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Abstract

Background—Hospital readmission risk prediction remains a motivated area of investigation 

and operations in light of the Hospital Readmissions Reduction Program through CMS. Multiple 

models of risk have been reported with variable discriminatory performances, and it remains 

unclear how design factors affect performance.

Objectives—To study the effects of varying three factors of model development in the 

prediction of risk based on health record data: 1) Reason for readmission (primary readmission 

diagnosis); 2) Available data and data types (e.g. visit history, laboratory results, etc); 3) Cohort 

selection.

Methods—Regularized regression (LASSO) to generate predictions of readmissions risk using 

prevalence sampling. Support Vector Machine (SVM) used for comparison in cohort selection 

testing. Calibration by model refitting to outcome prevalence.

Results—Predicting readmission risk across multiple reasons for readmission resulted in ROC 

areas ranging from 0.92 for readmission for congestive heart failure to 0.71 for syncope and 0.68 

for all-cause readmission. Visit history and laboratory tests contributed the most predictive value; 

contributions varied by readmission diagnosis. Cohort definition affected performance for both 

parametric and nonparametric algorithms. Compared to all patients, limiting the cohort to patients 

whose index admission and readmission diagnoses matched resulted in a decrease in average ROC 

from 0.78 to 0.55 (difference in ROC 0.23, p value 0.01). Calibration plots demonstrate good 

calibration with low mean squared error.

Conclusion—Targeting reason for readmission in risk prediction impacted discriminatory 

performance. In general, laboratory data and visit history data contributed the most to prediction; 

data source contributions varied by reason for readmission. Cohort selection had a large impact on 
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model performance, and these results demonstrate the difficulty of comparing results across 

different studies of predictive risk modeling.
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1. Introduction1

Clinical, legislative, and financial drivers have elevated the significance of hospital 

readmissions for the multidisciplinary care team and hospital administrators. The emphasis 

on readmissions as a reportable quality measure and as a source of potential reimbursement 

penalty through the Centers for Medicare and Medicaid Services (CMS) has been well-

described.[1] Consensus is forming to support the need for patient-centered interventions 

across care settings to prevent readmissions for particular patients.[2, 3] The first step in the 

myriad of efforts to reduce readmissions remains identification of patients at high risk.[3]

The most comprehensive review of readmissions risk prediction models to date was 

published in 2011 by Kansagara et al.[4] Since then, thousands of new articles on the topic 

have been published. A simple OVID Medline search for “Patient readmission” in 2011 

produced 5,476 hits,[4] while it yields 7,576 results at the start of 2014. Each model has the 

potential to be adapted by researchers and managers in new clinical settings, but to do so 

appropriately, it is critical to understand the sensitivity of such models to varying the way in 

which they are built and deployed. While researchers also must compare results across 

seemingly similar studies, it is poorly understood how different factors in model design 

affect performance. Thus, it remains unclear if comparisons are legitimate as studies may 

differ in a number of different aspects.

The goal of this study is to study the effect of three factors on prediction of hospital 

readmission risk. The first factor is the reason for readmission as defined by the primary 

readmission diagnosis. Early predictive models of readmissions focused on all-cause 

readmission and the most common diagnoses including congestive heart failure (CHF), 

acute myocardial infarction (acute MI), and chronic obstructive pulmonary disease (COPD), 

but the literature now spans multiple diagnoses and disciplines.[5–15] However, no studies 

have studied systematically the effects of changing readmission diagnoses being modeled 

while holding all else equal. This latter understanding will help interpret and compare 

studies of different diseases. Additionally, the ability to predict readmission as a 

simultaneous panel of cases may have clinical utility in that it may direct clinical 

interventions to causes deemed most likely for a particular patient by the predictive 

algorithm.

The second factor under study is data availability. Studies have included data types such as 

administrative and claims data, test results and clinical text.[4, 16–19] One study 

1Abbrieviations used in this article for data sources: D-Demographics; L-Laboratory Tests; I-Prior ICD9 Codes; S-Social/Mental 
Health Keywords; O-Other Clinical Keywords; V-Visit Utilization History
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demonstrated that readmission rates and rates of unnecessary readmissions vary by method 

of chart review to tally readmissions and by altering the breadth of the definition of a 

readmission itself.[19] This work studies the effect of varying the features in the model 

across multiple readmission diagnoses holding all else unchanged. We attempt to elucidate 

the contributions of data types included for prediction in clinically meaningful bins: 

laboratory tests, visit utilization, demographics, clinical narrative. While it is clear that more 

data and more clinically deep data should be better, it remains unclear to what extent the 

selection of data type is dependent on how the problem is cast.

The third factor is the cohort that is selected for study. The challenge of generalizability to 

new cohorts is well known; in considering external validity of predictive models, cohort 

selection can impact discrimination and calibration.[20, 21] Prediction models generally 

take two forms: prediction of readmission for pre-selected cohorts such as known patients 

with chronic obstructive pulmonary disease, Medicare patients only, or those undergoing 

abdominal surgery[5, 16, 22–26]; or prediction of readmission for all patients to an 

institution or set of institutions. We hypothesize that this choice of cohort definition is a 

crucial one – that with the same input clinical data, the same prediction goal, and the same 

underlying population from which the cohort is selected, the criteria used to select the cohort 

can have large effects on the performance. This effect has not been quantified in the domain 

of readmissions risk to our knowledge, and there are implications to those seeking to use 

reported models in clinical practice. This research question has an important corollary 

implication: if performance is highly dependent on how the cohort is selected despite 

everything else being the same, then it demonstrates that comparing performance across 

studies must be difficult.

2 Materials and Methods

2.1 Dataset

A retrospective cohort of inpatient admissions at Columbia University Medical Center 

(CUMC) in New York City was identified from 2005–2009. These years were selected as 

the clinical data repository at the institution is replete with clinical and administrative data 

over this time period and because clinical workflows with respect to electronic health record 

data structures were fairly static over this time. One exception is an increase in adoption of 

electronic documentation over the study time period. 263,859 inpatient admissions were 

collected. Admissions for patients aged less than 18 years were excluded. Admissions within 

30 days for ICD9 650.xx, “Normal delivery”, were also excluded as were admissions to the 

physical medicine and rehabilitation service, which are logged as separate admissions but 

represent planned transfers of care.

For each unique patient identifier, a single admission was selected randomly as the index 

admission. The study dataset comprised this index admission, data from previous admissions 

or other encounters within the past year, and data for any readmission within 30 days of 

discharge. When necessary for admissions in 2005, visit and diagnosis data from the 

preceding year were collected. Similarly, follow-up data regarding readmissions were 

collected when necessary for admissions in December 2009. Diagnostic, laboratory, and 

documentation data were accessed from the clinical data repository and preprocessed in 

Walsh and Hripcsak Page 3

J Biomed Inform. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Python in preparation for importing into the open-source language for statistical computing, 

R.[27] Characteristics of the training dataset and readmission prevalence stratified by 

readmission diagnosis are described in Tables 1 and 2.

2.2 Initial Feature Selection

Relevant features were selected in two phases. Initially, domain expert criteria were used to 

choose variables based on clinical importance. Then these preselected variables were used to 

create the dataset passed to L1-regularized logistic regression for further feature selection 

and modeling (see Section 2.4).[28, 29] The features can be divided into categories: 

demographics; utilization history; diagnostic; laboratory results; clinical narrative.

Demographics included age, ethnic codes, gender, and insurance status. Visit history data 

included utilization statistics at the Columbia University Medical Center for a twelvemonth 

period preceding each index admission. The numbers of inpatient admissions, emergency 

room visits, outpatient clinic visits, and prior thirty-day readmissions were tabulated. Clinic 

no-show data were not available in a systematically recorded form and, as such, were not 

included in visit history data for this study. Data for admissions to other hospitals were not 

available for the study period. The frequency of readmission to a different hospital in the 

geographic area for this study was not available. One published rate of readmission within 

30 days to an alternative hospital from the hospital of index admission was 18%; outcomes 

in that Canadian study were worse in the cohort that was readmitted to an alternative 

hospital than compared to those admitted back to the original hospital.[30]

Diagnostic data comprised billing codes (ICD9) for any inpatient admissions that occurred 

for each patient in the past year. No billing codes were included for the index admission as 

these codes would not have been available on the day of admission. Granularity of 

diagnostic codes was addressed through binning. First, ICD9 codes were truncated to the 

whole number code without rounding. Codes were then binned into clinically meaningful 

categories to maximize information content while optimizing the number of variables 

necessary for the model. Each bin was a binary categorical variable indicating presence of a 

diagnostic code. For example, history of stroke was captured through binning ICD9 codes 

430–438 in the diagnoses assigned to a prior visit.

Relevant laboratory tests on the day of admission were selected as features by study 

coauthors for perceived clinical relevance. Multiple instances of the same test were 

averaged. Few patient records included all laboratory values of interest on the day of 

admission. Missing data was handled with categorical variables added for each laboratory 

test to indicate whether a test was performed or not. Finally, laboratory tests were included 

as continuous variables of actual results, and categorical variables were added to indicate if 

the results were abnormally high or abnormally low based on laboratory reference ranges at 

the medical center. Missing continuous variables were handled with additional categorical 

variables marking their presence or absence and by setting the corresponding missing 

continuous values to zero.

Admission notes by physicians comprised the majority of electronic clinical documentation 

in the study period. Some notes were written on paper at the beginning of the study period 
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prior to elimination of paper notes from the clinical workflow; these could not be included. 

Admission notes on the day of index admission were extracted via Python from the clinical 

data repository into a corpus of free text. The corpus was stemmed, text normalized, stop 

words removed, and terms left as unigrams.

Term frequency-inverse document frequency (TF-IDF) was then calculated for each term in 

a dictionary of terms identified in the literature in addition to those selected by study authors 

for perceived clinical relevance.[31] The value of TF-IDF is proportional to the number of 

times a word appears in a document divided by the frequency of the word in the corpus as a 

whole. These terms were subdivided into those focusing on: social and mental health 

determinants; other clinical and non-psychiatric factors. The “tm” package in R was used for 

all steps following corpus collection.[32] A categorical dummy variable was defined to 

indicate whether patient admissions were associated with electronic free text to handle 

missing data. Along with the dummy variable, a value of zero was entered for all continuous 

TF-IDF values for those records that did not have corresponding admission notes. Fifty three 

percent of the records in the dataset had at least one electronic admission note from 2005–

2009.

Representative elements of each data source are described (Table 3) with the full feature set 

included in the Appendix.

2.3 Training, Validation, and Testing Data

The dataset was divided into a set of all index admissions (92,530 patients) from January 1, 

2005, to December 31, 2008, used for training, and a testing set of admissions from January 

1, 2009, to December 31, 2009. Bootstrapping on the entire dataset was used for internal 

validation and to generate confidence intervals around the ROC in each test; this method 

was chosen to minimize “replication instability” as compared to a traditional split-sample 

approach.[33] Temporal validation was selected as an intermediate to internal and external 

validation in testing as it is external in time and this generalization is important with the 

future intent to implement and evaluate prediction models prospectively.[34] Confidence 

intervals were obtained by calculating normal intervals with the ROCs of all bootstrap 

replicates.[35]

The class imbalance problem has been well described in the literature, and a number of 

methods to handle it have been reported.[36–38] Prevalence sampling, also called sub-

sampling or undersampling, is one technique described to improve discriminatory 

performance in cases of class imbalance.[39, 40] The training dataset is built from all 

eligible cases combined with a subset of controls selected either randomly or via a chosen 

algorithm, e.g. nearest neighbors. Early experiments in this work included repeated model-

building using all training cases matched to a number of randomly selected controls; the 

number of controls was varied to simulate differences in prevalence (10%, 20%, 50%, etc). 

The best discriminatory performance was achieved near 20% prevalence sampling in 

training; as a result, 20% prevalence sampling was used in all experiments described here.

Another commonly employed technique in situations of class imbalance in regression 

analyses is adding weights to observations for the minority class, in this case, patients that 
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are readmitted. It retains the advantage that control data are not discarded and the 

disadvantage that it can be computationally more intensive as datasets are larger in size 

compared to sub-sampling. Observation weighting in regression was compared to 20% 

prevalence sampling. For each readmission diagnosis, a prevalence-adjusted weight was 

assigned to cases compared to controls. To mimic 20% prevalence sampling as closely as 

possible, cases were assigned weights of  and controls a weight of 1, where Case 

Prevalence is the prevalence of readmission for each readmission diagnosis in Table 2.

The validation set for calibration was all of the data from 2005–2008.

2.4 Statistical Modeling

L1-Regularized logistic regression (LASSO: least absolute shrinkage and selection operator) 

was chosen for statistical modeling to prevent overfitting and to support parsimony in 

feature selection.[28, 29] Preliminary experiments testing ridge regression and the elastic net 

were performed, and performance was similar for all methods.[41–43] A brief comparison 

will be described in the Results of multiple values of α, a regularization parameter that 

controls the elastic net penalty and determines whether ridge regression (α = 0), LASSO (α 

= 1), or the elastic net (0 < α < 1) is implemented.[42, 44] Data were centered and scaled 

prior to regression.

A “grouping effect” for the elastic net in which “regression coefficients of a group of highly 

correlated variables tend to be equal” has been described for the elastic net penalty and does 

not occur with the LASSO penalty; a more complete discussion including mathematical 

justification of this effect is noted in Zou 2005.[42] It is relevant to this work in that we used 

a domain-knowledge driven, manual approach to excluding variables that might be highly 

correlated such as laboratory values of hemoglobin and hematocrit. Our approach discarded 

such duplicates on clinical grounds and was tractable because of the manageable number of 

features in this study. This approach cannot account for unexpected correlations that might 

be discovered in typical problems with larger numbers of features compared to small sample 

sizes.

LASSO regression is parametrized by a regularization parameter, here called λ, which sets 

the degree of penalty for including additional variables in the model. Formal feature 

selection was performed through 10-fold cross validation on training data to select λ. The 

optimal value of λ obtained through cross validation via standard squared error loss was then 

used to train the model on 20% prevalence sampled training data sets. Predictions were 

calculated on test sets and receiver-operating characteristics were obtained. LASSO 

regression was conducted through the “glmnet” and “caret” packages in R.[44, 45]

A comparison of regularized regression to a nonparametric learning algorithm – support 

vector machines (SVM) with a nonlinear kernel – was performed in the cohort selection 

experiment to compare sensitivity of regularized regression versus a nonparametric 

algorithm to different cohorts. The package “e1071” in R was used.[46]

This study was approved by the Institutional Review Board at the medical center.
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3 Results

The testing set comprised 25,691 unique patient admissions in 2009.

3.1 Effect of Targeting Reason for Readmission on Model Performance

Predictive performance across all readmission diagnoses at 20% case prevalence 

demonstrated a range of performance from ROCs of 0.68 and 0.71 for all-cause readmission 

and readmission with primary complaints of syncope to 0.92 and 0.88 for congestive heart 

failure and post-transplant complications respectively. All discriminatory performance 

results by diagnosis are presented in Table 4 in section 3.2.

Predictive performance for congestive heart failure was significantly higher than that for 

chest pain, syncope/fever, or abdominal pain after Bonferroni correction. Similar 

performance differences are noted for chronic ischemic heart disease compared to syncope/

fever and for complications post-procedure compared to syncope/fever.

Predictive models across all readmission diagnoses except all-cause readmission were 

trained using identical datasets at 20% prevalence sampling for three values of the 

regularization parameter, α. Ridge, elastic net, and LASSO penalties were set at values of 0, 

0.5, and 1, respectively, in the “glmnet” package in R.[44] The elastic net penalty is not 

restricted to a value of α of 0.5, but only this value is shown here for brevity. The mean 

discriminatory performances across all readmission diagnoses were 0.76, 0.77, and 0.77, for 

ridge, elastic net, and LASSO penalties respectively. Analysis of variance demonstrated no 

significant difference between these means [F(2, 972) = 1.34, p = 0.26].

To ensure discrimination was not hindered by sub-sampling compared to techniques such as 

observation weighting which do not discard control data, identical datasets were trained 

using both 20% prevalence sampling and by adding observation weights to all training data. 

These models were tested on identical test sets. The difference in discriminatory 

performance between sub-sampling and observation weights was not statistically significant 

(p 0.08) though there was a tendency to higher performance in 20% prevalence sampling.

3.2 Effect of Data Source on Model Performance

In each test, the six main types of data – demographic, visit history, laboratory testing, 

social/mental health keywords, other clinical keywords, and prior ICD9 diagnostic codes – 

were used to train models across all-cause and the thirteen specific diagnoses outlined 

above. Data sources were included both individually and in subsets.

A table organized by diagnosis shows the highest discriminatory performance by diagnosis 

across data source combinations; all combinations were tested but only one is shown (Table 

4). The readmission diagnosis of pneumonia, for example, showed the best performance 

solely using data associated with visit history while other diagnoses performed best using all 

of the data types under study. As noted, the LASSO estimator has been preferred for its 

parsimony in feature selection. On average for all models described in this work, 52 features 

were selected in training out of 252 features total. One outlier included in this average was 

prediction of all-cause readmission in which 243 features were selected; of note, there was 
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an order of magnitude more cases of readmission available in that model compared to other 

readmission diagnoses (Table 2).

At the individual model level, performance with each data source combination was then 

compared. One example comparing readmission for chronic ischemic heart disease with 

readmission for depression is shown (Figure 1a, b). When the difference between diagnostic 

tests was statistically significant (p value <0.05), the relevant segment is noted in each plot. 

In the case of chronic ischemic heart disease (ICD9 414.xx), the highest performance was 

achieved with all six data source types. In the case of readmission with a primary diagnosis 

of depression, however, predictive performance plateaus with the addition of visit history as 

a group of features to the model. Remaining plots are included in the Appendix.

To better understand the contributions of individual data types to prediction, two analyses 

were performed with respect to the presence or absence of a particular data type. The first 

analysis was the calculation of the ratio of discrimination across all readmission diagnoses 

for all data source combinations that included a particular data type compared to all 

combinations that excluded that same data type. The resulting ratio gives some sense of the 

relative contribution to discrimination of that data type. That ratio was converted to a 

percentage change in discrimination. Table 5 summarizes the change in discrimination with 

and without particular data types.

The second analysis examined specifically the increase in discrimination for each 

combination of data source types in the presence or absence of a data source. As an 

example, the presence of visit utilization was found to contribute significantly to predictive 

performance for multiple combinations of data types, and model performance suffered when 

visit utilization data were not included.

A multivariate linear model was then constructed with five features – binary variables 

recording the presence or absence of each data type in an experiment – and one outcome – 

the ROC for that experiment. Analysis of Variance (ANOVA) was performed to measure 

estimates of individual data types as well as first-order interactions between data types as 

Sum of Squares (SS). The respective SS were converted to circular area in a Venn diagram 

to represent visually the relationships between data types. Statistically significant first-order 

interactions between individual data types are quantified as overlap between elements in the 

Venn diagram (there was a small interaction between ICD9 code data and social keywords 

that could not be represented without introducing spurious overlap with other data types – 

one limitation of this visualization). There were no large interactions that were not 

statistically significant. The use of Venn diagrams in regression has been described though 

this use-case has not been described to our knowledge.[47, 48]

3.3 Effect of cohort selection on performance

We hypothesized that the reported ROC area would be highly sensitive to the definition of 

the cohort, rendering comparisons with previous studies difficult. To test this, we compared 

ROC areas for two cohorts: training and testing on all eligible patients versus training and 

testing on only those patients whose previous diagnosis matched the reason for readmission. 
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We found that on average model performance for the diagnostic cohorts was generally 

inferior to that for the full training set.

The model predicting readmission from all index admissions (mean ROC 0.78) 

outperformed models trained on index diagnostic cohorts (mean ROC 0.55) by an average 

increase of 0.23 in ROC (p value 0.01). At the individual diagnosis level, the diagnosis-

specific cohort underperformed the general cohort; the difference was statistically 

significant with respect to predicting readmission for chronic ischemic heart disease and for 

episodic mood disorders.

To understand whether a nonparametric algorithm might outperform regularized regression 

when trained on different cohorts, both SVM with a nonlinear kernel (radial) and the 

LASSO were trained on all readmission diagnoses in the manner described above. For SVM, 

training on all index admissions was associated with a mean discriminatory performance 

ROC of 0.74 compared to 0.54 in training on index diagnostic cohorts (p value < 10−9). 

Thus, the effect of varying cohorts in model training was consistent across these algorithms.

3.4 Calibration

Calibration of predictions is a critical aspect of predictive modeling particularly in the 

setting of prevalence sampling. Discrimination is the ability of predictive models to separate 

data into classes, while calibration is the ability of the predictive model to make predictions 

that reflect the underlying probabilities in a population.[21] A well-calibrated model that 

predicts a 40% risk of readmission for one patient indicates that roughly 4 out of 10 similar 

patients would be readmitted.[21] Sub-sampling in this work was noted to improve 

discrimination, but the average prediction in the entire sample was calibrated to the 

prevalence of training – 20% – regardless of diagnosis of readmission. However, the actual 

prevalence of readmission for each diagnosis was never 20%; thus, sub-sampling improved 

discrimination but worsened calibration. A subsequent step is required to calibrate the model 

to reflect the underlying probability of readmission in each model.

A number of methods for calibration of clinical prediction models have been described.[21] 

In this work, experimental results were calibrated by model refitting. Regularized regression 

was performed at 20% prevalence sampling, and the model was then used to calculate 

uncalibrated predictions on the validation set. The log odds of those predictions were then 

passed through a sigmoid trained on the outcomes of the validation set – this has been called 

“logistic calibration”.[49, 50] As these outcomes reflect case prevalence, the resultant log 

odds were calibrated. A calibration plot is shown for all-cause readmission showing good 

calibration compared to observations (divided into one hundred bins). The mean squared 

errors for the uncalibrated and calibrated predictions were 0.022 and 7.5×10−4, respectively

4 Discussion

This study demonstrates the performance effects of varying three elements of a predictive 

model of readmissions: 1) Reason for readmission; 2) Included data types; 3) Cohort 

definition. The informatics findings from this work demonstrate that discriminatory 

performance is highly impacted by predicting reason for readmission rather than all-cause 
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readmission alone, that cohort selection is critically important to measured performance, and 

that data types appear to have varying degrees of usefulness in prediction and that the 

contributions of data types depends on the cause of readmission being predicted.

A single model of all-cause readmission for all patients is no longer the standard in the 

literature or in practice. This work shows the degree to which specific causes of readmission 

can be modeled holding all else equal. The variation in discriminatory performance between 

different causes of readmission differed by over twenty percent. Patients are readmitted to 

hospitals for a number of reasons. The approach outlined in this work permitted the 

prediction of risks of readmission for a number of potential reasons for the same set of 

patients. In clinical practice, a predictive framework that generated risk predictions for the 

same patient across multiple possible reasons for readmission might yield insights into how 

to direct an intervention to lessen those risks. Additional research including evaluation in the 

clinical setting is required.

The variable impact of data sources on the clinical scenario – the readmission diagnosis 

itself – is clinically intuitive. A patient with severe congestive heart failure, for example, 

may have a number of measurable clinical tests that support the burden of disease – 

hyponatremia, an elevated B-type natriuretic peptide, elevated creatinine from concomitant 

renal failure, etc. Yet a patient with severe depression may have relatively unremarkable 

laboratory values while the elements of the history that capture the burden of psychiatric 

disease are contained instead in clinical notes by examining physicians. Social and mental 

health factors were not demonstrated to be as predictive as other data types in this study, but 

the heuristic approach to their inclusion coupled with the sporadic and inconsistent way in 

which social determinants of health are currently documented could be an important factor. 

Of note, the approach to grouping data features into groups of data sources was feasible 

because of the relatively small number of candidate features included in the study. For larger 

numbers of features (hundreds or thousands), scaling this approach would be difficult. 

Automatic methods to combine features into groups such as the “group lasso” have been 

described and should be considered in subsequent work.[51]

In a retrospective study, diagnostic billing codes are readily available and convenient. 

However, these codes are only assigned post-discharge. We implemented diagnostic codes 

solely prior to index admission in an effort to replicate realistic data that would be available 

prospectively. Billing systems have improved to permit physicians to assign codes at the 

time of note submission for billing; it is important to remember that a physician assigning 

codes to her own notes is not the same process as a biller assigning codes post-discharge. 

Each process results in ICD9 coding, but the biases inherent in each are not the same.

Free text narrative data was used to include social determinants of health and factors related 

to behavioral and mental health in addition to keywords related to diagnoses and disease 

burden. The relative simplicity of the approach to text mining outlined here could be readily 

applied to novel corpora; it relies only on electronic free text and open-source software 

tools.
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The effect of cohort selection on discriminatory model performance suggests a single model 

for readmissions prediction in a clinical site may be insufficient. We report high ROCs 

(>0.9) in this study, but the effect is cohort-dependent. In a related experiment, we compared 

readmission prediction for patients older than seventy-five to patients of all ages. Prediction 

for all adult patients was higher than that for those seventy-five and older across all but two 

readmission diagnoses (pneumonia, symptoms involving digestive system). ROCs for all-

cause readmission prediction in that example was 0.67 for all adults and 0.6 for adults older 

than seventy-five. That predictive power should be dependent on the cohort makes sense. 

For example, in the cohort of all patients, a heart failure readmission algorithm can surpass 

chance performance by simply selecting patients who had heart failure in the past; that 

cannot work if the cohort contains only patients with a history of heart failure. An important 

step in discriminating risk of readmission for a given disease is simply finding those patients 

with the disease in the first place.

The relationship of cohort selection and discriminatory performance makes it difficult to 

compare performance across studies: the cohorts must be the same. And, of course, it limits 

their generalizability and external validity. In recreating published work in a new clinical 

setting, attention must be paid to replicating the cohort as closely as possible to the original 

work. If this step is not taken, it will undermine any other efforts to achieve the same 

performance. As shown here, varying cohort selection alone reduced discrimination by 

nearly 25%.

Limitations of this study include generalizability from a single major academic medical 

center. This constraint is common to statistical models built using depth of data recorded in 

a mature clinical data repository. Breadth-approaches using large datasets of claims data 

pose a different set of advantages and disadvantages. Replicating this modeling attempt in 

another clinical site or multiple sites will be paramount. Another important limitation is the 

heuristic approach to initial feature selection. The balance between preselecting features 

based on perceived clinical importance versus permitting the model to see all available data 

must be considered in any large-scale modeling task. Outpatient medication use during the 

study period was not recorded in a structured way, so it was not included beyond the 

keyword approach outlined above. Clinical narrative was included, but less than one-third of 

patients had electronic admission notes during the study period. Today, every patient is 

required to have an electronic admission note at New York Presbyterian Hospital during the 

first day of admission.

Future research should include the application of this modeling approach on data beyond a 

single institution. Further work in modeling social determinants of health from electronic 

data may be valuable. Additional data such as structured medication data, radiology, 

electrocardiogram, or other diagnostic procedure results could be used to augment the 

model. Finally, actionability and preventability of risk factors must be considered to 

maximize impact of prediction on clinical outcomes. While predictive algorithms can 

achieve high performance as demonstrated here, an important open question remains 

whether clinicians and case-workers are interested in those necessary risk factors for 

prediction. A mass-customized model that predicts not only “readmission for congestive 

heart failure” but also “readmission because this patient forgets to take the evening dose of 
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furosemide unless reminded by his grandson” would exceed utility as simply a method to 

target multidisciplinary attention to patients nebulously “at risk”.

5 Conclusions

Factors of model design have a large impact on predictive performance in the domain of 

readmission. High discriminatory performance can be achieved for specific causes of 

hospital readmission in a predictive model trained with L1-regularized logistic regression 

and multiple clinically relevant sources of data including laboratory test results and provider 

admission notes. Data types included in modeling have variable impact depending on the 

cause of readmission under consideration. Cohort selection has a notable impact on 

predictive performance and renders comparison of results across studies more difficult. 

Additionally, prevalence sampling or sub-sampling was shown to be as good as observation 

weighting in this study. One caveat is the impact of sub-sampling to mis-calibration; a 

method to recalibrate the resultant model was described. The LASSO performed as well as a 

nonparametric algorithm (SVM). Finally, in building predictive models using retrospective 

data, some censoring of data included in the model may be necessary. A model that relies 

heavily on claims data, for example, would have limited utility on the day of admission as 

those codes are only assigned after discharge.
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Highlights

• Hospitals seek to predict readmissions, but there are many proposed models

• The study aims to show the impact of varying factors of model design on 

performance

• Targeting reason for readmission improves discrimination. ROCs range from 

0.68–0.92

• Patient visit and laboratory results contribute most to prediction

• Performance is highly cohort-dependent. Comparing models across studies may 

be hard
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Figure 1. 
(a, b). Example contribution of data sources to prediction for two diagnoses (statistically 

significant differences between segments denoted by *); D-Demographics; L-Laboratory 

Tests; I-Prior ICD9 Codes; S-Social/Mental Health Keywords; O-Other Clinical Keywords; 

V-Visit Utilization History
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Figure 2. 
Contribution of Visit Utilization History to Model Performance; D-Demographics; L-

Laboratory Tests; I-Prior ICD9 Codes; S-Social/Mental Health Keywords; O-Other Clinical 

Keywords; V-Visit Utilization History
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Figure 3. 
Venn diagram of data type contributions to predictive performance including first-order 

interactions; area of each circle correlates with size of contribution to prediction and overlap 

implies interaction between data types
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Figure 4. 
Calibration plot for all-cause readmission risk predictions
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Table 1

Demographics and Utilization History Characteristics of Training Dataset (2005–2008)

Training Data Characteristics (Total Number of Patients=92,530) Number of Patients Percentage of Total Number of Patients

Age

 18–45 26,239 28.4

 45–65 32,144 34.7

 >65 34,147 36.9

Sex

 Male 43,964 47.5

 Female 48,566 52.5

Insurance Status

 Medicaid 12,152 13.1

 Medicare 12,477 13.5

Admission Service Type

 Internal Medicine 45,697 49.4

 Surgery 13,887 15.0

 Psychiatry 5,391 5.8

 Neurology 4,380 4.7

 Other 23,175 25.0

Discharge Status

 To Home 72,749 78.6

 To Skilled Nursing Facility 5,950 6.4

 With Home Care Services 5,507 6.0

 Other 8,324 9.0

Utilization Statistics

 Number of ER Visits in Year Preceding Index Admission

  0 69,778 75.4

  1–4 20,861 22.5

  >5 1,891 2.0

 Number of Inpatient Visits in Year Preceding Index Admission

  0 77,999 84.3

  1–4 13,981 15.1

  >5 550 0.6

 Number of Outpatient Visits in Year Preceding Index Admission

  0 57,592 62.2

  1–4 19,629 21.2

  5–10 7,559 8.2

  >10 7,750 8.4
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Table 2

Prevalence of the Most Frequent Readmission Diagnoses in the Training Data (2005–2008)

Readmission Diagnosis ICD9 Code Number of Patients

Percentage of Total 
Number of Patients 

(Total N = 92,530)

All-cause readmission Any diagnosis 6629 7.16

General Symptoms (most common reasons 780.2 syncope and 780.6 
fever)

780.xx 567 0.61

Symptoms involving respiratory system and other chest symptoms (most 
common reason 786.5 chest pain)

786.xx 526 0.57

Chronic ischemic heart disease 414.xx 364 0.39

Other symptoms involving abdomen and pelvis (most common 789.0 
abdominal pain)

789.xx 243 0.26

Complications peculiar to certain specified procedures (most common 
996.6 infection due to internal prosthetic device and 996.8 complication of 
transplanted organ)

996.xx 243 0.26

Heart failure 428.xx 233 0.25

Episodic mood disorders 296.xx 172 0.19

Depressive disorder not elsewhere classified 311.xx 142 0.15

Symptoms involving digestive system 787.xx 121 0.13

Gastrointestinal hemorrhage 578.xx 111 0.12

Pneumonia, organism unspecified 486.xx 101 0.11

Cardiac dysrhythmias 427.xx 81 0.09

Other acute and subacute forms of ischemic heart disease 411.xx 61 0.07
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Table 3

Subset of Features Used in the Training of Regression Models (full feature set described in the Appendix)

Data Source Combinations for Training (total 
number of features in this category)

Example Features (Full list in Appendix)

Demographics (8) Age (years); Gender; Ethnicity Codes; Visit History in the Preceding Year

Visit History (4) # of thirty-day readmissions x 1 year
# of inpatient admissions x 1 year
# of outpatient visits x 1 year
# of emergency room visits x 1 year

Laboratory Tests (100) Hemoglobin; Blood Urea Nitrogen; Creatinine; Troponin; Blood Glucose

Prior ICD9 Codes (48) Congestive Heart Failure; Diabetes Mellitus; Stroke; Dementia; Cirrhosis; Chronic Kidney 
Disease; Pain Syndrome

Social and Mental Health/Behavioral Factors 
(40)

Refuse(al,ing,ed); Homeless; Depress(ed/ion); Abuse; Dependence; Withdrawal

Other Keywords (52) Fluid; Coumadin (warfarin); ESRD; Dialysis; Obes(e,ity); Frail(ty); Sep(sis/tic); 
Hemorrhag(e/ic)
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Table 4

Highest discriminatory performance achieved by readmission diagnosis and data source combination; D-

Demographics; L-Laboratory Tests; I-Prior ICD9 Codes; S-Social/Mental Health Keywords; O-Other Clinical 

Keywords; V-Visit Utilization History

Readmission Diagnosis ICD9 Code Data Source Combination ROC (95% CI)

All-cause readmission Any diagnosis DVLI 0.68 (0.66–0.7)

General Symptoms (most common reasons 780.2 syncope and 780.6 
fever)

780.xx DVO 0.71 (0.68–0.75)

Symptoms involving respiratory system and other chest symptoms (most 
common reason 786.5 chest pain)

786.xx DVLSOI 0.76 (0.72–0.8)

Chronic ischemic heart disease 414.xx DVLSOI 0.86 (0.82–0.9)

Other symptoms involving abdomen and pelvis (most common 789.0 
abdominal pain)

789.xx DVLSO 0.75 (0.7–0.81)

Complications peculiar to certain specified procedures (most common 
996.6 infection due to internal prosthetic device and 996.8 complication 
of transplanted organ)

996.xx DVLOI 0.88 (0.82–0.94)

Heart failure 428.xx VLSOI 0.92 (0.87–0.97)

Episodic mood disorders 296.xx DLI 0.84 (0.76–0.93)

Depressive disorder not elsewhere classified 311.xx DVLOI 0.83 (0.73–0.94)

Symptoms involving digestive system 787.xx VLSOI 0.76 (0.64–0.88)

Gastrointestinal hemorrhage 578.xx DLSI 0.84 (0.72–0.96)

Pneumonia, organism unspecified 486.xx V 0.83 (0.74–0.92)

Cardiac dysrhythmias 427.xx DO 0.76 (0.65–0.87)

Other acute and subacute forms of ischemic heart disease 411.xx DVLSOI 0.71 (0.54–0.87)
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Table 5

Change in discrimination with the data source present compared to its absence

Data source type Change in discrimination with the data source present compared to its absence

Laboratory Results +5%

Visit History +5%

Demographics +4%

Prior ICD9 Codes +3%

Clinical Keywords +2%

Social/Mental Health Keywords Approximately no change*

*
No change when rounded to the nearest percentage
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