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Abstract

HER2-positive (HER2+) breast cancer accounts for 18%–20% of all breast cancer cases and has 

the second poorest prognosis among breast cancer subtypes. Trastuzumab, the first Food and Drug 

Administration-approved targeted therapy for breast cancer, established the era of personalized 

treatment for HER2+ metastatic disease. It is well tolerated and improves overall survival and 

time-to-disease progression; with chemotherapy, it is part of the standard of care for patients with 

HER2+ metastatic disease. However, many patients do not benefit from it because of resistance. 

Substantial research has been performed to understand the mechanism of trastuzumab resistance 

and develop combination strategies to overcome the resistance. In this review, we provide insight 

into the current pipeline of drugs used in combination with trastuzumab and the degree to which 

these combinations have been evaluated, especially in patients who have experienced disease 

progression on trastuzumab. We conclude with a discussion of the current challenges and future 

therapeutic approaches to trastuzumab-based combination therapy.
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1. Overview of trastuzumab's effects and clinical challenges in HER2-

positive breast cancer

HER2 is a member of the epidermal growth factor receptor (EGFR) family, which 

comprises the 4 tyrosine kinase proteins HER1 (or EGFR), HER2, HER3, and HER4, that 

regulates cell proliferation, survival, and differentiation[1]. HER2 is overexpressed or 

amplified in 18%–20% of all patients with HER2 positive (HER2+) BC [1,2,3]. When 

highly expressed at the membrane, HER2 undergoes hyperdimerization with itself or with 

other receptors in the family. This activates various mitogenic pathways, specifically 

phosphatidylinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) 

[4]. These pathways drive continuous cell proliferation and new vasculature formation, 

which leads to an aggressive phenotype and poor prognosis. For more details on the process, 

readers are recommended to an expert review by Hynes et al (2005) [1].

Given that HER2 is overexpressed in BC cells and drives malignancy, HER2-targeted 

therapy represents an attractive therapeutic approach. In fact, considerable research is being 

conducted to identify targets of HER2 and its family members. Trastuzumab, the first 

humanized monoclonal antibody to be developed against HER2, is the most successful 

targeted therapy for HER2+ BC [5]. The results of several large randomized trials (NCCTG 

N9831, NSABP B-31, BCIRG 006, and HERA) strongly demonstrate that adding 

trastuzumab to standard chemotherapy reduces disease recurrence compared to 

chemotherapy alone in patients with surgically resectable tumors (table 1) [5,6]. On the basis 

of these data, the addition of trastuzumab to chemotherapy has become the standard of care 

in women with early HER2+ BC or metastatic breast cancer (MBC). Its significant clinical 

benefit results from multiple mechanisms, including inhibition of the HER2 downstream 

pathway, prevention of HER2 shedding, and induction of antibody-dependent cell-mediated 

cytotoxicity [7,8,9]. For comprehensive information on trastuzumab's mechanism of action 

and the results of clinical trials, please see the excellent review by Spector et al (2009) [8].

Despite trastuzumab's significant effect on patient outcomes, studies by Vogel et al (2002) 

and Slamon et al (2001) showed that 74% of patients with HER2+ MBC did not experience 

a response to first-line trastuzumab monotherapy and about 50% did not experience a 

response to trastuzumab with anthracycline and cyclophosphamide. This is referred to as 

primary resistance [10,11]. Moreover, even though trastuzumab with chemotherapy has 

significantly improved disease-free survival (DFS) and overall survival (OS) in patients with 

early-stage HER2+ BC, relapses eventually occur after a year of initial treatment; this is 

categorized as acquired resistance [6]. These observations raise 3 questions: 1) Why do 

patients with HER2 overexpression not experience a response to trastuzumab? 2) Should 

trastuzumab continue to be used in patients who have experienced progression? and 3) What 

should trastuzumab be combined with to overcome resistance?

The first question is controversial and is discussed at the end of this review. The second 

concern was identified in a clinical trial called EGF104900 that was performed by Blackwell 

et al (2009) (table 1). In the study, patients whose disease was refractory to trastuzumab 

were treated with a small molecular inhibitor called lapatinib, alone or in combination with 

trastuzumab [12,13]. The combined therapy significantly improved the progression-free 

Vu et al. Page 2

Biochim Biophys Acta. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



survival (PFS), clinical benefit rate, and OS compared with single-agent therapy [12,13]. 

Another important study that addressed the same question, was conducted by von Minckwitz 

et al (2009) on 156 HER2+ MBC patients who had experienced progression while 

undergoing first-line trastuzumab-based chemotherapy [14]. The patients were randomly 

assigned to receive capecitabine, either alone or in combination with trastuzumab. Although 

the difference in OS between the 2 treatment groups was not statistically significant, there 

was a major improvement in overall response and time-to-disease progression when 

trastuzumab was added to capecitabine [14,15]. These data strongly demonstrate that 

trastuzumab-resistant tumors continue to be dependent on HER2 signaling and that 

combining trastuzumab with other targeted therapies is beneficial, even in patients who have 

experienced progression on trastuzumab.

In this review, we mainly focus on the third question: we review current combination 

therapies that have efficacy in patients whose disease is refractory to trastuzumab treatment. 

Generally, the term “combination therapy” refers to the “art” of combining different drugs to 

enhance the anti-proliferative effect of treatment or to overcome resistance [16,17]. 

Combinatorial strategies can target multiple nodes within the same oncogenic pathway 

(“vertical” combination) or multiple sites across a signaling network (“horizontal” 

combination) [16]. In reality, when 2 or more drugs are combined, they can have additive, 

synergistic, or antagonistic effects or may produce more distinct complex outcomes [17]. 

Moreover, the key factors in successful combinations are tolerability and avoidance of 

possible pharmacokinetic interactions [18]. For expert opinions on potential drug 

interactions, practical issues with combinatorial options, and proposed guidelines for the 

clinical development of combinations based on patients' genetic profiles, please read the 

comprehensive reviews by Rodon et al., 2010; Al-Lazikani et al., 2012; and Yap et al., 2013 

[16,17,18].

In the following sections, we review the 2 approaches used in trastuzumab-based 

combination therapy: the introduction of compounds with complement mechanisms of 

action to trastuzumab and the combination of trastuzumab with agents that have similar 

targets but produce synergistic efficacy. These strategies include inhibitors of multiple 

growth factor receptors (GFRs) and heat shock protein (Fig 1), blockage of HER2 

downstream effectors and histone deacetylase (Fig 2), and agents against type I insulin-like 

growth factor receptor (IGF-1R) and angiogenesis (Fig 3). Each combination approach is 

analyzed, from hallmark laboratory studies to the most current clinical trials.

2. Inhibition of multiple growth factor receptors

Previous studies revealed that the overexpression of tyrosine kinase receptors such as HER1 

or HER3 can compensate for HER2 signaling and promote cell proliferation, even in the 

presence of trastuzumab [5,8,19]. Moreover, the expression of a constitutively active HER2 

that lacks an extracellular domain, known as p95-HER2, also contributes to resistance to 

therapy and is correlated with poor outcome in patients [20,21,22]. Therefore, targeting 

these escape mechanisms should provide complete blockage of redundant pathways and 

improve patients' responses to therapy. This approach includes humanized monoclonal 
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antibodies or small molecule inhibitors (SMIs), bi-specific antibodies, and drug-conjugated 

antibodies (Fig 1).

2.1 Dual monoclonal antibody blockade

Dual monoclonal antibody blockade is designed to prevent HER2 activation through 

heterodimerization with other receptor tyrosine kinases, such as HER1 and HER3; this 

should block ligand-activated downstream signaling more completely than should targeting 

HER2 alone [23].

One successful example of the dual blockade approach is pertuzumab (2C4 or Perjeta), 

another humanized monoclonal antibody that targets HER2 [23]. The difference between 

pertuzumab and trastuzumab is that pertuzumab specifically binds to HER2, close to the 

center of domain II, and prevents its heterodimerization with HER3 [24]. Given that 

overexpression of HER3 is required for HER2-driven cell proliferation, the combination of 

the 2 antibodies should completely block their activation and signaling, thus inhibiting the 

proliferation of resistant cells [25]. In fact, the results from in vitro and in vivo models 

demonstrated that pertuzumab was effective at disrupting HER2-HER3 heterodimers, 

leading to inhibition of PI3K signaling and apoptosis [23,26]. The synergistic effect of 

trastuzumab and pertuzumab was fully supported by xenograft models, in which enhanced 

tumor regression was observed for combination therapy but not monotherapy [25,27].

Data from phase II clinical trials suggested that trastuzumab and pertuzumab were well 

tolerated and was beneficial after disease progression on trastuzumab therapy in MBC 

[28,29]. Later, CLEOPATRA, a large phase III study, was conducted to compare the 

efficacy and safety of trastuzumab and docetaxel, with and without pertuzumab (table 1). An 

analysis demonstrated that the PFS and OS durations were significantly extended with the 

addition of pertuzumab [30,31]. In another clinical study in early BC, NeoSphere, 

researchers found that the combination was much more effective at improving the rate of 

tumor disappearance (pathological complete response rate) than was the individual treatment 

(table1) [32]. On the basis of the outstanding clinical benefits of pertuzumab, the drug was 

approved by the FDA, in combination with trastuzumab, for the treatment of HER2+ BC in 

both the neoadjuvant and metastatic setting.

One concern about this approach is the risk of additive side effects because both agents 

target HER2. However, no significant difference was found in cardiac dysfunction in 

patients who enrolled in the CLEOPATRA study (table 1) [33].

2.2. Combination of trastuzumab and small molecule tyrosine kinase inhibitors (SMIs)

SMIs are designed to bind to the ATP-binding pocket of kinase receptors, inhibiting their 

catalytic activity [1]. Even though both monoclonal antibodies and SMIs ultimately lead to 

downstream signaling inhibition, they differ in their mechanisms of action and 

pharmacological properties [34]. Antibodies are administered intravenously and target the 

extracellular domains of growth factor receptors [34]. Tyrosine kinase inhibitors are small 

orally available, membrane-permeable compounds that act inside cells [34]. In addition, 

because of their large size, monoclonal antibodies do not efficiently cross the blood-brain 
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barrier; SMIs may have this ability, but it has not been clinically confirmed [34]. The half-

life of many tyrosine kinase inhibitors, such as lapatinib and gefitinib, is approximately 24–

48 hours, whereas the half-life of monoclonal antibodies such as trastuzumab is much longer

—about 3–4 weeks [35]. However, small molecules are generally thought to be less specific 

than therapeutic antibodies and may be associated with a higher risk of toxicity [34]. For a 

comprehensive comparison of antibodies and SMIs, please refer to the excellent reviews by 

Imai and Takaoka (2006) and Lin and Winer (2007) [34,36].

One of the first SMIs approved by the FDA for treating HER2+ MBC was lapatinib, a 

pyrido- [3,4-d]-pyrimidine derivative [37]. Lapatinib potently inhibits the kinase activity of 

both HER1 and HER2, thus terminating mitogenic signaling in vitro and in vivo [38]. In 

addition, although PTEN loss confers trastuzumab resistance, lapatinib retains anti-tumor 

activity in PTEN-null, HER2-overexpressing cell lines [39]. Furthermore, trastuzumab-

resistant, p95HER2-expressing cancer cells are sensitive to lapatinib [22]. Importantly, 

patients with p95HER2 expression responded similarly to lapatinib, as did patients with full-

length HER2 [40,41]. Together, these findings suggest that lapatinib benefits patients with 

trastuzumab-refractory BC. The drug was approved by the FDA in 2007, in combination 

with capecitabine, for the treatment of advanced HER2-overexpressing BC [42]. Lapatinib 

was beneficial in patients who experienced progression on trastuzumab, as confirmed in 

several large randomized trials, such as EGF104900 and NeoALTTO (table 1). The 

preliminary analysis from these studies demonstrated a significant improvement in 

pathological complete response and PFS in patients treated with lapatinib and trastuzumab 

versus individual therapy alone [12,43]. Importantly, no major cardiac dysfunction due to 

lapatinib treatment has been reported [43,44].

Besides lapatinib, afatinib (BIBW-2992) and vinorelbine are being compared to trastuzumab 

plus vinorelbine for HER2+ MBC patients in a phase III trial known as LUX-Breast 1 (table 

1). Afatinib is an anilino–quinazoline-derived, irreversible, oral SMI of HER1, mutated 

HER1, and HER2 that was shown to possess potent anti-tumor activities in tumor cell 

lines[45]. In addition, a phase II trial of afatinib demonstrated the drug's promising activity 

in pretreated HER2+ BC patients who had experienced progression after trastuzumab 

treatment [46].

Another potent SMI against HER1, HER2, and HER4, known as neratinib (HKI-272), is 

currently being evaluated in phase II trials in HER2+ MBC patients with brain metastases. 

Preliminary data showed that oral neratinib had encouraging anti-tumor activity and was 

well tolerated in heavily pretreated and trastuzumab treatment-naive patients with advanced 

HER2+ BC [47]. For more information on afatinib and neratinib, please see the reviews by 

Minkovsky et al (2008) and López-Tarruella et al (2012), respectively [45,48].

2.3. Bi-specific antibodies against HER2 and its partners

Bi-specific antibodies are designed to be directed against 2 different antigens; thus, they are 

expected to have higher therapeutic efficacy than agents that inhibit a single target [49]. 

There are at least 2 different methods of generating bi-specific antibodies. First, the variable 

domains of 2 well-characterized monoclonal antibodies can be combined [49]. Second, an 

additional paratope is attached to the variable domain of an existing antibody [49,50].
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One advanced example of bi-specific antibodies being used as solid tumor treatment is 

MM-111, which was developed to target both HER2 and HER3 [51]. MM-111 consists of 

fully human anti-HER2 and anti-HER3 single chain antibody moieties that are linked by 

modified human serum albumin. The Nielsen group, who investigated MM-111, found that 

trastuzumab, lapatinib, and pertuzumab were not effective at inhibiting heregulin-induced 

HER3 activation in HER2+ BC cells [51]. In contrast, MM-111 could prevent the HER2-

HER3 heterodimer and promote the formation of inactive trimeric complexes [51]. 

Moreover, they found that the addition of MM-111 to trastuzumab significantly suppressed 

in vivo tumor growth, even in the presence of heregulin. Moreover, the combination could 

inhibit the proliferation of BT474-M3 and NCI-N87 more effectively than could pertuzumab 

and trastuzumab [51]. Therefore, MM-111 and trastuzumab are currently being evaluated in 

a phase I trial that includes about 21 trastuzumab-resistant HER2+ BC patients (table 1).

2.4. Drug-conjugated antibodies against HER2: the first targeted chemotherapy for solid 
tumors

One attractive strategy for enhancing drug potency is to improve its specificity using 

antibody-drug conjugates. This strategy takes advantage of antibodies to directly and 

specifically deliver potent therapeutic agents to tumor sites. It also allows the drug to reserve 

its toxicity for the target, minimize damage to normal cells, and accumulate at a much higher 

concentration in cancer cells [49,52]. Generally, 3 classes of cytotoxic agents are commonly 

used to attach to antibodies: calicheamicin based, maytansinoid based, and auristatin based 

[52]. Calicheamicin, the subject of extensive research in drug delivery, is a natural product 

that can bind to DNA in the minor groove, resulting in DNA cleavage. Maytansinoid and 

auristatin derivatives act by binding to tubulin to inhibit tubular polymerization [52]. 

Readers interested in conjugated antibodies should refer to the comprehensive reviews by 

Senter's research group [52].

Particularly in HER2+ BC, the first drug-conjugated antibody approved by the FDA was 

ado-trastuzumab emtansine (T-DM1) in early 2013. T-DM1 consists of 1 molecule of 

trastuzumab that is covalently bonded with 3 or 4 molecules of emtansine (DM1), a 

derivative of maytansine, via a stable thioether linker [53]. When the parent compound, 

maytansine, is used alone, it is non-specific and thus too toxic to be used in patients [54]. 

However, T-DM1 targets DM1 specifically to HER2-overexpressing cells and thus spares 

the cells with low HER2 overexpression. Additionally, T-DM1 binds to HER2 with a similar 

affinity to that of trastuzumab [53,55]. Therefore, the cytotoxicity of T-DM1 at the tumor 

sites can be enhanced to around 100 to 10,000 times that of standard chemotherapy [53]. 

Interestingly, in vitro results indicated that T-DM1 retained all known mechanisms of 

trastuzumab, such as antibody-dependent cell-mediated cytotoxicity, PI3K/AKT signaling 

inhibition, and suppression of p95-HER2 formation [54]. Moreover, as DM1 works 

independently of growth factor signaling inhibition, it was anticipated that its conjugate 

would be effective in trastuzumab-resistant cases. In fact, T-DM1 had potent cytotoxicity in 

a panel of sensitive and resistant HER2+ BC cells [55]. Furthermore, in vivo data indicated 

that the drug significantly inhibited tumor growth and caused cancer regression in mouse 

xenograft models [54,55].
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In the phase II trial TDM4450g, T-DM1 was compared to trastuzumab and docetaxel for the 

first-line treatment of HER2+ MBC; the PFS duration was significantly extended in patients 

treated with T-DM1(table 1) [56]. Of note, T-DM1 also had a more favorable toxicity 

profile than did trastuzumab with docetaxel, including a lower incidence of grade 3 adverse 

effects and a lower risk of cardiotoxicity [53,56]. These findings were further confirmed by 

the results of a large phase III study, EMILIA, in which T-DM1 significantly increased PFS 

and OS, with less toxicity than capecitabine and lapatinib, in patients with HER2+ advanced 

BC (table 1) [53,57]. In addition, data from another large phase III international study called 

TH3RESA also showed the important clinical effect of T-DM1 on patients with HER2+ 

advanced BC (table 1). The TH3RESA trial, which enrolled more than 600 patients who had 

experienced progression on both trastuzumab and lapatinib, was conducted to compare the 

efficacy of T-DM1 to a treatment of the physician's choice. The preliminary data was 

reported by Dr. Wildiers at the European Cancer Congress 2013 (abstract #LBA15). T-DM1 

was demonstrated to reduce the risk of disease progression by 47% compared to the standard 

therapy. Specifically, the duration of PFS was 2 times longer in patients receiving T-DM1 

than in those receiving a trastuzumab-based regimen. Another phase III study, MARIANNE, 

is ongoing to compare the efficacy of T-DM1, with or without pertuzumab with trastuzumab 

and taxane, as first-line targeted therapy for women with advanced HER2+ BC (table1). In 

summary, the data from these trials should provide physicians and patients with 

comprehensive toxicity and efficacy profiles of T-DM1. For more detailed information on 

T-DM1, including its activity, safety, and current and past clinical trials, please see 

LoRusso's and Boyraz's reviews (2011 and 2013, respectively) [53,57].

3. Inhibition of HER2 downstream signaling components in combination 

with trastuzumab

Deregulation of the PI3K/AKT pathway is proposed to be the most common contributors to 

trastuzumab resistance [58]. Several research groups have demonstrated that continuous 

AKT activation due to PTEN loss or activating mutations of PI3K maintains continuous cell 

proliferation, even in the presence of trastuzumab [7,59,60]. In addition, HER2+ cancers 

with PI3KCA mutations or PTEN downregulation showed inferior prognoses after 

trastuzumab treatment [60]. Interestingly, in vitro and in vivo results revealed that BCs with 

HER2 overexpression were significantly and selectively sensitive to AKT1/2 inhibitors[61]. 

These findings suggest that combining the inhibitors of the PI3K/AKT pathway with anti-

HER2 therapies can restore trastuzumab sensitivity. This strategy, moreover, may overcome 

the resistance as a result of the formation of the truncated, constitutively active mutant p95-

HER2. Here, we discussed the combination of trastuzumab with the inhibitors of PI3K, 

mTOR and AKT (Fig 2).

3.1. PI3K inhibitors

Most of the specific PI3K inhibitors inhibit the class I PI3K (Fig 2). One of the first PI3K 

inhibitors, a quercetin derivative known as LY294002, inhibited tumor growth in PTEN-loss 

cell lines and xenograft models [62]. However, because of its unfavorable pharmacokinetic 

properties and toxicity, LY294002 has not been studied clinically [63]. Another promising 

class I PI3K inhibitor with selective activity against class 1A isoforms is GDC-0941, a 
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thieno [3,2-d] pyrimidine derivative that is being studied in phase I trials that are nearing 

completion [64,65]. Preclinical studies demonstrated that GDC-0941 in combination with 

trastuzumab was efficacious in trastuzumab-refractory cells with a PI3K-activating mutation 

or PTEN loss [7,66,67]. Another potent and reversible PI3K inhibitor, NVP-BKM120, is 

being evaluated with trastuzumab in a phase Ib/II trial in HER2+ MBC patients who had 

been pre-treated with trastuzumab (table 1) [63,68]. In general, even though there has been 

extensive research indicating that PI3K activation plays a crucial role in trastuzumab 

resistance, most PI3K inhibitors are still being evaluated in early clinical trials for HER2+ 

MBC.

3.2. mTOR inhibitors

The mammalian target of rapamycin (mTOR), a serine-threonine protein kinase, is a major 

downstream effector of the PI3K/AKT pathway [69]. mTOR, which comprises the 

mTORC1 and mTORC2 complexes, plays a master role in regulating protein synthesis and 

cell metabolism and is constitutively active in cancer and malignancies [69]. Recently, 

activated mTOR, characterized by increased levels of phosphorylated initiation factor 4E-

binding protein 1, was found to be involved in resistance to trastuzumab in primary HER2+ 

BC [70]. This finding indicates that blocking activated mTOR will restore trastuzumab 

sensitivity.

One of the first mTORC1 inhibitors to be identified was rapamycin (sirolimus), an antibiotic 

produced by Streptomyces hygroscopicus [69,71]. The compound forms a complex with 

FK506 binding protein-12, which is then recognized by mTOR. The complex prevents 

mTOR activity and inhibits its downstream cascade [69]. In vitro data demonstrated that 

inhibiting mTOR resulted in increased levels of the cell cycle inhibitor p27CIP/KIP, which led 

to cell cycle arrest and inhibition of cell proliferation [69]. Furthermore, mTOR inhibitors 

were found to have anti-angiogenic effects by suppressing VEGF production in HER2+ BC 

cells [72]. These anti-proliferative effects make rapamycin an attractive therapeutic. 

However, because of the pharmaceutical limitations of rapamycin, several rapalogs 

(synthetic derivatives with improved properties) have been developed, including 

temsirolimus (CCI-779) and everolimus (RAD001) (Fig 2). Everolimus is the most 

advanced mTOR inhibitor in clinical development. In 2009, Arteaga's group demonstrated 

that everolimus combined with trastuzumab induced tumor regression in mouse models. The 

authors also found that the feedback loop induced by RAD001 on PI3K/AKT, which 

resulted in increased AKT phosphorylation, was blocked by trastuzumab in vitro. These 

findings indicate that mTOR inhibitor and trastuzumab show a synergistic effect. In fact, the 

preliminary results of a phase I study of everolimus were encouraging: the drugs had an 

anticancer effect in patients whose disease was resistant to trastuzumab, and the 

combinations of trastuzumab and everolimus were well tolerated [73,74]. Everolimus is 

being investigated, in combination with the antimitotic agent vinorelbine and trastuzumab, 

in a phase III trial (BOLERO-3) in trastuzumab-resistant MBC patients (table 1) [75]. The 

combination of ridaforolimus (AP23573 or MK-8669, formerly known as deforolimus) and 

trastuzumab is being evaluated in a phase II trial in trastuzumab-refractory MBC patients 

(table 1). Preliminary data from the study suggest that the combination is feasible and well 

tolerated, with early evidence of anti-tumor activity in patients whose disease is resistant to 
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trastuzumab [76]. For comprehensive discussion on mTOR activity and updated data on 

clinical trials, please see the recent review by Nahta and O'Regan (2010) [76].

3.3. Dual mTOR-PI3K inhibitors

It is hypothesized that the simultaneous inhibition of mTOR and PI3K results in enhanced 

anticancer effects, which provides the rationale for developing dual PI3K-mTOR blockage 

[63]. In addition, suppression of mTORC1 unexpectedly activates the PI3K pathway, 

promoting cell survival and conferring resistance to mTOR inhibitors. Dual PI3K-mTOR 

inhibitors are therefore, expected to address these issues. Interestingly, these dual inhibitors 

also bind both the mTOTC1 and mTORC2 complexes; thus, they may be able to suppress 

the PI3K/AKT/mTOR pathway more completely than can rapalogs (Fig 2) [63].

A promising dual inhibitor that is under investigation is an imidazoquinoline, NVP-BEZ235 

(BEZ) [77]. BEZ, which acts in an ATP-competitive manner, showed potent in vitro anti-

proliferative activity against HER2-overexpressing BC cells that were resistant to 

trastuzumab and lapatinib [77,78]. In vitro and in vivo data demonstrated that BEZ 

suppressed tumor growth in a panel of BC cell lines and xenograft models with activating 

PI3K mutation [79]. Mechanistically, BEZ abrogated the phosphorylation of AKT and 

p70S6 kinase in both lapatinib- and trastuzumab-resistant BC cells as a result of PTEN 

knockdown or PI3K-, E545K-, and H1047R-activating mutations [78,79]. BEZ is now being 

evaluated in phase I and II trials in advanced cancer patients with activating PI3K mutants or 

PTEN loss (table 1) [63].

3.4. AKT inhibitors

AKT, a serine and threonine kinase, acts as a central downstream target of PI3K and 

upstream target of mTORC1 [58]. Activated AKT triggers numerous cellular processes, 

including cell proliferation and survival. Mechanistically, it negatively regulates cell cycle 

inhibitor p27KIP/CIP, tumor suppressor protein p53, and pro-apoptotic protein BAD or 

activates the cell-cycle progression proteins, c-Myc and cyclin D [80]. Recently, 

Chandarlapaty et al (2011) found that AKT inhibition caused negative feedback on receptor 

tyrosine kinase phosphorylation and expression [81]. As AKT was inhibited, there was a 

marked increase in HER3 phosphorylation in BT474 BC cells [81]. Importantly, HER1/2 

kinase inhibitor, lapatinib, could reverse the feedback and that the combination of lapatinib 

and AKT inhibitors significantly reduced tumor growth in a BT474 xenograft model [81].

These findings indicate that AKT inhibitors can be combined clinically combined with 

trastuzumab. Unfortunately, only a few AKT inhibitors have been evaluated in clinical trials. 

One of the most advanced AKT inhibitors in clinical trials is MK-2206, an oral allosteric 

AKT inhibitor with nano-molar potency against purified recombinant human AKT1 and 

AKT2 but much lower potency against human AKT3 [82]. In vitro and in vivo data identify 

that MK-2206 inhibits cell proliferation, tumor growth and induces apoptosis by specifically 

blocking AKT phosphorylation at both Thr308 and Ser473 (Fig 2) [82,83]. Importantly, 

MK-2206 demonstrates more than 100-fold selectivity for AKT against 256 other kinases, 

and its anti-proliferative activity is significantly enhanced in BC cells with PTEN loss or 

PI3K mutations [83,84]. The specificity of MK-2206 for AKT and its efficacy towards the 
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cancers with alteration in PI3K/ PTEN would allow us to select patients who will get most 

benefit from this therapeutic approach. Several phase I studies are investigating the 

maximum tolerated dose, pharmacokinetics, and pharmacodynamics of MK2206, alone or in 

combination with trastuzumab and lapatinib, in patients with HER2+ BC and other solid 

tumors (table 1). Preliminary data reported by Yap et al (2011) showed that MK-2206 could 

be administered safely at doses that inhibited AKT phosphorylation [84]. The results 

encourage future trials to rationally and effectively develop therapeutic approaches that 

incorporate AKT inhibitors.

4. Other combination approaches in combination with trastuzumab

4.1. Histone deacetylase inhibitors

Histone proteins organize DNA into nucleosomes, which are repeating structures of 

chromatin [85]. The acetylation and deacetylation status of histones regulates gene 

expression and chromatin remodeling. These processes are mediated by 2 classes of 

enzymes, histone deacetylases (HDACs) and histone acetyltransferases [85]. Histone 

acetyltransferase catalyzes the acetylation of histones H3 and H4 at specific lysine residues; 

this neutralizes the positive charge on the histone, resulting in transcriptional activation (Fig 

2). Therefore, the histones associated with active genes are highly acetylated [85]. In 

contrast, HDACs remove acetyl groups from lysines, allowing interactions to occur between 

negatively charged DNA and positively charged histone proteins, which leads to 

transcriptional suppression [85]. Treatment with HDAC inhibitors (HDIs) prevents HDAC 

activity, resulting in chromatin relaxation and gene expression (Fig 2). HDIs have been 

found to transcriptionally up-regulate critical tumor suppressor genes such as p27 and p21, 

which are associated with cell cycle arrest and apoptosis in cancer cells [86]. A cinnamic 

acid hydroxamate, LAQ824 (or Dacinostat), acts as a potent HDI that exerts its anti-

proliferative effects at a nanomolar concentration [87]. In vitro data demonstrated that HDIs 

significantly decreased the mRNA and protein levels of HER2, resulting in the attenuation 

of AKT activity [87]. LAQ824 also promoted the proteasomal degradation of HER2 and its 

dissociation from HER3. Co-treatment of trastuzumab with HDIs led to significant increase 

in apoptosis in BT474 and SKBR-3 cells [87]. However, although HDIs have had 

encouraging preclinical results, the clinical use of these agents in solid malignancies has 

been disappointing. Panobinostat is one of the few HDIs that has been thoroughly studied 

and had promising results in phase I clinical studies when used in combination with 

trastuzumab in resistant disease (table 1) [88,89]. A preliminary analysis also demonstrated 

that the combination of panobinostat and trastuzumab was well tolerated, although 

additional data on patient safety, efficacy, and pharmacokinetic are not yet available [89]. 

For further opinions on the development and current clinical trial status of panobinostat and 

other HDIs, please see the review by Wagner et al (2010) [88].

4.2. HSP90 inhibitors

HSP90 is a ubiquitous chaperone protein that assists in folding and protecting client proteins 

from degradation and environmental stress, including heat, hypoxia, free radicals, radiation, 

and chemotherapy. Mechanistically, HSP90 regulates the stabilization, activity, and turnover 

of numerous critical proteins, such as AKT, HER2, focal adhesion kinase, and serine and 
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threonine kinases such as Raf-1, Cdk4/Cdk6, and casein kinase II (Fig 1) [90]. Elevated 

expression of HSP90, which is frequently observed in cancer, leads to the accumulation of 

these proteins and ultimately results in continuous cell proliferation [90]. Thus, blocking the 

function of HSP90 can cause degradation of these onco-proteins and inhibit tumor growth. 

Specifically, HSP90 inhibitors lead to rapid HER2 degradation, concomitant inhibition of 

PI3K/AKT signaling, and in vivo growth suppression in both xenograft and transgenic 

HER2+ BC models [91,92]. In addition, Chandarlapaty et al (2010) demonstrated that p95-

HER2 was an HSP90 client protein and that the p95-HER2-dependent in vivo tumor model 

was sensitive to HSP90 inhibitors (Fig 1) [93]. These findings indicate that HSP90 inhibitor 

in combination with trastuzumab will benefit patients with refractory disease, especially 

those with p95-HER2 circulation.

The first HSP90 inhibitor, geldanamycin, is a benzoquinone ansamycin antibiotic that was 

isolated from Streptomyces hygroscopicus. It was found to possess anticancer properties; 

however, it is too toxic to be used clinically [94]. Geldanamycin was anticipated to bind to 

the ATP-binding pocket of HSP90 and inhibit its function [95]. Its analog, tanespimycin, or 

17-allylamino-17-desmethoxy geldanamycin, is less toxic and more stable than is the 

original agent and works in a similar manner [96]. However, it was not developed clinically 

because of poor aqueous solubility and pharmacokinetic properties [97]. A new formulation 

of tanespimycin, KOS-953, which contains Cremophory EL (polyethoxylated castor oil), has 

been developed. Pharmacological research has demonstrated that both formulations achieve 

similar pharmacokinetics of 17-allylamino-17-desmethoxy geldanamycin [97]. The results 

of phase I and II trials of KOS-953 and trastuzumab for locally advanced BC or MBC that 

has progressed on trastuzumab-based therapy revealed that the combination was more 

effective than was either therapy alone [98,99]. However, the sponsor suspended the clinical 

development of tanespimycin, and all trials of this drug have been closed [97]. A second 

generation of KOS-953, retaspimycin hydrochloride (IPI-504), showed antitumor activity in 

preclinical and phase I studies in combination with trastuzumab. Yet despite these earlier 

encouraging results, a phase II trial of retaspimycin hydrochloride and trastuzumab in 

patients with HER2+BC did not meet the pre-specified expansion criteria [90]. In 

conclusion, the strategy that targets HSP90 has not resulted in significant clinical benefits in 

HER2+ BC patients.

4.3. Insulin-like growth factor I receptor (IGF-1R) inhibitors

The insulin-like growth factor (IGF) signaling pathway is a complex system composed of 

the circulating ligands IGF-I, IGF-II, and insulin; the cell membrane receptors type 1 and 2 

IGF receptors (IGF-1R and IGF-2R) and the insulin receptor (IR); the IGF binding proteins 

(IGFBP 1–7); and several associated proteins (Fig 3) [100,101]. Among these, IGF signaling 

through IGF-IR has been shown to activate the MAPK and PI3K/AKT pathways and thus 

protect tumor cells from damage due to cytotoxic chemotherapeutic agents and ionizing 

radiation (table 1) [100,102]. Therefore, IGF-1R has been the key target of therapy against 

IGF signaling to suppress tumor growth and increase the efficacy of other anticancer 

therapeutics. For a comprehensive discussion about IGF signaling, its roles in cancer and 

angiogenesis, and its cross-talk with other pathways, readers should read the excellent 

reviews by Pollak and Buck and Mulvihill (2011) [100,103,104]
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In HER2+ BC, IGF-1R upregulation was proposed to act as an adaptive mechanism to 

trastuzumab's inhibitory effects. In a neoadjuvant trial of trastuzumab with vinorelbine, 

IGF-1R membrane expression was associated with a lower response rate than was in IGF-1R 

negatice staining [105]. Moreover, preclinical studies showed that upregulation of IGF-1R 

promoted cell cycle progression, cell growth, and cell proliferation, which resulted in 

trastuzumab resistance [106,107,108]. Interestingly, this resistance was reversed by blocking 

IGF-1R signaling with recombinant IGF-binding protein-3 or IGF-1R antagonist NVP-

AEW541 [108,109]. These findings led to clinical studies to evaluate the efficacy of IGF-1R 

inhibitors in patients who had experienced disease progression on trastuzumab-based 

therapy. Currently, more than 25 agents disrupt IGF signaling at different stages of 

development, including monoclonal antibodies against IGF-1R, SMIs targeting kinase 

domains of the IGF receptor, antisense of IGF-1R, and the neutralizing antibody to IGF-I 

and –II [110]. These approaches, including their efficacies and toxicities and the detailed 

results of current clinical trials, have been extensively reviewed by Rodon et al. (2008), 

Buck and Mulvihill (2011), and King and Wong (2012) [101,104,110].

SMIs and monoclonal antibodies against IGF-1R are the most investigated approaches to 

targeting IGF signaling. BMS-754807 is a selective, non ATP-competitive IGF-1R SMI 

[111]. The drug showed anti-proliferative synergy when combined with trastuzumab in 

HER2+ BC cell lines [111]. BMS-754807 in combination with trastuzumab was evaluated 

in a phase I/II study in patients with advanced or HER2+ MBC (NCT00788333, table 1). 

Since the trial has been completed, an analysis of the primary data will provide valuable 

guidelines for the combination of the drug with trastuzumab for further studies [101,104].

A promising antibody against IGF-1R, cixutumumab (IMC-A12), is being evaluated in a 

phase II study with capecitabine and lapatinib in HER2+ MBC patients who had been 

previously treated with trastuzumab and an anthracycline or taxane (NCT00684983, table 1). 

IMC-A12 is a fully human monoclonal antibody that selectively binds to the IGF-1R with 

high affinity and causes subsequent internalization and degradation of the receptor [112]. 

IMC-A12 treatment has been demonstrated in vitro and in vivo to inhibit IGF ligand-induced 

growth of various tumor types, including BC, by suppressing the ERK-MAPK and 

PI3K/AKT pathways [112,113]. Since IMC-A12 does not bind to or recognize the IR, the 

drug is expected to confer higher therapeutic indices in the clinic than is the non-specific 

small molecule strategy. Rowinsky et al. (2007) and McKian and Haluska (2010) have 

reviewed the development of IMC-A12, including preclinical to early and current clinical 

studies and all reported toxicities associated with IMC-A12 treatment of patients [112,113].

IGF-1R inhibitors are undergoing active clinical evaluation. However, as IGF is 

ubiquitously expressed in cells, careful attention needs to be paid to these inhibitors' 

potential adverse effects and to their doses and schedules.

4.4. Angiogenesis inhibitors

Angiogenesis describes the formation of new blood vessels (neovascularization) from the 

existing vasculature, a complex process that is orchestrated by vascular endothelial growth 

factors (VEGFs), VEGF receptors (VEGFRs), and VEGF antagonists (Fig 3) [114]. 

Angiogenesis is essential for normal development but is dysfunctional in malignancies, 
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resulting in tumor invasion and metastasis [114]. Clinical data have revealed that serum 

VEGF levels were significantly elevated in BC patients and that VEGF inhibition can slow 

disease progression [115,116]. An analysis of primary breast tumor tissues from 611 patients 

demonstrated a positive correlation between HER2 and VEGF and an association between 

elevated HER2, VEGF levels, and poor outcome [117]. For more information about studies 

of VEGF as a prognostic marker of BC progression, please see the excellent review by 

Banerjee et al (2007) [116].

In a BC xenograft model, VEGF expression was found to be elevated in the trastuzumab-

resistant group, and sensitivity to trastuzumab was restored upon treatment with 

bevacizumab, a monoclonal antibody against VEGF [118]. The results of this study provide 

a rationale for using HER2 and VEGF inhibitors in clinical practice. Bevacizumab can block 

VEGF binding to its receptor, inhibiting tumor-related angiogenesis (Fig 3) [118]. 

Bevacizumab was granted accelerated approval by the FDA for the first-line treatment of 

HER2-negative MBC, in combination with paclitaxel, in 2008 [5]. However, data from 

phase III trials demonstrated that it only had a small effect on tumor growth, with no 

significant evidence of a longer survival duration or better quality of life than for standard 

chemotherapy alone. Therefore, in 2011, the FDA withdrew approval of bevacizumab for 

the treatment of HER2-negative MBC, although it remains on the market as an approved 

treatment for colon, lung, kidney, and brain cancer [5]. Currently, 2 large phase III trials are 

evaluating the efficacy of bevacizumab and trastuzumab with chemotherapy in HER2+ 

MBC (BETH and AVEREL, table 1). Preliminary data from AVAREL demonstrated that 

the PFS duration was longer in patients receiving bevacizumab, although the data did not 

reach statistical significance [119]. Another anti-VEGF approach is to use small molecule 

inhibitors that target the tyrosine kinase domain of VEGFR-1, -2, and -3, particularly 

pazopanib is currently being assessed in a phase III trial in combination with lapatinib in 

HER2+ inflammatory BC (Fig 3) [5].

5. Ongoing issues and challenges

Significant advances have been made in discovering and validating combination treatments 

that overcome trastuzumab resistance in HER2+ BC. However, there are still critical issues 

that need to be addressed in future studies.

5.1. Re-assessing HER2 status

HER2 status is currently assessed using fluorescent in situ hybridization and 

immunohistochemical analysis [120]. However, according to Wolff et al. (2007), about 20% 

of HER2 tests may be inaccurate [121]. For example, a re-analysis of data in NSABP B-31 

demonstrated that 9.7% of the samples analyzed in local laboratories did not meet the 

criteria for HER2 amplification by fluorescent in situ hybridization or immunohistochemical 

analysis [120,122,123]. Unexpectedly, those patients had a longer DFS duration than did the 

control group [120]. In contrast, not all patients responded equally to trastuzumab, despite 

having HER2+ BC [75]. These findings indicate that (1) additional research is necessary to 

standardize the criteria for HER2 positivity and (2) HER2 overexpression does not always 

predict patients' responses to therapy. To address the latter, it is important to understand the 

mechanism behind patients' responses and establish additional responsive markers. In 
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general, given the high costs of targeted therapies and the potential toxicities, it is important 

to develop a more effective system for defining patient populations that will most benefit 

from therapy.

5.2. Clinical validation of resistant mechanisms: from bench to patient-side

Given that most resistant mechanisms to trastuzumab were identified in laboratory models, it 

is important to validate that targeting the proposed mechanisms from preclinical studies will 

result in clinically meaningful benefits in selected patients. Moreover, all signaling networks 

are interconnected, and there are many alternative pathways through the resistance process. 

Therefore, it is important to distinguish the bypass mechanism from the mechanism that 

plays a dominant role in driving resistance. With the rapid development of system biology, a 

clear solution will be available in the near future.

5.3. Development of biomarker for trastuzumab-based combination therapy

In HER2-targeted treatment, there are no reliable biomarkers that can be used to make 

individual therapeutic decisions [124]. In addition, many drugs (such as PI3K/AKT pathway 

inhibitors and anti-angiogenesis) can be combined with trastuzumab, but no formal process 

exists for identifying predictive and responsive biomarkers of these combinations. 

Therefore, to provide better drug combinations and minimize patient expense, we must 

determine (1) how to efficiently and appropriately combine and administer different 

therapeutic agents to minimize toxicity while maximizing the effectiveness of the 

combinations and (2) how to select patients who will most benefit from these strategies.

Furthermore, there is currently no standard protocol or guidelines for evaluating antibodies 

that can be used to identify potential markers [120]. For example, although PTEN loss can 

be used to predict the outcome of some targeted therapies, neither the antibody used to stain 

samples nor the definitive cut-off to define PTEN loss has been standardized among 

laboratories.

Generally, the results of large ongoing clinical studies, together with a focus on the 

development of appropriate biomarkers, may answer these questions and reduce costs for 

patients.

5.5. Development of drug-conjugated antibodies

Although a huge research effort has been made in the field of drug-conjugated antibodies in 

solid tumors, few of these conjugates are being developed for clinical use, for several 

reasons. First, the selected drugs must have sufficient potency because only about 2 or 3 

drug molecules can be directly attached to an IgG molecule without damaging its function 

[120]. Second, the number of monoclonal antibodies that can reach a tumor site is extremely 

low. Third, the conjugated drugs must be non-immunogenic and non-active while circulating 

in the blood. Fourth, linkers between toxic agents and a monoclonal antibody must be stable 

enough to remain intact until the antibody reaches target cells. Finally, once the conjugated 

complex is efficiently internalized, it must be properly released. Continued efforts from 

different scientific disciplines, including chemistry, bio-engineering, pharmacology, and 
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molecular biology, are needed to develop better antibody-drug conjugates, especially for use 

against solid tumors.

6. Concluding remarks

It is clear that HER2-targeted therapy for BC has been clinically established and that the 

drug combinations are rationally designed for more effective therapy. We now need to better 

understand how to combine different drugs and to determine the extent to which they can be 

combined successfully, with or without chemotherapy. Recently developed technologies in 

multi-omics analysis, together with a growing understanding of prognosis and predictive 

biomarkers, will shape the future of successful personalized, precision medicine for HER2+ 

BC patients and all cancer patients.
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BC breast cancer

BEZ BEZ235

DFS disease-free survival

EGFR epidermal growth factor receptor

HDACs histone deacetylases

HDIs HDAC inhibitors

HER2+ HER2-positive

IGF insulin-like growth factor

IGF-1R type I insulin-like growth factor receptor

IR insulin receptor

MBC metastatic breast cancer

mTOR mammalian target of rapamycin

OS overall survival

PFS progression-free survival

PI3K phosphatidylinositide 3-kinase

SMIs small molecule inhibitors

T-DM1 trastuzumab-DM1
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VEGFs vascular endothelial growth factors
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Figure 1. 
Inhibitors of epidermal growth factor receptors (HER) combined with trastuzumab in active 

clinical practice. There are 4 members of the HER family, HER1–4. Each is composed of 3 

domains: an extracellular domain that is responsible for ligand binding, a transmembrane 

domain, and the intracellular tyrosine kinase domain, which interacts with intracellular 

signaling molecules. Currently, there are 4 approaches to inhibiting HER: i) Monoclonal 

antibodies, including trastuzumab, pertuzumab, and MM111, to inhibit its dimerization; ii) 

small molecule inhibitors (lapatinib, neratinib, and afatinib) to inhibit its kinase activation; 

iii) toxin-conjugated antibodies to selectively target toxic agents to HER2-overexpressing 

BC cells; and iv) HSP90 inhibitors to rapidly degrade HER2, 3, and 4. However, this 

strategy (iv) has not resulted in encouraging clinical benefits in HER2+ BC patients.
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Figure 2. 
Schematic representation of drugs used with trastuzumab to target HER2-mediated 

signaling. This includes dual blocking of PI3K and mTOR activity (NVP-BEZ235), 

mTORC1 inhibitors (everolimus and ridaforolimus), PI3K inhibitors (GDC-0941 and NVP-

BKM120), Akt inhibitor (MK2206), and histone deacetylase inhibitors (dacinostat and 

panobinostat).
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Figure 3. 
Therapeutic strategies targeting VEGF and IGF signaling that are undergoing active clinical 

development for patients whose disease is resistant to trastuzumab. For VEGF signaling, 

these include using bevacizumab to block secreted VEGF to bind to its receptors, and the 

small molecule, pazopanib, which inhibits the kinase activation of VEGFR-1, -2, and -3. 

The monoclonal antibody cixutumumab, which specifically targets the extracellular domain 

of IGF-1R, and the small molecular tyrosine kinase inhibitor BMS-754807 are promising 

treatments for trastuzumab-resistant patients.
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Table 1

Clinical trials mentioned in this review

Trial name Official title ClinicalTrials.gov identifier

Pertuzumab (or 2C4; commercial name, Perjeta) – Genentech/Roche Monoclonal antibody disrupting HER2-HER3 heterodimerization

CLEOPATRA A phase III, randomized, double-blind, placebo-controlled clinical trial to evaluate the 
efficacy and safety of pertuzumab + trastuzumab + docetaxel vs. placebo + trastuzumab + 
docetaxel in previously untreated HER2+ MBC

NCT00567190

NeoSphere A randomized, open label study to compare the complete pathological response rate 
achieved with 4 combinations of herceptin, docetaxel and pertuzumab in patients with 
locally advanced, inflammatory or early stage HER2+ BC

NCT00545688

Lapatinib (or GW572016; commercial name, Tykerb/Tyverb) – GlaxoSmithKline Small molecule inhibitor blocking tyrosine kinase activities 
of HER1, HER2, and p95-HER2

Neo ALTTO A randomised, multicenter open-label phase III study of neoadjuvant lapatinib, trastuzumab 
and their combination plus paclitaxel in women with HER2/ErbB2 positive primary BC

NCT00553358

EGF104900 A randomized, multicenter, open-label, phase III study of lapatinib in combination with 
trastuzumab versus lapatinib in subjects with HER2+ MBC whose disease has progressed 
on trastuzumab-containing regimens

NCT00320385

Afatinib or BIBW 2992 (commercial name, Tomtovok) – Boehringer Ingelheim Small molecule inhibitor blocking tyrosine kinase activities of 
HER1 and HER2

LUX-Breast 1 A open label, randomised phase III trial of BIBW 2992 and vinorelbine versus trastuzumab 
and vinorelbine in patients with metastatic HER2-overexpressing BC failing one prior 
trastuzumab treatment

NCT01125566

Neratinib (commercial name, HKI-272) – Wyeth Small molecule inhibitor blocking tyrosine kinase activities of HER1, HER2, and HER4

A phase II trial of hki-272 (neratinib) for patients with human epidermal growth factor 
receptor 2 (HER2)-positive BC and brain metastases

NCT01494662

MM-111 (or SAR256212) – Merrimack A bi-specific antibody targeting HER2 and HER3

A phase 1 study of MM-111 in combination with herceptin in patients with advanced, 
refractory HER2 amplified, heregulin positive BC

NCT01097460

T-DM1 or trastuzumab emtansine (commercial name, Kadcyla) – Genentech/Roche Drug-conjugated HER2

TDM4450g A randomized, multicenter, phase II study of the efficacy and safety of trastuzumab-MCC-
DMl vs. trastuzumab (herceptin®) and docetaxel (taxotere®) in patients with metastatic 
HER2+ BC who have not received prior chemotherapy for metastatic disease

NCT00679341

EMILIA A randomized, multicenter, phase III open-label study of the efficacy and safety of 
trastuzumab emtansine vs. capecitabine + lapatinib in patients with HER2+ locally 
advanced or MBC who have received prior trastuzumab-based therapy

NCT00829166

MARIANNE A study of trastuzumab-DMl plus pertuzumab versus trastuzumab [herceptin] plus a taxane 
in patients with MBC

NCT01120184

TH3RESA A phase III randomized, multicenter, two-arm, open-label trial to evaluate the efficacy of 
trastuzumab-emtansine compared with treatment of physician's choice in patients with 
HER2+ MBC who have received at least two prior regimens of HER2 directed therapy

NCT01419197

GDC-0941 – Genentech/Roche PI3K inhibitor

A phase IB open-label, dose-escalation study of the safety and pharmacology of PI3-kinase 
inhibitor GDC-0941 in combination with paclitaxel, with and without bevacizumab or 
trastuzumab, in patients with locally recurrent or MBC

NCT00960960

NVP-BKM-120 – Novartis Selective PI3K inhibitor

A phase Ib/II, open label, multi-center study evaluating the safety and efficacy of BKM120 
in combination with trastuzumab in patients with relapsing HER2 overexpressing BC who 
have previously failed trastuzumab

NCT01132664

Everolimus (orRAD-001; commercial name, Afinitor) – Novartis mTOR inhibitor

B0LER0-3 A randomized phase III, double-blind, placebo-controlled multicenter trial of daily 
everolimus in combination with trastuzumab and vinorelbine, in pretreated women with 
HER2/neu over-expressing locally advanced or MBC

NCT01007942
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Trial name Official title ClinicalTrials.gov identifier

Ridaforolimus (or AP23573 or MK-8669; commercial name, ARIAD) – Merck mTOR inhibitor

8669-009 A phase II trial of oral deforolimus (AP23573; MK-8669), an mTOR inhibitor, in 
combination with trastuzumab for patients with HER2+ trastuzumab-refractory MBC

NCT00736970

NVP-BEZ235 – Norvatis Dual mTOR-PI3K inhibitor

A phase I/II, multi-center, open-label study of BEZ235, administered orally on a continuous 
daily dosing schedule in adult patients with advanced solid malignancies including patients 
with advanced BC

NCT00620594

MK2206 - National Cancer Institute (NCI) – Merck Akt inhibitor

A phase I study of MK-2206 in combination with trastuzumab and lapatinib in HER2+ 
breast and gastric cancer

NCT01705340

Panobinostat (or LBH-589) – Norvatis HDAC inhibitor

A phase Ib/IIa trial of panobinostat in combination with trastuzumab in adult female 
patients with HER2 positive MBC whose disease has progressed during or following 
therapy with trastuzumab

NCT00567879

BMS-754807 – Bristol-Myers Squibb IGF-1R inhibitor

A phase I/II trial of BMS-754807 in combination with trastuzumab (Herceptin) in subjects 
with advanced or metastatic HER2 positive breast cancer

NCT00788333

Cixutumumab (or IMC-A12) – ImClone Monoclonal antibody against IGF-1R

Randomized phase II trial of capecitabine and lapatinib with or without EVIC-A12 in 
patients with HER2 positive breast cancer previously treated with trastuzumab and an 
anthracycline and/or a taxane

NCT00684983

Bevacizumab (commercial name, Avastin) – Genentech/Roche Monoclonal antibody against VEGF

BETH A multicenter phase III randomized trial of adjuvant therapy for patients with HER2-
positive node-positive or high risk node-negative BC comparing chemotherapy plus 
trastuzumab with chemotherapy plus trastuzumab plus bevacizumab

NCT00625898

AVEREL A randomized, open-label study to compare the effect of first-line treatment with avastin in 
combination with herceptin/docetaxel and herceptin/docetaxel alone on progression-free 
survival in patients with HER2+ locally recurrent or MBC

NCT00391092

IPI-504 or retaspimycin hydrochloride – Infinity HSP90 inhibitor

Efficacy and safety of IPI-504 with trastuzumab pretreated, locally advanced or metastatic 
HER2+ BC

NCT00817362

Chemotherapy

NCCTCN9831 Phase III trial of doxorubicin and cyclophosphamide (AC) followed by weekly paclitaxel 
with or without trastuzumab as adjuvant treatment for women with HER-2 overexpressing 
node positive or high-risk node negative BC

NCT00005970

NSABPB-31 A randomized trial comparing the safety and efficacy of adriamycin and cyclophosphamide 
followed by taxol (AC-T) to that of adriamycin and cyclophosphamide followed by taxol 
plus herceptin (AC-T+H) in node-positive BC patients who have tumors that overexpress 
HER2

NCT00004067

BCIRG 006 Multicenter phase III randomized trial comparing doxorubicin and cyclophosphamide 
followed by docetaxel (AC-T) with doxorubicin and cyclophosphamide followed by 
docetaxel and trastuzumab (herceptin)(AC-TH) and with docetaxel, carboplatin and 
trastuzumab (TCH) in the adjuvant treatment of node positive and high risk node negative 
patients with operable BC containing the HER2 alteration

NCT00021255

HERA HERA: A randomised three-arm multi-centre comparison of 1 year and 2 years of herceptin 
versus no herceptin in women with HER2+ primary BC who have completed adjuvant 
chemotherapy

NCT00045032
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