these concepts, called semantic vectors, that are derived from the contexts they have 

occurred in [71], without the need to explicitly explore cooccurring concepts once the initial 

model has been generated. Consequently, several authors have explored the use of 

distributional models for LBD [72–74]. These geometrically motivated models of 

distributional semantics represent terms or concepts as high-dimensional vectors derived 

from the contexts in which they have occurred. Relatedness between a pair of terms or 

concepts is then estimated from the similarity between the vectors [74].

Random indexing (RI), a relatively recent development, further improves the scalability of 

distributional methods by avoiding computationally intensive approaches to dimensional 

reduction of the original term-by-context matrix [75,76]. The algorithm’s computational 

complexity scales linearly with increasing size of the input data. It can be incrementally 

updated as new documents are added without retraining the whole dataset; thus it is 

applicable to large corpora such as MEDLINE.
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In the experiments that follow, we evaluate the extent to which two variants of RI that have 

been applied to LBD in our previous work can identify known side effects of pharmaceutical 

agents. To implement a co-occurrence based approach, we use Reflective Random Indexing 

(RRI) [74]. To implement a discovery pattern based approach, we use Predication-based 

Semantic Indexing (PSI) [77]. On account of their scalability, these models permit inference 

on a scale that would be prohibitively time-consuming if explicit exploration of all possible 

reasoning pathways were attempted. This is accomplished through a mechanism known as 

“indirect inference” [78], which enables distributional models to find meaningful 

connections between terms that do not co-occur with one another directly, without the need 

to explore intervening terms explicitly.

3. Materials and methods

3.1. Materials

In this study, MetaMapped Medline Baseline (MMB) and Semantic MEDLINE Database 

(SemMedDB) were used to represent knowledge from the biomedical literature. Side Effect 

Resource 2 (SIDER2) was used as data set for drug/ADR associations. The Semantic 

Vectors package was used to build concept-based (RRI) and predication-based (PSI) 

semantic space models [74,77].

3.1.1. MMB and SemMedDB—We used the 2012 MMB as a repository for concept-

based modeling. The MMB contains 20,494,848 articles included in Medline up to 

November, 2011 and contains 399,701 distinct concepts. We used the SemMedDB V2.2 

(semmedVER22) for this experiment, which was processed by SemRep version 1.5. This 

was the current version when our experiments started. SemMedDB contains 22,252,812 

citations included in Medline up to March 31, 2013 and contains 63,795,467 predications. 

There are 58 distinct predicates and 257,350 distinct concepts in SemMedDB. There are also 

negated predications in the SemMedDB repository (e.g. anticoagulant_therapy 

NEG_TREATS (does not TREAT) phlebitis). However, the number of negative predications 

is relatively small (1.2% of total predications), so we did not include these predications in 

the PSI model.

3.1.2. SIDER2—SIDER2 is a publicly available database containing information on 

marketed medicines and their known adverse reactions [79]. SIDER2 was used to construct 

a dataset for our experiment and as a reference standard to confirm whether a predicted side 

effect is a true adverse reaction. We normalized SIDER2 terms by mapping drug and side 

effects terms to UMLS CUI with UMLS Terminology Services (UTS) API 2.0 [80] and then 

subsequently searching these UMLS CUIs in SemMedDB and MMB to retrieve the mapped 

UMLS concepts which are represented in SemMedDB and MMB.

SIDER2 contains 996 drugs, 4192 side effects, and 99,423 drug/ ADR pairs. Only those side 

effects and drugs that were represented in both the RRI and the PSI spaces were retained, so 

our reference set contains 959 drugs, 3436 side effects, and 90,787 drug/ADR pairs. Each 

vector model’s search space was composed of vectors representing the SIDER2 side effects. 

For the PSI model, SIDER2 drug/ADR pairs were also used as training data to infer 

predicate reasoning pathways.
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3.1.3. MEDication–Indication (MEDI)—As we would anticipate connections in the 

literature between medications and diseases they treat, we evaluated the utility of another 

knowledge resource, MEDI [81], as a means to eliminate drug indications from 

consideration as potential side effects. MEDI is a medication indication resource that was 

extracted from a set of commonly used medication resources, including RxNorm, 

MedlinePlus, SIDER2, and Wikipedia [81]. MEDI drugs are represented by RxNorm codes, 

and indications are represented by ICD-9 codes. MEDI contains 3112 medications and 

63,343 medication–indication pairs. Additionally, the MEDI high-precision subset (MEDI-

HPS) was created by only including indications that are retrieved from RxNorm or at least 

two of the three other resources. MEDIHPS contains 2136 medications and 13,304 

medication–indication pairs. The estimated precision of MEDI-HPS is about 92% [81].

In our experiments, MEDI was used to eliminate drugs’ indications from the side effects 

search space. To do so, we first needed to normalize all terms representing drugs (RxCUI) 

and indications (ICD-9 codes) in MEDI to UMLS concepts, and then filtered each drug’s 

indications from this drug’s search space. In many cases, there exist hierarchical 

relationships between concepts. For example, C0264702 Acute myocardial infarction of 

apical–lateral wall is a child node of C0155626 Acute myocardial infarction. So in our 

experiment, we extended the MEDI list by aggregating the related concepts by different 

hierarchical relations. We tested these various extensions of the MEDI list as different 

MEDI interventions.

3.2. Methods

3.2.1. RRI—Reflective Random Indexing (RRI) [74] is a variant of RI adapted to enable 

the recognition of meaningful indirect associations. The variant of RRI we used for our 

experiments allows for the estimation of semantic relatedness between UMLS concepts, and 

proceeds as follows.

First, all terms in the text corpus are assigned unique vector representations, known as 

elemental vectors. We will refer to the elemental vector for concept C as E(C) for remainder 

of this manuscript. In accordance with the RI paradigm [82], elemental vectors are generated 

stochastically. In this way, RI creates unique fingerprints for all terms in the text corpus. The 

vector components can be binary, ternary, real, or complex values [82,83]. In our 

experiments, we use 32,000 dimensional binary vectors constructed in accordance with the 

Binary Spatter Code (BSC) [84], one of a family of representational approaches known as 

Vector Symbolic Architectures (VSAs) [84–87]. This dimensionality was selected based on 

the results of simulation experiments in previous research [88], which suggest that at this 

dimensionality around 2000 unique elemental vectors can be superposed with low 

probability of the superposed product being closer to some other elemental vector in the 

space than its component vectors. However, we did not attempt to optimize this parameter, 

and would anticipate some improvement in accuracy in exchange for the additional 

computational work required to perform these experiments at higher dimensionalities. In the 

BSC, elemental vectors are constructed by distributing an equal number of 1’s and 0’s at 

random across the dimensions of the vector concerned. Consequently, elemental vectors 

have a high probability of being orthogonal or close-to-orthogonal to each other, with 
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orthogonality defined as a Hamming Distance (HD) of half the dimensionality of the vectors 

concerned [75,84,86].

The next step is to generate vector representations of documents, by superposing the 

elemental vectors of the terms contained in these documents. With binary vectors, 

superposition is accomplished by keeping track of the number of 1’s and 0’s that have been 

added in each dimension, and assigning the value in this dimension using the majority rule, 

with ties split at random. We will refer to this operation by using the “+” symbol, with “+ 

=“ indicating a superposition that includes the vector on the left of the operator also (so 

DOC(D)+=E(C) is equivalent to DOC(D) = DOC(D)+E(C)), a common operation during 

training). In our experiments, this superposition is weighted using the Log-Entropy 

weighting procedure. The local term weight for term i in document j (lij) is derived from the 

frequency of a term in a document. The global weight for term i (gi) describes the frequency 

of the term within the entire text corpus. They are computed with Eq. (1):

(1)

This weighting scheme reduces the influence of high frequency terms that may be 

uninformative, and tempers the influence of terms that recur frequently within a single 

document [89]. Once document vectors have been generated (Eq. (2)), it is possible to 

generate vector representations of concepts (in our case, or terms in the general case), 

known as semantic vectors. We will refer to the semantic vector for concept C as S(C). 

Semantic vectors are constructed by superposing vector representations of the documents a 

concept occurs in.

(2)

Superposition of binary vectors requires maintaining a “voting record” that keeps track of 

the number of 1’s and 0’s added in each dimension. When local and global weighting 

metrics are utilized, the “votes” may not be integer values. So, for example, if the vector 

1010 were added with a weight of 0.5, a straightforward implementation of the voting record 

would add 0.5 to the dimensions of the voting record corresponding to the 1’s, and subtract 

0.5 from the dimensions corresponding to the 0’s. Normalization involves tallying these 

votes. After training is complete, those dimensions of the voting record with positive values 

would be assigned 1, those with negative values would be assigned 0, and those with a zero 

value would be assigned either 1 or 0 at random. In practice, however, it is computationally 

inconvenient to maintain and update 32,000 real values to serve as a voting record for each 

semantic vector. Consequently, the Semantic Vectors package employs a binary matrix 
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approximation of the voting record, which sacrifices some floating-point precision in 

exchange for computational efficiency. These implementation details are provided in [83].

These operations are expressed concisely in the pseudo code in Fig. 1, adapted from [74]. A 

schematic representation for RRI is shown in Fig. 2. We used Semantic Vectors Version 3.7 

to build RRI vectors. Once semantic vectors were constructed, the relatedness between 

drugs and ADRs was estimated as . Therefore, a ranked list 

of ADRs for each drug was provided.

3.2.2. PSI

3.2.2.1. Operations in PSI: The PSI model provides the means to implement discovery 

patterns for LBD using distributional semantics [77,90]. This is accomplished by 

representing concepts and relationships extracted by SemRep as high-dimensional vectors 

using an adaption of RI. In previous work, PSI has been applied to discover therapeutic 

relationships [77] using a two-stage process of discovery by analogy: first a geometric 

operator is used to infer discovery patterns from known treatments, then the identified 

discovery patterns are used to infer previously unseen therapeutic relationships.

In addition to the superposition operation described previously, the PSI model utilizes a 

binding operation. Binding (⊗) is a compositional operation that is provided by VSAs, such 

as the BSC [86,87]. Binding two elemental vectors generates a third vector, which is 

dissimilar from these two component vectors. The binding operation is reversible (release 

ø). With binary vectors, pairwise exclusive OR (XOR) is used to accomplish both binding 

(⊗) and release (ø).

3.2.2.2. PSI training process: The training process for generating semantic vectors 

proceeds as follows:

1. Generate elemental vectors for all concepts and relations occurring in semantic 

predications.

2. Generate a semantic vector for each concept, initially empty.

3. For each predication (concept–predicate–concept), bind the elemental vector of one 

concept and the elemental vector of the predicate, and add this bound product to the 

semantic vector for the other concept.

During step (3), a statistical weighting scheme is applied. For the predication C1 P C2, the 

semantic vector S(C2) is generated as shown in Eq. (3).

(3)

The global weight Pf is derived from the number of times that the predication occurs in the 

SemMedDB. The local weight idf (inverse document frequency of the concept c or the 

predicate p) reflects the occurrence of the concept across all documents. They are computed 

as shown in Eq. (4).
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(4)

The pseudo code for PSI is displayed in Fig. 3.

All concepts and relations were assigned a binary elemental vector of 32,000 bits in length. 

The semantic vector of each concept was generated by superposing bound products related 

to this concept, where the bound products were produced by binding the elemental vectors 

for the other concept and predicate elemental vectors in each predication this concept occurs 

in. The search space of SIDER2 side effects contains 3436 ADRs.

3.2.2.3. Inferring discovery patterns: After training the semantic vectors, the PSI model 

can be used to infer discovery patterns by “releasing” the semantic vector of a drug using the 

semantic vector of its ADR.

The bound product of the drug’s semantic vector and discovery patterns’ vectors can be 

subsequently used as a query vector to search the vector space of side effects. In our 

procedure, discovery patterns were inferred from all known drug/ADR associations. For 

each drug, the five discovery patterns that were most frequently inferred from all other drugs 

and their ADRs were retained.

The pathways connecting drugs to side effects may not be restricted to one middle term (and 

two predicates). In previous experiments predicting therapeutic relationships, performance 

was improved by including pathways of three predicates and two middle terms [90]. This is 

accomplished by generating a second-degree semantic vector for a concept, S2(concept), by 

adding together the (first-degree) semantic vectors of all concepts connected to it by a 

predicate of interest. In our experiments, the two most popular predicates from inferred 

double-predicate reasoning pathways – INTERACTS_WITH and COMPARED_WITH – 

were used to build second-degree semantic vectors S2. This vector is then used as an 

alternative starting point for the inference procedure. From this point, the five most 

frequently inferred double-predicate reasoning pathways using the second order semantic 

vector of all other drugs and the (first order) semantic vectors of their ADRs were retained. 

As these inferred pathways connect to drugs through either INTERACTS_WITH or 

COMPARED_WITH, they are referred to as triple-predicate pathways.

3.2.2.4. Applying discovery patterns to find possible ADRs (Step 5 in Fig. 4): To 

combine query vectors for frequently inferred reasoning pathways into one search 

expression, we use a disjunction operation that originates in the quantum logic of Birkhoff 

and von Neumann, and was first applied to information retrieval by Widdows and Peters 

[91,92]. We define the disjunction of these five query vectors as a query subspace derived 

from them using a binary vector approximation [93] of the Gram–Schmidt 

orthonormalization procedure [94]. The length of the projection of some other vector in this 

subspace provides an estimate of vector-subspace similarity.

For the double-predicate discovery patterns model, a drug’s query subspace was constructed 

from this drug’s first-degree semantic vector bound to the vector representations of the five 
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double predicate reasoning pathways most frequently inferred from other drugs. For the 

double- and triple-predicate discovery patterns model, a drug’s query subspace also included 

this drug’s second-degree semantic vector bound to vector representations of the five 

reasoning pathways most frequently inferred from the second-degree semantic vectors of 

other drugs.

The length of the projection of the semantic vector for a candidate ADR into a drug’s query 

subspace was used to estimate the relatedness between these entities, providing a ranked list 

of potential ADRs for each drug.

Fig. 4 provides an overview of the PSI-based analogical reasoning process in its entirety.

3.3. Experimental design

An overview of the experimental design is shown in Fig. 5. The first experiment was 

conducted without knowledge of drug indications. The concept-based RRI model and 

discovery pattern-based PSI model were compared with respect to their ability to identify 

known drug/ADR associations. In the second experiment, the model with the best 

performance from the first experiment was used to evaluate the effect of eliminating known 

indications from the list of predictions.

3.3.1. Experiment 1 design—Distributional semantic vectors were used to model MMB 

and SemMedDB. RRI vectors and PSI vectors formed the basis for our models of LBD 

concept-based co-occurrence and LBD discovery patterns, respectively. As MetaMap may 

retrieve many more concepts from a particular document than SemRep retrieves 

predications, we varied the RRI model to assess the extent to which observed effects were 

due to the advantage of a more extensive (albeit less structured) knowledge base. In one 

case, a RRI space was derived from only those sentences from which predications were 

extracted. Consequently, there are three distributional semantic models – RRI built from 

documents (RRI-from-document group), RRI built from predication source sentences (RRI-

from-predication group), and PSI built from predications. The PSI model was evaluated with 

two settings. In the first case, only two-predicate discovery patterns were considered (PSI-

double group), while the second case considered both two- and three-predicate patterns 

(PSI-double + triple group). The elemental vectors for terms, which are not meaningfully 

related to one another, were used to implement a random baseline (Baseline group).

With the RRI models, for each drug, related problems were sought by comparing each 

vector in the side effect search space to this drug’s vector representation.

With the PSI model, SIDER2 known drug-side effect pairs were used to infer predicate 

paths. For the PSI-double group, each drug’s query subspace was built as the disjunction of 

the bound products between the drug and its five double-predicate reasoning pathways. For 

the PSI-double + triple group, each drug’s query subspace additionally included the second 

degree semantic vector of this drug bound to five triple-predicate paths. The five triple-

predicate paths were retrieved by the extension of second degree semantic vectors of drugs. 

Comparing a drug’s query subspace with each vector in the search space allowed us to infer 

the drug’s possible side effects.
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3.3.2. Experiment 2 design (Fig. 5)—From our preliminary results, we found that there 

were some indications in the inferred ADRs. So we hypothesized that excluding known 

indications for drugs from the search space would improve performance. We tested this 

hypothesis in the second experiment utilizing knowledge of drug indications from MEDI. In 

this experiment, we tested variants of the MEDI indication list using the best performing 

model from the first experiment (PSI double + triple group). We extended the MEDI-

complete and MEDI-HPS lists to include all offspring, or immediate offspring nodes based 

on the UMLS semantic network utilizing the MRREL.RRF file. This file includes 

relationships between UMLS concepts found in the UMLS Metathesaurus [95]. By utilizing 

these ancestor-offspring hierarchical relationships, we define an offspring node as a node 

that has a MEDI indication as an ancestor (regardless of the number of intervening nodes); 

and an immediate offspring node as a node that has this MEDI indication as its parent.

In this procedure, we first normalized all MEDI terms. For MEDI drugs, we mapped each 

drug’s RxCUI to a UMLS CUI with the RxNorm API [96] and then subsequently searched 

the UMLS CUI in SemMedDB and MMB to retrieve the mapped UMLS concept. For MEDI 

indications, we mapped each indication’s ICD-9 term to a UMLS CUI using the UTS API 

2.0 [80] and then subsequently searched for this UMLS CUI in SemMedDB and MMB to 

retrieve the mapped UMLS concept. After normalizing MEDI terms, the hierarchical 

relation of synonym (SY), child (CHD), and sibling (SIB) in MRREL.RRF were used to find 

drugs’ MEDI indications extended offspring or immediate offspring. Consequently, there 

were six MEDI lists (Table 1). These MEDI lists were used to exclude indications from the 

side effect search space and were tested in the second experiment.

3.3.3. Performance measurements—To evaluate performance, we used a number of 

widely used metrics. Precision measures the proportion of accurate ADRs in relation to the 

total number of ADRs retrieved [97]. To evaluate the precision at different points in a 

ranked list, we used Average Precision (AP, the average of the precision values measured at 

the point at which each correct result is retrieved for one example [98]). Mean average 

precision (MAP) is the average of the AP across all drugs. Precision at k [98] measures the 

precision at fixed levels of retrieved results and emphasizes the importance of finding 

relevant results early. We evaluated precision at k = 50 (Pk=50). Recall represents the 

proportion of ADRs retrieved out of the total number of ADR associations in the reference 

standard [97].

We define a “rediscovery” (true discovery) as an adverse effect inferred by a vector model 

and subsequently confirmed by SIDER2 as a true prediction. Consequently, the median 

rediscovery rank for a particular drug approximates the point in the ranked list produced by 

a particular model at which half of the known adverse reactions for this drug were 

recovered.

The AP and median rank of the rediscoveries across drugs were compared by the paired t 

test and the Wilcoxon matched-pairs signed-rank test, respectively.

To measure the performance with respect to the true positive rate (TPR) and false positive 

rate (FPR), receiver operating characteristic (ROC) curve was plotted for all drug/ADR pairs 
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for all models. Subsequently, a global area under the ROC curve (AUC, “global” indicates 

that the scores of all drug-ADR pairs were combined into a single curve) was calculated 

using AUCCalculator [99]. For the model with the best global AUC, a drug-based AUC was 

also calculated and compared between drugs.

4. Results

4.1. Experiment 1

4.1.1. Inferring discovery patterns—The most strongly associated double-predicate 

path was calculated for each known drug/ADR pair. In total, 90,787 predicate paths were 

inferred. Among them, there were 1485 unique predicate paths. The five most frequently 

inferred double-predicate paths were selected. Second degree semantic vectors for drugs 

were constructed by adding together the semantic vector representations of any concept 

occurring in a semantic predication with the drug in question, where the predicate type was 

either INTERACTS_ WITH or COMPARED_WITH. The most frequently occurring double 

predicate paths and inferred triple predicate paths with corresponding examples are shown in 

Table 2. They are consistent across all drugs. Many of these paths are readily interpretable, 

and could support a plausible biological mechanism for a predicted effect. For example, 

INTERACTS_WITH:CAUSES-INV suggests a drug may interfere with some biological 

factor which may cause a side effect. COMPARED_WITH:CAUSES-INV can be used to 

identify similar side effects by comparing their drug class information as 

COMPARED_WITH often indicates a comparative evaluation across different drugs in the 

same therapeutic category. Triple predicate paths extend the connecting path for drugs and 

related ADRs.

4.1.2. Performance—Results for different vector models are shown in Table 3. PSI-based 

models performed better than RRI-based models and both models perform better than the 

random baseline. The PSI-double + triple group outperformed all other groups. All 

differences in median rank and MAP were statistically significant (as estimated by 

Wilcoxon’s signed rank test and paired t test respectively). Pk=50 for each drug was 

compared across groups using Pearson’s correlation. For variants of the same model (RRI or 

PSI), Pk=50 was highly correlated (0.75–0.84). Correlation in Pk=50 between the PSI and RRI 

models was between 0.52 and 0.57, suggesting the potential to improve performance by 

combining results.

4.1.3. AUC—Fig. 6 and Table 3 present the global ROC curves for all models. ROC curve 

shows the tradeoff between sensitivity and specificity. The global AUC provides a 

cumulative estimate of accuracy, and is shown for each model in Table 3. PSI-double + 

triple group has the best global AUC of 0.6841. We measured its AUC at the drug level 

(Fig. 7). The mean and median AUC are 0.7102 ± 0.0752 and 0.7058 respectively. Fig. 7 

shows a plot of the AUC for each drug against the log of the number of predications in 

SemMedDB with this drug as subject. This suggests a trend in which performance is 

generally better for those drugs for which more knowledge is available in the database. 

Those drugs with an AUC of 0.8 or above tend to occur in 10,000 or more predications as 

subject.
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Note that the global AUC as a metric will be inflated by methods that incorporate category 

bias into their prediction [100,101], a subject we will return to in the discussion section.

4.1.4. Rediscovery results—The results of this experiment are illustrated in Fig. 8. This 

figure plots the number of rediscovered side effects (left Y axis) and the proportion of the 

valid side effects rediscovered (or global recall, right Y axis) for each model against the 

mean number of suggested potential ADRs (X axis) at different statistical thresholds. All 

distributional models outperform the random baseline.

With approximately 100 predictions per drug, baseline, RRI-from- predication, RRI-from-

document, PSI-double and PSI-double + triple group have a global recall of 0.029, 0.045, 

0.069, 0.088, 0.125, respectively.

4.2. Experiment 2

The PSI-double + triple model was the best performing model in the first experiment, and 

was selected to test the effects of using variants of the MEDI list as a way to exclude 

therapeutic relationships to reduce the number of highly ranked false positive predictions.

Table 4 presents the performance of the PSI-double + triple model when different MEDI 

lists were used. The median rank of true positive predictions was lower when MEDI was 

used to exclude the indication from the search space for each drug. However, as median rank 

is based on the rank of true positive results only, it does not consider known side effects that 

may have been excluded from consideration by the MEDI list. In contrast, MAP also 

measures whether true side effects have been excluded. Consequently, MAP in the MEDI-

complete-immediate offspring was higher than other groups. Overall, AUC was highest for 

the MEDI-HPS- immediate offspring group. Of the models, only the MEDI-HPS- immediate 

offspring group outperformed the baseline PSI model by all metrics, and the improvements 

in performance were small in comparison with the differences in performance between 

distributional models in experiment 1. All differences between all MEDI intervention groups 

and No-MEDI group in Pk=50 are statistically significant as measured by the paired t test. 

However, the improvement in cumulative accuracy is negligible.

4.3. Plausibility evidence found by PSI discovery patterns approach

In this paper, the association between rosiglitazone and myocardial infarction, a highly 

publicized ADR discovered after the drug was released to the market, is used to illustrate 

how evidence from the literature can be retrieved for the evaluation of plausibility by a 

domain expert. The term “myocardial_infarction” was ranked in the top 1% (rank = 29) and 

top 1.5% (rank = 50) of potential side effects for rosiglitazone by the PSI-double and PSI-

double + triple models respectively.

Rosiglitazone is a thiazolidinedione (TZD) antidiabetic drug, used to treat type 2 diabetes 

mellitus as an adjunct to lifestyle changes [102–104]. Since its approval by the FDA in 

1999, rosiglitazone was prescribed 3.8 million times annually up to June 2009 in the United 

States [105]. A meta-analysis of clinical trials conducted by Nissen and Wolski [106] in 

2007 suggested that the use of rosiglitazone was associated with a significant increase in the 

risk of myocardial infarction. This led to rosiglitazone’s withdrawal from the European 
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market in 2010 and a rosiglitazone black-box warning in the U.S. [105,107]. In 2013, the 

FDA lifted some prescription restrictions in the U.S. market based on a reevaluation of the 

Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes 

(RECORD) trial (ClinicalTrials.gov Identifier NCT00379769) [108], but the European 

suspension is still in effect at the time of this writing.

Rosiglitazone is a nuclear peroxisome proliferator-activated receptor (PPAR-gamma) 

agonist. The mechanism through which rosiglitazone causes cardiovascular events is 

unclear, but is thought to be related to unfavorable effects on triglycerides, low-density 

lipoprotein cholesterol (LDL-C) particle size and density, and greater affinity for PPAR-

gamma than other TZD drugs [109– 112]. To evaluate the extent to which these hypotheses 

were consistent with information utilized by the PSI-double + triple model, we reconstructed 

the pathways of predicates and concepts that were consistent with the inferred discovery 

patterns used to make this prediction.

For myocardial infarction, each discovery pattern that was used for the inference was used to 

search the indexed SemMedDB predications and find middle terms that connect 

rosiglitazone with myocardial infarction through the discovery pattern. The middle terms 

retrieved were ranked based on their inverse document frequency. Since the indexed 

SemMedDB predications contain the source literature ID (PMID), we also retrieved related 

literature evidence that supports the prediction.

Consequently 108,100 unique predication pathways were retrieved through 8 unique 

predicate paths (Table 5) with distinct middle terms that connect rosiglitazone with 

myocardial infarction. Table 6 shows some example predication pathways, that were 

composed of two or three predications. There were around 17 sentences providing evidence 

to support each predication on average. We analyzed middle terms’ semantic groups [113] 

and list the sample with distinct predicate paths connecting with different semantic groups 

(Fig. 9).

There were 2618 distinct predication pathways about “triglycerides”, “LDL lipoprotein” and 

“PPAR-gamma” specifying 247 unique middle terms.

Drilling down, Fig. 10 shows the connecting concepts between LDL-C and myocardial 

infarction that fall along the reasoning pathways employed by the PSI-double + triple model. 

In each reasoning pathway, the middle terms were ranked using inverse document 

frequency, to approximate the weighting used by the predictive model. For each predication 

in these pathways, the source sentences from the literature were retrieved. For example, the 

article “A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in 

patients with type 2 diabetes and dyslipidemia” [143] explains that rosiglitazone increased 

triglycerides compared with pioglitazone and has different effect on plasma lipids which 

may contribute to heart disease. Fig. 10 shows the middle terms retrieved to justify that 

rosiglitazone may cause myocardial infarction via LDL-C.

The capacity to retrieve and organize knowledge in this way suggests a new paradigm for 

information retrieval in which information supporting a hypothesis of interest is 

automatically aggregated and organized at the conceptual level. However, as the number of 
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assertions in the literature far exceeds the number of documents, further research is needed 

to develop methods through which to prioritize these assertions, and present them in a 

manner conducive to human consumption.

5. Discussion

This study evaluates the ability of scalable LBD methods based on distributional semantics 

to rank the plausibility of connections between drugs and potential ADRs. We find that both 

the RRI and PSI models are able to retrieve known side effects of drugs, but PSI performs 

this task better, as one would anticipate given the additional information beyond co-

occurrence that it encodes. The PSI model can further provide the reasoning pathways that 

were used to link a drug to a predicted side effect. Consequently, relevant literature can be 

retrieved to support the predictions, and provided to experts for review. However further 

research is needed to develop approaches through which the assertions underlying the large 

numbers of reasoning pathways utilized by the model can be prioritized for expert review, as 

these are too numerous for exhaustive manual review. Ultimately, we aim to provide domain 

experts with essential evidence while preventing information over-load. Even though it is 

not the best performing model, the RRI model has the advantages of a simple training 

process and the availability of more data to draw upon (as MetaMap has higher recall for 

concepts than SemRep has for predications). Conversely, the PSI model has the advantage 

of modeling plausibility, a capability with the potential to assist expert clinical review for 

pharmacovigilance. In addition, the correlation analysis between groups suggests that RRI 

and PSI complement each other, and can potentially be combined to improve performance 

on this task.

For predicting ADRs, several statistical models and ML algorithms have been evaluated 

against an edition of SIDER, or a subset of this repository. In addition to methodological 

differences, these approaches have leveraged different data sets and a variety of knowledge 

bases as a basis for making predictions. In the section that follows, we will provide a review 

of these approaches, and the performance they have documented for the prediction of ADRs 

in SIDER.

Pauwel’s et al. represented drugs using as features the presence or absence of chemical 

substructure components described in PubChem [144]. In addition to standard supervised 

ML approaches, they applied canonical correlation analysis (CCA), including a sparse 

variant that emphasizes a small number of informative features for each training example. 

These methods were used to predict SIDER side effects, with a reported global AUC of 

0.8932 [145] on a set of 1350 ADR and 888 drugs, using fivefold cross-validation.

Subsequently, Liu et al. applied five supervised ML algorithms to the same SIDER set. In 

addition to the PubChem-derived chemical substructure features used by Pauwel’s et al., 

features were drawn from DrugBank [146] (drug targets, transporters, and enzymes), KEGG 

[147] (pathway information) and SIDER itself (drug indications and side effects). A 

classifier was built for each SIDER ADR, and the classifiers were then evaluated on 832 

SIDER drugs (for which DrugBank IDs could be found) using fivefold cross-validation. The 

support vector machine (SVM) algorithm performed best with a global AUC of 0.9524 on 
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the full SIDER dataset [101]. The authors attribute much of the improvement in 

performance by this and other metrics to the effects of incorporating SIDER side effects as 

features, suggesting that certain side effects have a tendency to co-occur in drug label data.

Other authors have reported performance on subsets of SIDER using similar methods. For 

cardio-toxicity related ADRs in SIDER, a median AUC of 0.771 using SVM for prediction 

has been reported [148]. In this case, features were selected from information about intended 

drug targets in DrugBank, and information about off-target effects from an expanded 

protein–protein interaction network developed using gene ontology (GO) annotations. A 

SVM classifier was built for each evaluated ADR and cross-validated on SIDER.

With respect to performance, two of these studies, Pauwels et al. [145] and Liu et al. [101] 

report a global AUC of close to 0.9 or higher with the best of their methods. Though our 

results are not directly comparable as we made predictions on a per-drug rather than a per-

ADR basis, the difference between the global AUC of these methods and that obtained with 

our approach seems large. However this difference in global AUC is misleading. As noted 

by Liu and colleagues in their paper, the imbalance between positive and negative examples 

across ADRs and the way in which the global AUC was calculated in this work leads to an 

apparent inconsistency between it and the other evaluation metrics presented. For example, 

Pauwels and his colleagues display the AUC across different ADRs in a series of box plots, 

which shows a median AUC for the best-performing method (by this metric) of slightly 

above 0.6. Acknowledging this issue, Liu et al. also report precision and recall for each 

evaluated method with, for example, precision of 0.66 and recall of 0.63 for SVMs with 

their maximal feature set. Notably, the AUC in this case was around 0.95.

This apparent inconsistency can be explained by the effect of the prevalence of positive 

examples for each ADR on the prediction strength. This is readily apparent for simple 

algorithms such as Naive Bayes, where the prior probability of a given category is 

incorporated into the estimate. However, it is also an issue for more sophisticated algorithms 

such as SVM [100] particularly when the imbalance between categories is severe. This is the 

case for many of the ADR examples: Liu et al. report a positive to negative ratio of around 

1:166 for 554 of the 1135 ADRs. So given the same set of features, instances in these cases 

are likely to receive a lower prediction score than those in balanced cases. When these 

scores are aggregated across examples to generate a global AUC, ML methods that 

incorporate the category bias will obtain an inflated global AUC on account of this tendency 

to assign lower scores to instances with few positive examples. However, as noted by Liu et 

al. and demonstrated by the other reported metrics, this AUC is not an accurate reflection of 

the ability of these models to detect positive examples.

To simulate the effects of category bias on global AUC, we performed a simple experiment 

in which we multiplied the similarity scores produced by our model by the proportion of 

positive examples for each drug. This roughly approximates the effects of an accurately 

estimated prior class probability during cross-validation experiments. This resulted in an 

increase of our global AUC from 0.68 to 0.88. We do not present this result for the purpose 

of comparative evaluation, as our experiments are not directly comparable with prior ML 

work for other reasons we will subsequently discuss. Rather, we present it as an illustration 
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of the disproportionate influence of category bias on global AUC, which underscores the 

issues with this evaluation metric raised by Liu et al. We trust it will also serve to dispel the 

misleading impression that the predictive accuracy of our methods is vastly inferior to that 

reported previously.

As our method does not consider the number of ADRs associated with a particular drug, the 

global AUC and median AUC approximately agree with one another. Our median AUC 

(across all drugs) of 0.7058, which falls somewhere in between that reported by Pauwels et 

al. [145] (across all ADRs) and Huang et al. [148] (across cardio-toxicity related ADRs 

only). On account of the difference in denominator these results are not directly comparable, 

but they do further illustrate the discrepancy between global and local AUC in models that 

are not agnostic to class imbalance. Arguably such agnosticism is desirable from the 

perspective of an expert review, as it is difficult to justify the assertion that those drugs with 

fewer known associated side effects should be considered less likely to cause some newly 

observed side effect (and vice versa).

With respect to methodological differences, all of the above methods are supervised ML 

methods, and were applied to infer whether or not drugs were associated with each ADR 

from the features of other drugs known to be associated with this ADR. So the predictive 

models were generally customized on a per-ADR basis, for example by generating an 

individual classifier for each ADR in the case of SVM. In contrast, our approach infers a set 

of abstract reasoning pathways that were consistent across the drugs we evaluated. However, 

as illustrated by the absence of evidence across certain pathways in the rosiglitazone 

example, some pathways may be more predictive for particular medications or ADRs. So it 

seems likely that we could further improve our performance by incorporating supervised 

ML, a direction we plan to explore in future work.

Our approach differs with respect to the knowledge sources utilized also. For example, 

KEGG and DrugBank are manually curated databases. Our knowledge base, SemMedDB, 

contains predications that have been automatically extracted by SemRep from the 

biomedical literature using NLP. Inaccuracies in language processing, or indeed in the 

literature itself may introduce sources of error that are not present in manually curated data. 

However, the scope of the literature is much broader than that of human-curated resources. 

Furthermore, as there is no agreed-upon gold standard for ADRs, different studies have 

utilized different datasets as reference sets [149]. Our study employed SIDER2, which 

includes considerably more drugs and ADRs than SIDER1.

This work has several limitations. The first of these concerns the use of SIDER2 as a 

reference standard. As SIDER2 consists of recognized side effects only, we cannot reliably 

distinguish between false positive signals and previously unknown ADRs. Furthermore, 

SIDER was compiled from package insert information by NLP tools [79], and as such may 

include side effects that seldom occur in practice or false associations that were caused by 

text-mining errors [150]. While SIDER2 is sufficient to evaluate the hypotheses of the 

current work, in future work we plan to incorporate other data sources, such as EHR data 

and FDA reports. These data sources may provide additional evidence to support the 

assertion that an unknown drug/ADR pair is worth investigating further. Alternatively, they 
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may provide the means to select a subset of the side effects in SIDER2 that have been 

observed frequently in practice as an additional evaluation set.

Secondly, the MMB repository contains one year less literature than the SemMedDB 

dataset. There is a difference of 1,7579,64 citations (7.9% of SemMedDB dataset). These 

were the newest datasets at the time of the experiment. However the MMB repository has 

many more data points than SemMedDB. For example, more than 99.99% of citations have 

concepts extracted by MetaMap and 59.91% of citations have predications extracted by 

SemRep.

Another concern is the existing knowledge about causal relationships between drugs and 

related ADRs from the literature. For our dataset (90,787 pairs), 45% of pairs (concerning 

953 drugs) co-occur directly in the MMB repository and 5% of pairs (concerning 693 drugs) 

have direct causal relationship (drug CAUSES ADR) in SemMedDB. So PSI’s accuracy is 

dependent upon its ability to meaningfully infer connections between concepts that were not 

previously linked in its database, a capacity that would be particularly useful as a means of 

assessing novel ADRs that had not previously been documented in the literature. RRI is also 

able to draw such inferences, but in this case more of its performance may be attributable to 

direct co-occurrence.

Inspecting the middle terms that our model retrieved for rosiglitazone- MI association (Fig. 

10), we found that at times uninformative high-level concepts, such as “genes” and 

“proteins”, were retrieved. In our study, we addressed the issue of uninformative high level 

concepts in two ways, both related to their propensity to occur relatively frequently in the 

corpus. Firstly we used a frequency threshold of 1,000,000 to exclude frequently occurring 

concepts contained in SemMedDB. The frequency of “genes” and “proteins” is less than the 

threshold and cannot be filtered. Secondly, we used a weighting procedure to reduce the 

influence of high-frequency terms on the training process. However, more sophisticated 

approaches to filtering are possible. Information concerning UMLS semantic types and 

position in the UMLS hierarchy could be used to develop more sophisticated approaches, to 

further filter out uninformative high-level concepts, which may improve performance.

The predictions made by PSI depend upon assertions extracted from the biomedical 

literature. One concern about the extracted predications is that they may be implausible on 

account of NLP errors. Though SemRep has been optimized for precision, its precision is 

not perfect. For example, Kilicoglu et al. estimate the precision of SemRep to be around 

0.77 [151]. Based on this, and other published evaluations [152,69], it is reasonable to 

estimate that around three in four predications in the set are perfectly accurate. In many 

cases, inaccurate predications nonetheless indicate cooccurrence, which is also informative. 

The PSI-based analogical reasoning approach we have employed is robust to isolated 

language processing errors, as highly ranked predictions are based on assertions extracted 

from thousands of unique reasoning pathways. For example, for the rosiglitazone-MI 

association, 108,100 unique predications were retrieved, spanning eight of the inferred 

reasoning pathways. On average, individual predications were supported by 17 excerpts 

from the literature. If we extrapolate from prior published evaluations of SemRep, the 

predication concerned would have been accurately extracted from around 12 of these 
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excerpts. So it is likely that at least some of the evidence supporting each individual 

assertion is accurate. Moreover, as this method is distributional in nature, it does not require 

that these assertions be perfectly accurate. Rather, the frequency with which an assertion is 

extracted factors into the strength of its contribution to a reasoning pathway. Nonetheless, 

the biomedical literature may contain controversial assertions, or contradictory conclusions 

from different experts or different experiments. This is illustrated by the rosiglitazone (brand 

name: Avandia) case. In 2007, the FDA added a black-box warning for heart-related risks to 

Avandia based on a meta-analysis [106] and three other studies [153]. In 2013, the FDA 

lifted certain Avandia prescribing restrictions based on the readjudicated results of the 

RECORD trial [154,155], claiming the initial concerns were overblown [108]. This decision 

was condemned by one of the authors of the original meta-analysis [156]. Currently our 

models weight the contribution of assertions using statistics related to local and global 

frequency. However, it would also be possible to weight the importance of these assertions 

based on some assessment of the reliability of the source. For example, in information 

retrieval experiments, an approach incorporating citation information was better able to 

identify articles considered as important in a preexisting bibliography [157]. Possibilities 

include weights derived from the citation count of the source article, the impact factor of the 

journal, or the nature of the experiment described. It is possible that weighting metrics of 

this source would improve the predictions of our models, and they also suggest approaches 

to prioritize the large numbers of assertions supporting our predictions for review by human 

experts.

6. Conclusion

In this research, an emerging, scalable method of LBD that uses distributional statistics to 

infer and apply discovery patterns was adapted to evaluate the plausibility of drug/ADR 

relationships for the purpose of pharmacovigilance. The effective application of large 

amounts of partially accurate biomedical knowledge to this problem was facilitated by the 

scalable and robust nature of approximate inference in geometric space. This approach was 

shown to be more effective than a comparable co-occurrence based baseline, and has the 

further benefit of permitting the retrieval of evidence underlying the assertions used by the 

system to make its predictions. Consequently, our approach provides the means to assist 

with expert clinical review by providing evidence supporting the plausibility of the 

connection between drugs and ADRs. Furthermore, the models we have developed can be 

applied to filter drug/ADR signals that are detected in spontaneous reporting systems or 

EHR data, a direction we plan to explore in future work.
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Fig. 1. 
The pseudo code for RRI model training process.
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Fig. 2. 
Schematic representation of RRI training and inference process.
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Fig. 3. 
The pseudo code for PSI model training process.
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Fig. 4. 
Schematic representation of PSI training and inference process. triglycerides: TG; 

myocardial infarction: MI; INTERACTS_WITH: IW; COEXISTS_WITH: CoeW; 

ASSOCIATED_WITH: AW; COMPARED_WITH: ComW.
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Fig. 5. 
Experimental design in the detection of SIDER2 known ADRs using LBD distributional 

semantic models.
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Fig. 6. 
ROC plot of true positive rate and false positive rate for all groups.
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Fig. 7. 
Performance of AUC for all drugs by PSI-double + triple group.
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Fig. 8. 
Rediscovery plot for experiment groups.
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Fig. 9. 
The predications retrieved by reasoning pathway for rosiglitazone causing myocardial 

infarction with specifying semantic groups for concepts.
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Fig. 10. 
Middle terms that were retrieved by PSI discovery patterns involving LDL-C.
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Table 1

Different groups by extending MEDI in experiment 2.

MEDI intervention Extension procedure Experiment group

No MEDI None No-MEDI group

MEDI-HPS indications for SIDER2 
drugs

All synonym (SY), child (CHD), and sibling (SIB), 
as well as their offspring

MEDI-HPS-offspring group

Immediate synonym (SY), child (CHD), and sibling 
(SIB) relationships

MEDI-HPS-immediate offspring group

MEDI-complete indications for SIDER2 
drugs

None MEDI-complete group

All synonym (SY), child (CHD), and sibling (SIB), 
as well as their offspring

MEDI-complete-offspring group

Immediate synonym (SY), child (CHD), and sibling 
(SIB) relationships

MEDI-complete-immediate offspring group
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Table 2

The most frequent predicate paths in inferred discovery patterns.

Double/triple-predicate Example

INTERACTS_WITH
CAUSES-INV

Dipyridamole INTERACTS_WITH nitric oxide
Bradycardia CAUSES-INV nitric oxide

ASSOCIATED_WITH
COEXISTS_WITH

Rosiglitazone COEXISTS_WITH apolipoprotein a-ii
Apolipoprotein a-ii ASSOCIATED_WITH myocardial infarction

COMPARED_WITH
CAUSES-INV

Bisoprolol COMPARED_WITH metoprolol
Hypotension CAUSES-INV metoprolol

ASSOCIATED_WITH
INTERACTS_WITH

Rosiglitazone INTERACTS_WITH triglycerides
Triglycerides ASSOCIATED_WITH myocardial infarction

ISA
CAUSES-INV

Naproxen ISA calcineurin inhibitor
Toxic nephropathy CAUSES-INV calcineurin inhibitor

INTERACTS_WITH
INTERACTS_WITH
ASSOCIATED_WITH

Rosiglitazone INTERACTS_WITH lyrm1
Lyrm1 INTERACTS_WITH fatty acids, nonesterified
Fatty acides, nonesterified ASSOCIATED_WITH myocardial infarction

INTERACTS_WITH
ASSOCIATED_WITH
COEXISTS_WITH

Rosiglitazone INTERACTS_WITH glycerol-3-phosphate dehydrogenase
Glycerol-3-phosphate dehydrogenase COEXISTS_WITH succinate dehydrogenase
Succinate dehydrogenase ASSOCIATED_WITH myocardial infarction

COMPARED_WITH
INTERACTS_WITH
ASSOCIATED_WITH

Rosiglitazone COMPARED_WITH glycerophosphates
Glycerophosphates INTERACTS_WITH low-density lipoproteins
Low-density lipoproteins ASSOCIATED_WITH myocardial infarction

COMPARED_WITH
COEXISTS_WITH
ASSOCIATED_WITH

Rosiglitazone COMPARED_WITH gw 501516
Gw 501516 OEXISTS_WITH high-density lipoprotein cholesterol
High-density lipoprotein cholesterol ASSOCIATED_WITH myocardial infarction
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Table 5

Reasoning pathways used to retrieve evidence from the literature for the pair rosiglitazone – myocardial 

infarction.

Predicate path

COMPARED_WITH : COEXISTS_WITH : ASSOCIATED_WITH

COMPARED_WITH : INTERACTS_WITH : ASSOCIATED_WITH

INTERACTS_WITH : COEXISTS_WITH : ASSOCIATED_WITH

INTERACTS_WITH : INTERACTS_WITH : ASSOCIATED_WITH

COEXISTS_WITH : ASSOCIATED_WITH

INTERACTS_WITH : ASSOCIATED_WITH

COMPARED_WITH : ASSOCIATED_WITH : COEXISTS_WITH

INTERACTS_WITH : ASSOCIATED_WITH : COEXISTS_WITH
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Table 6

Some example predications for possible mechanism of rosiglitazone causing myocardial infarction.

Middle term “LDL cholesterol lipoprotein”; 123 unique predication pathways;

• rosiglitazone INTERACTS_WITH apolipoproteins_b [114,115] INTERACTS_WITH ldl_cholesterol_lipoproteins [116] 
ASSOCIATED_WITH myocardial_infarction [110]

• rosiglitazone INTERACTS_WITH paraoxonase_1 [117] INTERACTS_WITH ldl_cholesterol_lipoproteins [118] 
ASSOCIATED_WITH myocardial_infarction [119]

Middle term “triglyceride”; 1515 unique predication pathways;

• rosiglitazone COEXISTS_WITH triglycerides [110] ASSOCIATED_WITH myocardial_infarction [120–124]

• rosiglitazone INTERACTS_WITH triglycerides [125,126] ASSOCIATED_WITH myocardial_infarction

• rosiglitazone INTERACTS_WITH glycerol-3-phosphate_dehydrogenase [127] COEXISTS_WITH triglycerides [128] 
ASSOCIATED_WITH myocardial_infarction

Middle term “ppar_gamma”; 992 unique predication pathways; for example:

• rosiglitazone COEXISTS_WITH ppar_gamma [129–132] ASSOCIATED_WITH myocardial_infarction [133]

• rosiglitazone INTERACTS_WITH ppar_gamma [134–138] ASSOCIATED_WITH myocardial_infarction

• rosiglitazone INTERACTS_WITH glycerol-3-phosphate_dehydrogenase [127] COEXISTS_WITH ppar_gamma [139] 
ASSOCIATED_WITH myocardial_infarction

• rosiglitazone INTERACTS_WITH glycerol-3-phosphate_dehydrogenase INTERACTS_WITH ppar_gamma [140] 
ASSOCIATED_WITH myocardial_infarction

• rosiglitazone INTERACTS_WITH resistin [141] INTERACTS_WITH ppar_gamma [142] ASSOCIATED_WITH 
myocardial_infarction
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