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Abstract

Objective—Electronic health records (EHR) offer medical and pharmacogenomics research 

unprecedented opportunities to identify and classify patients at risk. EHRs are collections of 

highly inter-dependent records that include biological, anatomical, physiological, and behavioral 

observations. They comprise a patient’s clinical phenome, where each patient has thousands of 

date-stamped records distributed across many relational tables. Development of EHR computer-

based phenotyping algorithms require time and medical insight from clinical experts, who most 

often can only review a small patient subset representative of the total EHR records, to identify 

phenotype features. In this research we evaluate whether relational machine learning (ML) using 

Inductive Logic Programming (ILP) can contribute to addressing these issues as a viable approach 

for EHR-based phenotyping.

Methods—Two relational learning ILP approaches and three well-known WEKA (Waikato 

Environment for Knowledge Analysis) implementations of non-relational approaches (PART, J48, 
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and JRIP) were used to develop models for nine phenotypes. International Classification of 

Diseases, Ninth Revision (ICD-9) coded EHR data were used to select training cohorts for the 

development of each phenotypic model. Accuracy, precision, recall, F-Measure, and Area Under 

the Receiver Operating Characteristic (AUROC) curve statistics were measured for each 

phenotypic model based on independent manually verified test cohorts. A two-sided binomial 

distribution test (sign test) compared the five ML approaches across phenotypes for statistical 

significance.

Results—We developed an approach to automatically label training examples using ICD-9 

diagnosis codes for the ML approaches being evaluated. Nine phenotypic models for each 

MLapproach were evaluated, resulting in better overall model performance in AUROC using ILP 

when compared to PART (p=0.039), J48 (p=0.003) and JRIP (p=0.003).

Discussion—ILP has the potential to improve phenotyping by independently delivering 

clinically expert interpretable rules for phenotype definitions, or intuitive phenotypes to assist 

experts.

Conclusion—Relational learning using ILP offers a viable approach to EHR-driven 

phenotyping.

Keywords

Machine learning; Electronic health record; Inductive logic programming; Phenotyping; 
Relational learning

1. Introduction

Medical research attempts to identify and quantify relationships between exposures and 

outcomes. A critical step in this process is subject characterization or phenotyping [1–4]. 

Without rigorous phenotyping, these relationships cannot be properly assessed, leading to 

irreproducible study results and associations [1]. With the proliferation of electronic health 

records (EHRs), computerized phenotyping has become a popular and cost effective 

approach to identify research subjects [5]. The EHR contains highly inter-dependent 

biological, anatomical, physiological, and behavioral observations, as well as facts that 

represent a patient’s diagnosis and medical history. Typically, developing EHR-based 

phenotyping algorithms requires conducting multiple iterations of selecting patients from the 

EHR and then reviewing the selections to identify classification features that succinctly 

categorize them into study groups [6]. This process is time consuming [1] and relies on 

expert perceptions, intuition, and bias. Due to time limitations, experts carefully examine a 

small fraction of available EHR data for phenotype development. In addition, due to both 

the enormous volume of data found in the EHR and human bias, it is difficult for experts to 

uncover “hidden” relationships or “unseen” features relevant to a phenotype definition. The 

result is a serious temporal and informative bottleneck when constructing high quality 

research phenotypes.

The use of machine learning (ML) as an alternative EHR-driven phenotyping strategy has 

been limited [7–13]. Previous ML studies have applied a variety of standard approaches 

(e.g. SMO, Ripper, C4.5, Naïve Bayes, Random Forest via WEKA, Apriori, etc.) to coded 
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EHR data in order to identify relevant clinical features or rules for phenotyping. All of these 

ML methods were propositional, that is, they used data that were placed into a single fixed 

length, flat feature table for analysis.

Data from EHRs pose significant challenges for such propositional ML and data mining 

approaches, as previously noted [14]. First, EHRs may include reports on thousands of 

different conditions across several years. Knowing which features to include in the final 

feature table and how they relate often requires clinical intuition and a considerable amount 

of time spent by experts (physicians). Second, EHR data are noisy. For example, in some 

cases diagnostic codes are assigned to explain that laboratory tests are being done to confirm 

or eliminate the coded diagnosis, rather than to indicate that the patient actually has the 

diagnosis. Third, EHR data are highly relational and multi-modal. Known flattening 

techniques, such as computing summary features or performing a database join operation, 

can usually result in loss of information [15]. For example, the Observational Medical 

Outcomes Partnership (OMOP) phenotypes lymphoma as either a temporal sequence 

initiated with a biopsy or related procedure, followed within 30 days by a 200–202 

International Classification of Diseases, Ninth Revision (ICD-9) code, or a 200–202 ICD-9 

code followed within 30 days by radiation or a chemotherapeutic treatment [16]. Verifying 

such a rule requires using data from three different tables and comparing the respective 

event times. Thus, a flat feature representation for learning ignores the structure of EHR data 

and, therefore, does not suitably model this complex task. Arguably, more advanced data 

structures such as trees, graphs, and propositional reasoners can handle the EHR data 

structure, but these approaches assume a noise free domain and cannot deal with missing or 

disparate data often present in the EHR [17,18].

Inductive logic programming (ILP), a subfield of relational machine learning, addresses the 

complexities of dealing with multi-relational EHR data [15] and has the potential to learn 

features without the existential perceptions of experts. ILP has been used in medical studies 

ranging from predictive screening for breast cancer [19,20] to predicting adverse drug events 

[14,21,22] or adverse clinical outcomes [23–25]. Unlike rule induction and other 

propositional machine learning algorithms that assume each example is a feature vector or a 

record, ILP algorithms work directly on data distributed over different EHR tables. The 

algorithmic details of leading ILP systems have been thoroughly described [26,27] and are 

summarized in the methods section.

To our knowledge, this represents the first use of ILP for phenotyping. The work of 

Dingcheng et al. in phenotyping type 2 diabetes [11] is similar to ours in that it also uses a 

rule-based data-mining approach (Apriori association rule learning algorithm) which shares 

the advantage of learning rules for phenotyping that are easily understood by human users. 

The primary difference between the two approaches is our use of ILP to directly learn from 

the extant tables of the EHR versus Apriori, which must learn from data conflated into a 

single table. This paper compares the use of ILP for phenotyping to other well-known 

propositional ML approaches.

As a final contribution, we introduce several novel techniques used to better automate the 

learning process and to improve model performance. These techniques fall into three 
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categories: (1) selection of training set examples without expert (physician) involvement to 

provide supervision for the learning activities; (2) left-censoring of background data to 

identify subgroups of patients that have similar features denoting the phenotype; and (3) 

infusing borderline positive examples to improve rule prediction.

2. Methods

The Marshfield Clinic Research Foundation’s Institutional Review Board approved this 

study. The goal of our research was two-fold: (1) to evaluate the performance of ILP for 

EHR-driven phenotyping and compare it to other ML and data mining approaches; and (2) 

to develop methods that reduce expert (physician) time and enhance attribute awareness in 

the EHR-driven phenotyping process. The methods presented in this paper were applied to 

nine disease-based phenotypes to demonstrate the utility of the ILP approach.

2.1 Data source, study cohort, and phenotype selection

Marshfield Clinic’s internally developed CattailsMD EHR-Research Data Warehouse 

(RDW) was used as the source of data for this investigation. RDW data from 1979 through 

2011, including diagnoses, procedures, laboratory results, observations, and medications for 

patients residing in a 22 ZIP Code area, were de-identified and made available for this study. 

The phenotypes used in this investigation were selected based on the availability of 

manually validated (case-control status) cohorts and include: acute myocardial infarction, 

acute liver failure, atrial fibrillation, cataract, congestive heart failure, dementia, type 2 

diabetes, diabetic retinopathy and deep vein thrombosis [24,25,28]. The RDW was used to 

select training cohorts for each phenotype. These training cohorts were used to guide 

phenotype model development for all of the ML approaches. The manually validated cohorts 

(henceforth referred to as testing subjects or cohorts) were used to test the phenotype models 

by providing model performance comparison statistics. An overview of the study design is 

presented in Figure 1.

2.2 Identification of training set examples

The ability to accurately identify training examples to guide a supervised machine learning 

task is critical. Several ML studies have used experts (physicians) to review medical records 

to classify patients into the positive (POS) (patients with a condition or exposure) and NEG 

(patients without the condition) example categories [7,9] or used pre-existing validated 

cohorts representing POS and NEG training examples. A secondary goal of this research 

was to develop methods that could reduce expert (physician) time required for EHR-driven 

phenotyping; thus, it would be optimal to develop an approach for selecting training 

examples that did not require physician input or pre-existing categorized training examples.

A recent study by Carroll et al. [7] evaluated support vector machines for phenotyping 

rheumatoid arthritis and demonstrated the utility of ICD-9 CM diagnostic codes when 

characterizing research subjects. This knowledge coupled with our past phenotyping 

experience [28] prompted the use of ICD-9 codes as a possible surrogate to identify 

potential positive (POS) training examples for model building. A sampling frame of patients 

with at least 15–20 ICD-9 codes spanning multiple days was used to define the surrogate 
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POS cohort. From this cohort, we randomly selected a subset for model building (henceforth 

referred to as the POS training set). We required multiple ICD-9 codes based on the 

assumption that a patient who truly exhibits one of the phenotypes of interest will receive 

continuing care, in contrast with a patient who does not exhibit the phenotype but may have 

a small number of relevant ICD-9 codes in their record for administrative/billing reasons. A 

working cutoff for the number of codes was established as follows. The frequency 

distribution of patient numbers of ICD-9 codes was determined. Ranking patients from 

highest to lowest number of ICD-9 diagnoses, we targeted between 1000–1500 patients with 

highest ICD-9 counts to be labeled as POS, and similarly placed an upper limit on the 

training set size (refer to Table 1) to facilitate timely data transfers between the RDW and 

the machine learning environment.

For each selected POS in our training set, we randomly selected a NEG (ICD-9 code of the 

phenotype was not present in patient’s medical history) from a pool of similar age and 

gender matched patients (Figure 2 provides overview of the sampling strategy). Patients 

with only a single diagnosis or multiple diagnoses on the same day were labeled as 

borderline positive examples (BPs). The use of these classifications will be described later. 

Refer to Table 1 for details on POS, NEG and BP numbers for each phenotype.

2.3 Identification of testing set examples

Earlier in this discussion we indicated that we had access to manually validated phenotyped 

cohorts. We chose to use these cohorts for testing the performance of the phenotype models 

rather than for model training or development. Two testing cohorts (congestive heart failure 

[CHF] and acute liver injury [ALI]) were constructed in parallel to this investigation. A 

similar manual chart review and classification process was used for each phenotype to 

construct the testing cohorts. In general, trained research coordinators manually reviewed 

charts and classified a list of patients as either POS or NEG. A second research coordinator 

independently reviewed a sample of records completed by the first reviewer (usually a 5–

10% sample or a fixed sample size for the larger cohorts) for quality assurance. A board-

certified physician resolved disagreements or questions surrounding the classifications of 

subjects. For example, there were three noted disagreements in the ALI abstraction that were 

resolved in this manner.

2.4 Machine learning phenotyping approaches

2.4.1 ILP approach—ILP addresses the problem of learning (or inducing) first-order 

predicate calculus (FOPC) rules from a set of examples and a database that includes multiple 

relations (or tables). Most work in ILP limits itself to non-recursive Datalog [29], a subset of 

FOPC equivalent to relational algebra expressions or SQL queries, which differentiate 

positive examples (cases) from negative examples (control patients) given background 

knowledge (EHR data). A database with multiple tables is represented as an extensional 

Datalog program, with one predicate for each table and one fact for each tuple (record) in 

each table. The rules that we learn are equivalent to SQL queries; hence, a rule can be 

thought of as defining a new table and a set of rules as defining a new view of the database.
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Our work used Muggleton’s Progol algorithm [30] as implemented in Srinivasan’s Aleph 

system [31]. Progol applies the idea that if a rule is useful, it must explain (or cover) at least 

one example. Thus, instead of blindly generating rules, Progol first looks in detail at one 

example, and it only constructs rules that are guaranteed to cover that example. The benefit 

of using this approach is that instead of having to generate rules for all conditions, drugs, or 

labs in the EHR, it can generate rules for a much smaller number of conditions.

The Aleph implementation uses the data connected to an example to construct rules. The 

head of the rule always refers to the patient. The body refers to facts for that specific patient. 

These “ground” rules are then generalized by introducing variables au lieu of individual 

patients or of specific time points. Shorter rules are constructed first. In this study, we used 

breadth-first search over a fast-growing search space, so the major limitation is the number 

of elements that we combine and still achieve acceptable performance. This is rarely more 

than 4. It is possible to explore longer rules, often up to 10 or more, by using greedy search 

or randomized search instead of a complete search.

In a nutshell, the Progol/Aleph algorithm: 1. Selects a positive example (referred to as a 

seed) not yet explained by any rule. In the EHR domain, the positive example is a patient 

that has the exposure or medical condition of interest. 2. Searches the database for data 

directly related to the example. In the case of an EHR, this means collecting all diagnoses, 

prescriptions, lab results, etc., for the example patient. 3. Generates rules based on the 

patient. The rule will be constructed from the events of the chosen patient’s history (referred 

to as clauses) generalized to explain other patients. This is achieved by replacing the 

references to the actual patient and temporal data with variables. The resulting rule (with 

variables) is applied to the training examples (both positive and negative) using the EHR 

data to identify patients that can be explained by the rule.4. In practice, ILP must deal with 

inconsistent and incomplete data; hence, it uses statistical criteria based on the number of 

positively and negatively explained examples to determine the quality of the rule. Two 

simple criteria that are often used to score rules are precision (the fraction of covered 

examples that are positive, also called the positive predictive value) or the number of 

positive examples minus the number of negative examples covered by the clause, known as 

coverage. 5. The procedure stops when it finds a good rule, and the examples explained by 

the new rule are removed. If no more examples remain, learning is complete. Otherwise, the 

process is repeated on the remaining examples. Appendix A provides a more detailed 

introduction on ILP to assist readers’ understanding.

2.4.1.1 Traditional ILP use: ILP usage in the medical domain has focused on predicting 

patient outcomes [14,19–22]. Supervision for the prediction task comes from positive 

examples (POS—patients with a medical outcome) and negative examples (NEG—patients 

without the medical outcome), given some common exposure. For example, to develop a 

model that will predict diabetic retinopathy (DR), given a patient has diabetes, the 

supervision comes in the form of POS (diabetic patients that have DR) and NEG (diabetic 

patients without DR). EHR data collected before the DR occurrence is used to build a model 

to predict whether a diabetic patient is at future risk for DR (refer to Figure 2A).
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2.4.1.2 ILP for phenotyping: ILP applied to the phenotyping task uses a similar approach, 

but in a reversed manner. For example, when phenotyping we should not assume that we 

know all the clinical attributes that are needed to succinctly identify patients with a given 

phenotype (e.g., diabetes). Suppose we do not know in advance that diabetes is associated 

with elevated blood sugar. The POS and NEG cannot be selected as training examples based 

on elevated blood sugar, because it is not yet known that elevated blood sugar is an indicator 

for diabetes. Instead, the problem can be addressed by selecting training examples based on 

the desired phenotype or disease outcome (diabetes) and then running ILP with EHR data 

filtered by dates occurring on or after the first diagnosis (refer to Figure 2B). This seems 

counter-intuitive, because we are training on patients with data obtained after diabetes is 

diagnosed in order to identify the common features of the phenotype (diabetes). The features 

(or ILP rules) can then be applied to retrospective EHR data to select (or phenotype) 

unclassified patients. In addition, if we can identify diabetic patients based on similar 

medical features existing after the initial diagnosis, we may also be able to uncover 

unknown (unbiased) features that further define the phenotype.

2.4.1.3 Constructing background knowledge for ILP: Background knowledge (EHR 

data) for phenotyping was created by selecting coded ICD-9 diagnosis, medication, 

laboratory, procedure, and biometric observation measurement records from the EHR. A 

censor date, representing the initial diagnosis date of the phenotype, was determined for 

each POS and borderline positive (BP) example (BP will be explained in the following 

section). All EHR background knowledge records were labeled as before or after, based on 

the relationship of the event date (date of diagnosis, procedure, lab, or medication) to the 

censor date (refer to Figure 3). Before records were labeled if they occurred 5 years to 30 

days before the censor date. We used 30 days before the censor date, because we did not 

want to include EHR facts that might be associated with diagnosing the phenotype 

condition. After records were labeled if they occurred in the period from less than 30 days 

before the censor date through 5 years after the censor date. EHR background knowledge 

records for each NEG were similarly labeled as before or after based on the censor date of 

the corresponding POS (since NEGs have no incident diagnosis date). All EHR background 

knowledge records were formatted for Aleph ILP system software. The detailed methods 

surrounding background file creation can be found in Appendix B-3. Appendix C provides 

detailed examples of diagnosis, lab, gender, drug, procedure, vitals and symptom record 

formatting for Aleph. To summarize, a “b” is attached to the beginning of the patient_id 

(first variable in the parentheses) to indicate a before record (i.e. vitals(‘b222aaa222’,68110,

‘Blood Pressure Diastolic’,‘60’). There is no prefix used when formatting the after record 

(i.e. vitals(‘222aaa222’,78110,‘Blood Pressure Diastolic’,‘60’).

2.4.1.4 ILP scoring functions: Scoring functions in Aleph and other ILP systems evaluate 

the quality of a rule and thus, are fundamental to the learning process. We tested two 

different scoring functions with Aleph [31]. The first scoring function follows standard ILP 

practice and was (POS(after) − NEG(after)), where POS(after) denotes positive examples that 

use EHR data after the censor date and NEG(after) denotes negative examples that use EHR 

data after the censor date (Figure 3). Simultaneously, we evaluated (POS(after) − (NEG(after) 

+ POS(before))), in which POS(before) denotes positive examples that use EHR records before 

Peissig et al. Page 7

J Biomed Inform. Author manuscript; available in PMC 2014 December 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the censor date and POS(after) and NEG(after) are as in the previous example. Early on we 

found that diagnoses tended to “follow” patients over time. The scoring function mimics an 

epidemiology research method called Case-Crossover study design, where each case serves 

as its own control and allows for the detection of differences from one time period to 

another [32]. In our example, the later scoring function helps to identify differences in 

medical events between POS(after) and POS(before) time periods, thus highlighting new 

medical events that occurred after the initial diagnosis but not before. The cost function 

(POS(after) − (NEG(after) + POS(before))) was found to improve model performance and 

accuracy over the initial scoring function. Henceforth, this function will be referred to as 

ILP-1.

From previous work, we found that using the ILP-1 scoring function tended to create rules 

that could differentiate the POS and NEGs based on ICD-9 codes relatively well, but often 

failed to provide more specific rules that could discriminate borderline POS and NEG 

examples. To further discriminate and improve the rules, we infused the NEGs with subjects 

that we considered borderline positives (BPs). BPs are examples of patients that have one 

relevant diagnosis code, but not two, or several diagnoses on the same day with no 

subsequent follow-up. BPs are problematic because subjects may (or may not) have the 

medical diagnosis. This is because ICD-9 diagnosis codes are sometimes used in clinical 

practice to justify laboratory tests or procedures rather than to define that a patient has the 

diagnosis. BPs likely include patients that do not have the phenotype condition and by 

adding them to the NEGs, we increase the precision of the learned rules. The scoring 

function used to support the infusion of BPs into the NEGs is: (POS(after) − (NEG(after) + 

POS(before) + BPs(after))). Henceforth, this function will be referred to as ILP+BP.

We used a 1:1 ratio of POS to NEG while building the phenotype model. Initially, we 

limited the number of POS and NEG to the maximum number of BPs available (this was 

done for ALI and diabetic retinopathy phenotypes). Later, after completing a sensitivity 

analysis to determine the optimal percent of BPs to add to the NEGs (e.g., 25%, 50%, 75%, 

or 100%), we increased POS and NEG training sets selection to accommodate the maximum 

subject limit between 3–4000. The number of BPs used in each study was determined by 

either the availability of BPs in the cohort, or the number of BPs could not exceed the 

number of NEG subjects in the training set. Refer to Table 1 for the exact number of 

diagnoses used to select training examples and the numbers of POS, NEG, and BPs present 

in each phenotype training set.

2.4.1.5 ILP configuration: ILP was adapted for phenotyping by adjusting Aleph parameters 

reflecting the following beliefs: (1) accepted rules should cover very few, ideally zero, 

negative examples; (2) rules that succeed on very few examples tend to over fit (a useful 

heuristic is that a rule is only acceptable when it covers at least 20 examples); and (3) search 

time heavily depends on the maximum number of rules that are considered for each seed. 

Because of the high run-time for relational learning and the large number of parameters, as 

well as to keep the process as simple and generalizable as possible, we did not tune, but 

rather chose a single set of parameter settings and applied them to all phenotypes. We were 

careful to avoid the pitfall of trying many combinations of parameter settings and then 

selecting the one that gives the best results on the test set. We instead chose to use the 

Peissig et al. Page 8

J Biomed Inform. Author manuscript; available in PMC 2014 December 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



following settings which had shown good performance in previous applications: noise = 1, 

minpos = 80, minacc = 80, clauselength = 4, caching = false, i = 3, record = true and nodes = 

1000000.

Using the cataract phenotype as an example, we have presented a detailed description of our 

methods in Appendix B and made available examples of record formats. Appendix C has 

examples of the scripts and configuration files (cat.b – file that contains the parameters for 

running Aleph and runAleph.sh – a script that initiates the Aleph phenotype model building 

session). Appendix D has examples of ILP rules created for the cataract phenotype using 

ILP-1 and ILP+BP ML approaches.

2.4.2 Propositional machine learning approaches—We selected two popular ML 

classifiers available in the widely used Waikato Environment for Knowledge Analysis 

(WEKA) software [34], after conducting a sensitivity analysis (using several ML 

classifiers), to determine the highest performing approaches based on area under the 

receivers operating characteristics curve (AUROC). Using atrial fibrillation as the 

phenotype, we compared: Random Forest (AUROC = 0.682), SMO (0.506), PART (0.772), 

and J48 (0.772). From this analysis, we selected J48 and PART for use in the ILP 

comparison. J48 is based on a Java implementation of the well-known decision tree 

classifier C4.5 [34] and PART, is the Java implementation of a rule based classifier based on 

Classical and Regression Tree [35]. We also selected JRIP, the WEKA implementation of 

the propositional rule learner Repeated Incremental Pruning to Produce Error Reduction 

(RIPPER) [36]. The RIPPER implementation is similar to ILP, except that it assumes that 

each example is a feature vector or record versus ILP algorithms work directly on data 

distributed over multiple tables.

2.4.2.1 Feature table creation: A feature table consisting of the same POS and NEG 

examples used in ILP phenotype model building was created and used by the propositional 

ML approaches for each phenotype. A record for each subject was constructed using 

information obtained from the EHR. Each unique occurrence of a diagnosis, laboratory 

result (categorized as ‘above’, ‘within’ or ‘below’ the normal range), medication, or 

procedure was identified as a feature. Frequencies of occurrence were calculated for each 

feature by subject. Because of the large size of the feature table, we only used features that 

were shared by more than 0.25% of the training subjects. In other words, features were 

included if more than two or three subjects (depending on phenotype) had the feature. The 

same features identified for the training sets were used as features for the validation/test 

examples. For details refer to Appendix B.7.

2.5 Analysis

Phenotyping model performance measurements were calculated using the number of 

correctly classified testing subjects. Contingency tables were used to calculate accuracy, 

precision, recall (the true positive rate, also called sensitivity), and F-Measure (defined as 2 

x[(recall x precision)/(recall + precision)]) statistics for the ILP models. WEKA, version 

3.6.9, automatically calculated those statistics along with Receiver Operator Characteristic 

(ROC) curves and area under the ROC curve (AUROC), for the propositional ML methods 
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(J48, PART, and JRIP). To associate the probabilities of AUROC and construct ROC curves 

for the ILP models, we built a feature table using the ILP rules as features. A binary code 

indicating if a subject met (or not), the rule criteria was assigned for each feature by subject 

in the testing cohort. The Bayes Net-Tan classifier, as implemented in WEKA, was used to 

calculate AUROC using the ILP features (rules) for each phenotype model [37]. Such use of 

a Bayesian network to combine relational rules learned by ILP is a popular approach used in 

statistical relational learning to gain ROC curves and AUROC [15].

Significance testing using a two-sided sign test (binomial distribution test) at 95% 

confidence was used to evaluate model sensitivity when adding varying percentages of BPs 

(25%, 50%, 75%, and 100%) to NEGs in the ILP+BP scoring function. Discordant 

classifications of POS and NEG were obtained for each ILP approach comparison and then 

similar significance testing conducted.

To assess the difference in overall ML approach performance, we counted the number of 

wins for a ML approach across phenotypes and compared it to the number of wins for the 

comparison ML approach. Significance testing was done using a two-sided sign test 

(binomial distribution test) at 95% confidence, to evaluate a difference in overall model 

performance between any of the ILP-1, ILP+BP, PART, J48, and JRIP models.

3. Results

The sampling frame used for the selection of all phenotype training sets consisted of 

113,493 subjects. Table 1 provides the number of POS, NEG, and BP training subjects 

randomly selected and used for the development of each phenotype model. Training set 

sizes for both POS and NEG examples ranged from 314 (acute liver injury) to 1500 (acute 

myocardial infarction and type 2 diabetes).

There was no significant difference detected in overall model performance when adjusting 

the BP percentages (between 25%, 50%, 75%, and 100%) for the ILP+BP scoring function. 

We found that adding BP examples to the scoring function yielded more descriptive rules 

for all phenotypes. For example, using atrial fibrillation, a single rule having the presence of 

ICD-9 code ‘427.31’ (atrial fibrillation) was learned by the ILP-1 approach. Using the ILP

+BP with the addition of BPs at 50%, presented a total of 58 rules, which included a 

combination of diagnoses, labs, procedures, medications, and age. For consistency in 

reporting results, henceforth we will use ILP+BP with the contribution of 50% BPs.

Table 2 provides descriptive information on the phenotype testing cohorts. The POS and 

NEG testing cohorts tended to be older (>65 years of age) and similar with respect to years 

of follow-up and ICD-9 diagnosis counts.

Nine phenotypes were modeled with the performance measurements for each ML approach 

(ILP-1, ILP+BP, PART, J48, and JRIP) appearing in Table 3. Type 2 diabetes, diabetic 

retinopathy, and deep vein thrombosis phenotypic models consistently had high performance 

statistics (> 0.900 in all categories) across all ML approaches. Acute liver injury had the 

lowest performance measurements for all ML approaches. There was no significant 

difference in overall accuracy between ILP-1 and ILP+BP models, although ILP-1 
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performed significantly better than ILP+BP in detecting POS examples (p=0.0006), and ILP

+BP performed significantly better than ILP-1 when detecting NEG examples (p=0.008). 

The addition of BP examples had the desired effect of increasing precision, but at the cost of 

decreased recall when comparing ILP-1 with ILP+BP.

Figure 4 presents ROC curves for eight of the nine phenotypes. Shown on each plot are the 

ROC curves for each ML approach (ILP-1, ILP+BP, J48, PART, JRIP). The diabetic 

retinopathy ROC curves looked similar between all models and are not displayed because of 

space limitations. The pictured ROC curves suggest substantial improvement over chance 

assignment (indicated by the reference line), with generally similar results among 

approaches. ILP+BP appeared to outperform the other ML approaches for the congestive 

heart failure, deep vein thrombosis, and type 2 diabetes phenotypes. These plots combined 

with the summary statistics presented in Tables 3 and 4 provide an understanding of how the 

model results compare across phenotypes.

An overall comparison of machine learning approaches is presented in Table 4. There was 

no significant difference in overall accuracy, precision, recall, or F-Measure between the 

ML approaches. When comparing AUROC for ILP+BP to PART, J48, and JRIP, ILP+BP 

performed significantly better than PART (p=0.039), J48 (p=0.003), and JRIP (p=0.003).

4. Discussion

In this study, we used a de-identified version of EHR coded data to construct phenotyping 

models for nine different phenotypes. All ML approaches used ICD-9-CM diagnostic codes 

to define training cases and controls (POS, NEG, and BP examples) for the supervised 

learning task. We developed ILP models (either ILP-1 or ILP+BP) that produced F-measure 

metrics for six of nine phenotypes that exceeded 0.900, which is comparable to other 

phenotyping investigations [38–41]. For example, the type 2 diabetes phenotype was also 

studied by Dingcheng et al. [11], where they reported an F-measure of 0.914; we achieved 

an F-measure of 0.958 (ILP-1) and 0.961 (ILP+BP), albeit on different validation data.

Several of the phenotypes selected for use in this research (type 2 diabetes, diabetic 

retinopathy, dementia, and cataracts), corresponded to phenotypes used by the Electronic 

Medical Records and Genomics (eMERGE) network [42] for genome-wide association 

studies [6,28,38]. The eMERGE phenotyping models used a variety of EHR data, were 

developed using a multi-disciplinary team approach, and each phenotyping model took 

many months to construct and validate. Our method used similar coded EHR data, required 

minimum effort from the multi-disciplinary team, and developed phenotype models in a few 

days; however, our development relied on testing cohorts. The ILP phenotyping models 

were comparable in precision (also referred to as positive predictive value) for three of the 

four phenotypes when compared to eMERGE network algorithms (refer to Table 5) 

[6,28,38]. We would expect similar precision rates between eMERGE-Marshfield and the 

ILP+BP approaches due to the overlap of patients in the testing cohorts and using similar 

EHR data. Possible reasons for the differences between eMERGE and ILP+BP precision 

could be sample differences and size. For example, the eMERGE cataract cohort had 4309 
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cataract cases used to calculate precision and our study had 244 cases (we selected a sample 

of the cases from the eMERGE cohort).

An advantage of using ILP is that the ILP rules reflect characteristics of patient subgroups 

for a phenotype. The ILP rules can be easily interpreted by a physician (or others) to identify 

relevant model features that not only identify patients, but also discriminate between patients 

that should or should not be classified as cases. In addition, ILP rules are learned from the 

EHR database. These rules are not based on human intuition or “filtered” because of 

preconceived opinions about a phenotype. To emphasize the later point, our physician 

author (MC) evaluated the ILP+BP rules for acute liver injury in Table 6 and questioned 

why high levels of “Differential Nucleated RBC” surfaced in Rule #35. After research, a 

mechanism for a sudden rise in nucleated red cells was found in the association with injury 

to hepatic and bone marrow sinusoidal endothelium as part of the fetal response to hypoxia 

or partial asphyxia [43]. This example provides some evidence that one’s existential biases 

can hide relevant information. This relevant information could be used to improve a 

phenotype model.

Initially, we used a simple scoring function that evaluated the differences between the POS 

and NEG examples using data captured after the initial diagnosis for both groups (POS(after) 

− NEG(after)). We then tried to improve model accuracy by adding the before data for POS 

patients and after data for the BP patients; the goal of these additions was to mute some of 

the features that were common between true positive and false positive examples, thus 

making the model more discriminatory. Given the high recall and precision of our method, 

in either case only a few EHR-driven models yielded substantially different classifications 

between the two approaches, making it difficult to demonstrate that there is a difference in 

model performance when adding the BP(after) and POS(before) data. We speculate that larger 

phenotype testing sets may allow one to see a difference if it exists. This could also be due 

to the nature of the phenotype being studied.

ILP provides a series of rules that identify patients with a given phenotype. Most of the rules 

include a diagnostic code (suspected because POS selection of training subjects was based 

on diagnostic codes) along with one or more other features. We noticed that in some 

situations, ILP would learn a rule that was too general and, thus, invite the identification of 

false positives. Future research is needed to examine grouping of rules and selection of 

subjects based on a combination of rule conditions, thereby combining the advantages of 

ILP and the general “rule-of-N” approach commonly used in phenotyping which states a 

unique event must be present on “N” days to determine a case/control.

This study has several limitations. First, the use of only structured or coded data found 

within the EHR for phenotyping [7,44]. Other studies have indicated that clinical narratives 

and images provide more specific information to refine phenotyping models [9,28,44]. We 

envision use of natural language processing and/or optical character recognition techniques 

as tools to increase the availability of EHR structured data and, thus, hypothesize that using 

such data will improve most ML phenotyping approach results as noted by Saria et al. [45]. 

Second, a single EHR and institution was used in this research, thus limiting the 

generalizability of the study results. We attempted to improve generalizability of this 
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research by using multiple phenotypes representing both acute and chronic conditions. More 

research is needed to apply these approaches across several institutions and EHRs. Third, 

using 15–20 ICD-9 to identify POS examples can be problematic for some diseases/

conditions. For example, a patient with 20+ deep vein thrombosis (DVT) ICD-9 codes may 

not have the same disease as a patient with only a single DVT code. More research is needed 

to investigate robust ways to identify POS examples for phenotype model building. Finally, 

we demonstrated ILP using relatively common diseases that were selected based on the 

availability of existing validation or testing cohorts. ILP did not perform well on acute 

conditions. For example, the performance measurements for acute liver injury were lower 

than many of the chronic diseases phenotypes presented in Table 3. More research is needed 

to evaluate ILP for acute, rare, and longitudinal phenotypes.

5. Conclusion

We believe that our research has the potential to address several challenges of using the 

EHR for phenotyping. First, we showed promising results for ILP as a viable EHR-based 

phenotyping approach. Second, we introduced novel filtering techniques and infused BPs 

into training sets to improve ILP, suggesting that this practice could be used to inform other 

ML approaches. Third, we showed that labeling examples as ‘positive’ based on having 

multiple occurrences of a diagnosis can potentially reduce the amount of expert time needed 

to create training sets for phenotyping. Finally, the human-interpretable phenotyping rules 

created from ILP could conceivably identify important clinical attributes missed by other 

methods, leading to refined phenotyping models.
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Figure 1. 
Overview of data preparation and analysis processes. Positive (POS), negative (NEG) and 

borderline positive (BP) training examples are selected using the electronic health record 

(EHR) data. Inductive logic programming (ILP) background knowledge (EHR data) and 

propositional machine learning (ML) feature tables are created and used by each of the 

respective ML methods. Manually verified test subject data is prepared similar to training 

data and is used to create performance statistics that are used to compare ML approaches..
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Figure 2. 
(A) Inductive logic programming (ILP) uses retrospective data to predict disease outcomes. 

(B) Phenotyping with ILP uses data collected after the incident date (of a condition), to 

predict features that a subgroup may be sharing that are representative of a phenotype.
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Figure 3. 
Censoring data to support inductive logic programming scoring functions.
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Figure 4. 
A comparison between all machine learning approaches by phenotype using receiver 

operator characteristic (ROC) curves. The diabetes retinopathy ROC curves are not 

displayed because of the similarity between each machine learning approach. Overall, the 

pictured models were very similar with ILP+BP ROC showing the best results for 

congestive heart failure, deep vein thrombosis and type 2 diabetes.
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Table 5

Comparison of eMERGE phenotyping model precision to ILP+BP

eMERGE1 eMERGE at Marshfield ILP+BP4

Cataract 0.960 – 0.977 0.9562 0.877

Dementia 0.730 – 0.897 0.8973 0.936

Type 2 Diabetes 0.982 – 1.000 0.9903 0.926

Diabetic Retinopathy 0.676 – 0.800 0.8003 0.976

1
eMERGE precision range taken from Table 3 in Newton et al [6]. The range represents multiple eMERGE institution precision estimates.

2
Precision for Marshfield eMERGE cohort indicating the combined cohort precision definition in Peissig et al [28].

3
eMERGE precision for Marshfield taken from Table 3 in Newton et al [6].

4
LP+BP: Inductive Logic Programming + Borderline Positives taken from Table 3.
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Table 6

Top eight “scoring” inductive logic programming (ILP) rules for acute liver injury

Rule # POS Cover1 NEG Cover2 ILP Rule Probability3

30 95 0
diagnoses(A,B,C,‘790.4’,‘Elev Transaminase/Ldh’,D), lab(A,E,20719,‘Urea 
Nitrogen Bld’,F,‘Normal’), lab(A,E,20727,‘Alkaline Phosphatase (T-Alkp)’,G,
‘High’).

1.00

35 52 0 has_tx(A,B,‘99232’,‘Sbsq Hospital Care/Day 25 Minutes’,C,D,E,F), lab(A,B,
20816,‘Differential Nucleated RBC’,G,‘High’). 1.00

42 129 0 diagnoses(A,B,C,‘782.4’,‘Jaundice Nos’,D), lab(A,E,20727,‘Alkaline 
Phosphatase (T-Alkp)’,F,‘High’). 1.00

72 113 0
has_tx(A,B,‘99214’,‘Office Outpatient Visit 25 Minutes’,C,D,E,F), lab(A,G,
20809,‘Differential Segment Neut- Segs’,H,‘Normal’), lab(A,G,20728,
‘Bilirubin’,F,‘High’).

1.00

3 146 1 lab(A,B,20728,‘Bilirubin Total’,C,‘High’), lab(A,D,20900,‘Direct Bilirubin’,E,
‘High’), lab(A,F,20857,‘Red Cell Distribute Width(RDW)’,G,‘High’). 0.99

51 142 1 lab(A,B,20900,‘Direct Bilirubin’,C,‘High’), lab(A,B,20719,‘Urea Nitrogen 
Bld’,D,‘Normal’), lab(A,B,20731,‘AST (GOT)’,E, ‘High’). 0.99

11 138 1 lab(A,B,20728,’Bilirubin Total’,C, ‘High’), lab(A,B,20809,‘Differential 
Segment Neut-Segs’,D,‘Normal’), lab(A,E,20282,‘Glucose’,F,‘High’). 0.99

60 137 1
lab(A,B,20715,‘Potassium (K)’,C,‘Normal’), lab(A,B,20727,‘Alkaline 
Phosphatase (T-Alkp)’,D,‘High’), lab(A,E,20901,‘Unconjugated Bilirubin’,F,
‘High’).

0.99

1
Represents the number of positive examples covered by the rule.

2
Represents the number of negative examples covered by the rule.

3
Probability = POS examples/(POS examples + NEG examples).

Note: The ILP+BP rules can be easily interpreted by a human with little training. The “bold” lettered rules are indicative of “facts” related to or 
associated with acute liver injury. The highlighted ILP+BP rule (rule #35) represents a “fact” (Differential Nucleated RBC’ is ‘High’) that was 
unknown to a physician reviewer prior to this investigation. Fifty two POS subjects were classified in the training set using rule #35.
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