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Summary

There is growing interest in understanding the heterogeneity of treatment effects (HTE), which has 

important implications in treatment evaluation and selection. The standard approach to assessing 

HTE (i.e. subgroup analyses based on known effect modifiers) is informative about the 

heterogeneity between subpopulations but not within. It is arguably more informative to assess 

HTE in terms of individual treatment effects, which can be defined by using potential outcomes. 

However, estimation of HTE based on potential outcomes is challenged by the lack of complete 

identifiability. The paper proposes methods to deal with the identifiability problem by using 

relevant information in baseline covariates and repeated measurements. If a set of covariates is 

sufficient for explaining the dependence between potential outcomes, the joint distribution of 

potential outcomes and hence all measures of HTE will then be identified under a conditional 

independence assumption. Possible violations of this assumption can be addressed by including a 

random effect to account for residual dependence or by specifying the conditional dependence 

structure directly. The methods proposed are shown to reduce effectively the uncertainty about 

HTE in a trial of human immunodeficiency virus.
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1. Introduction

It is well recognized that treatment effects can be heterogeneous, i.e. that the same treatment 

can have different effects on different patients. Understanding the heterogeneity of treatment 

effects (HTE) is of increasing importance in treatment evaluation and selection. The 

standard approach to assessing HTE is subgroup analyses (or, more generally, regression 

analyses) based on known effect modifiers, which may be demographic variables, disease 

aetiology, certain baseline measurements and genetic markers (e.g. Peto (1982), Gail and 

Simon (1985), Russek-Cohen and Simon (1997) and Pocock et al. (2002)). A subgroup 

analysis comparing treatment effects on different subpopulations is informative about the 

HTE between subpopulations but not within. In fact, one could think of an individual 

patient's treatment outcomes as determined by a large set of prognostic factors and effect 

modifiers. Ideally, with all relevant information available and used correctly, one would be 

able to predict precisely the outcome of an individual patient under a given treatment. In 

reality, however, some effect modifiers may be unknown to the scientific community, 

resulting in residual HTE that cannot be explained by known effect modifiers.

It is perhaps more natural to think of HTE in terms of individual potential outcomes 

(Gadbury and Iyer, 2000; Gadbury et al., 2001, 2004; Poulson et al., 2012). Under the 

causal model of Rubin (1974), each patient has a potential outcome under each possible 

treatment, and the effect of an experimental treatment relative to a control can be assessed 

on each individual patient by comparing the corresponding potential outcomes. Consider, for 

example, a randomized, double-blinded, placebo-controlled, confirmatory clinical trial 

known as ‘MOTIVATE’ (maraviroc versus optimized therapy in viraemic antiretroviral 

treatment-experienced patients; Gulick et al. (2008)). Maraviroc is a CC chemokine receptor 

5 antagonist and a new antiretroviral drug for treating human immunodeficiency virus type 1 

(HIV-1). The MOTIVATE trial compares maraviroc with placebo, each combined with 

optimized background therapy (OBT), with respect to a success rate (virologic response at 

week 48 of treatment; see Section 4 for details). Because the outcome is binary, patients can 

be classified into four categories according to their potential outcomes under the two 

treatments, as shown in Table 1. The observed success rates are 57.5% and 22.5% for 

maraviroc and placebo respectively. Because the difference is highly significant, statistically 

and clinically, it is clear that the use of maraviroc can lead to improved outcomes on the 

population level. Moreover, the positive effect of maraviroc appears quite consistent across 

subpopulations (Fatkenheuer et al., 2008). However, these findings do not imply that every 

patient would fare better with maraviroc and OBT than with OBT alone. Assuming that the 

observed success rates are the true rates, Fig. 1 shows possible values of the four cell 

probabilities in Table 1 as functions of an odds ratio. In particular, π10, the proportion of 

patients who would fare better with OBT alone than with maraviroc plus OBT, varies over a 

wide range (0–22.5%). These are the patients who would be harmed if maraviroc were to be 

applied to the entire population in addition to OBT. In this situation, it seems natural to 

characterize HTE in terms of the cell probabilities in Table 1.

The objective of this paper is to develop methods for estimating HTE on the basis of 

potential outcomes, either in the entire population or in a subpopulation defined by known 

effect modifiers. This objective is directly relevant to treatment evaluation in regulatory 
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settings and is potentially helpful in discovering new effect modifiers. An analysis of HTE 

based on potential outcomes may be complementary to a standard subgroup analysis based 

on known effect modifiers. The latter approach can be useful in medical practice by 

informing treatment selection. However, with limited knowledge of effect modifiers, it is 

usually impossible to identify subpopulations that are completely homogeneous with respect 

to the potential outcomes. Thus, for treatment evaluation, the need remains to understand the 

residual HTE in a subpopulation defined with the best available knowledge of effect 

modifiers. Moreover, a large amount of unexplained HTE, suggested by an analysis based 

on potential outcomes, may motivate scientists to search for new effect modifiers. Although 

scientists would naturally like to discover all kinds of biomarkers, a data-based motivation 

could be an important consideration in allocating limited resources. Further implications of 

individual level HTE are discussed by Poulson et al. (2012).

Previous work in this area includes derivation of bounds (Gadbury and Iyer, 2000; Gadbury 

et al., 2004) and a sensitivity analysis approach (Gadbury et al., 2001). Gadbury and co-

workers recognized that the observed data are insufficient to identify all aspects of HTE, 

which depend on the joint distribution of potential outcomes under different treatments. 

Randomization in a clinical trial allows us to identify empirically the marginal distribution 

of each potential outcome but not their joint distribution, which is also known as the 

fundamental problem of causal inference (Holland, 1986). Our first step in dealing with this 

identifiability problem is to adjust for covariates. If the set of covariates is sufficient for 

explaining the (usually positive) dependence between potential outcomes (for different 

treatments applied to the same patient), the joint distribution of potential outcomes and 

hence all measures of HTE will then be identified by assuming conditional independence 

between potential outcomes given observed covariates. Possible violations of this 

assumption can be addressed by including a random effect to account for residual 

dependence or by specifying the conditional dependence structure directly. The latter 

approach is a considerable generalization of the sensitivity analysis approach that was 

proposed by Gadbury et al. (2001).

In the next section, we set up the notation and give a general rationale for the methods 

proposed. We then describe some specific methods for estimating HTE in Section 3 and 

apply them in Section 4 to real data from the HIV trial mentioned earlier. The paper ends 

with a discussion in Section 5.

The programs that were used to analyse the data can be obtained from http://

www.blackwellpublishing.com/rss

2. Notation and rationale

Suppose that a randomized clinical trial is conducted to compare an experimental treatment 

(e.g. maraviroc) with a control treatment, which may be placebo or a standard treatment, 

with respect to a clinical outcome of interest. To fix ideas, we focus on a binary outcome (1 

for success; 0 for failure) in most of this paper; extension to a continuous outcome is 

considered in Appendix C. The success criterion for an individual patient often has 

important implications on the study design. For example, the primary end point in the 
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MOTIVATE trial implies a longitudinal study that follows patients for at least 48 weeks. For 

ease of presentation, we shall be concerned with a general binary outcome, which may or 

may not be time dependent, until it becomes necessary to consider specific features of the 

study design. For a generic patient in the target population, let Y(t) denote the potential 

outcome that will realize if the patient receives treatment t (0 for control; 1 for 

experimental). Note that the Y(t), t = 0, 1, cannot both be observed on the same subject 

except in crossover trials under certain conditions, which we do not consider until Section 5. 

Let T denote the treatment assigned randomly to a study subject; thus T is a Bernoulli 

variable independent of all baseline variables. Without considering non-compliance, we 

assume that T is also the actual treatment given to the subject, and we write Y = Y(T) for the 

actual outcome.

As indicated earlier, it is important in treatment evaluation to assess HTE in terms of the 

joint probabilities

These probabilities are not empirically identifiable. Owing to randomization, it is 

straightforward to identify and estimate the marginal probabilities

Gadbury et al. (2004) showed that π10, the proportion of patients who would be harmed by 

the new treatment relative to the control, is constrained by the marginal probabilities:

(1)

Together with the marginal probabilities (π1+ and π+1), the value of π10 (or any other cell 

probability), either assumed or identified under suitable assumptions, is sufficient to 

determine the other cell probabilities, which are subject to similar bounds. The lower bound 

in inequality (1) corresponds to maximal positive dependence between Y(0) and Y(1), and 

the upper bound corresponds to maximal negative dependence. If π1+ < π+1, then maximal 

positive dependence means that Y(0) ≤ Y(1) with probability 1. Although this may be 

plausible in some settings (e.g. Huang et al. (2012)), the use of OBT for all patients in the 

MOTIVATE trial makes it quite implausible to assume a priori that Y(0) ≤ Y(1). Another 

special case, which is interesting though admittedly unrealistic, arises when Y(0) is 

independent of Y(1), in which case we have π10 = π1+(1 − π+1).

Of course, the potential outcomes Y(0) and Y(1) generally depend on each other because 

they arise from the same patient; in that sense they resemble repeated measurements, except 

that they cannot both be observed. Our first step in accounting for the dependence between 

Y(0) and Y(1) is to condition on relevant covariates that are associated with both outcomes. 
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Let X denote a vector of such covariates measured at baseline, which may include both 

prognostic factors (with only ‘main effects’) and effect modifiers (which interact with 

treatment). The distinction between prognostic factors and effect modifiers depends on the 

link function and therefore is not always clear cut for a binary outcome. In the MOTIVATE 

trial, X may include baseline measurements of HIV ribonucleic acid (RNA) and CD4 cells 

as well as genotypic and phenotypic sensitivity. Without considering specific methods yet, 

we note that X can be used to sharpen the bounds on the πjk. Specifically, by applying 

inequality (1) to each stratum defined by X, we obtain

(2)

where πjk|X(X) = P{Y(0) = j, Y(1) = k|X} (j, k = 0, 1), and π1+|X(X) and π+1|X(X) are defined 

similarly. The lower bound in inequality (2) corresponds to maximal positive dependence of 

Y(0) and Y(1) given X, whereas the upper bound corresponds to maximal negative 

dependence. Taking expectations over X in inequality (2) leads to

(3)

It is elementary to show that the lower bound in inequality (3) is generally higher than that 

in inequality (1), and they coincide when π1+|X.(X) − π+1|X (X) is always positive or always 

negative (i.e. when there is no qualitative interaction between T and X). Similarly, the upper 

bound in inequality (3) is generally lower than that in inequality (1). Analogous results hold 

for the other cell probabilities. Thus, conditioning on X may be a good starting point in 

understanding the πjk.

In general, we propose to estimate πjk = E{πjk|X(X)} by averaging over X an estimate of 

πjk|X(X). Note that πjk|X(X) is generally dependent on X because X is chosen to be associated 

with the potential outcomes. This is not a problem with estimating πjk and can actually be 

helpful in sharpening the bounds, as shown in the preceding paragraph. However, when X 
contains strong effect modifiers, it may be necessary to consider restricted use of the new 

treatment to a subpopulation of patients with a favourable benefit–risk profile. If such a 

subpopulation is predefined, that subpopulation can be taken to be the entire population 

without loss of generality, and the methodology proposed remains applicable. Without a 

predefined subpopulation, we would have to use the data to identify a favourable 

subpopulation. Although not designed for that purpose, the methodology proposed can help 

the search for a favourable subpopulation, as we discuss in Section 4.

Estimates of πjk|X(X) may be obtained by using three different approaches, which are 

outlined below and further developed in Section 3.

2.1. Covariate adjustment based on conditional independence

If X is sufficient for explaining the dependence between Y(0) and Y(1), then we can expect 

that
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(4)

i.e. that Y(0) and Y(1) are conditionally independent given X. This assumption is similar in 

spirit to the missingness at random assumption for missing data (Rubin, 1976) and the 

assumption of strongly ignorable treatment assignment in causal inference (Rosenbaum and 

Rubin, 1983); they all attempt to reduce a stochastic dependence of concern by conditioning 

on relevant covariates. Like the latter two assumptions, assumption (4) cannot be verified 

with the observed data and must be based on external information such as expert opinions. 

Methods based on assumption (4) are described in Section 3.1.

2.2. Sensitivity analysis based on a random-effect model

We might question the validity of assumption (4) because X may not explain all the 

dependence between Y(0) and Y(1). We therefore relax assumption (4) in Section 3.2 by 

including a latent variable to account for any residual dependence between Y(0) and Y(1). 

The relaxed assumption can be written as

(5)

where U is a subject-specific random effect that is independent of X. In the MOTIVATE 

trial, U can be a suitable combination of all relevant characteristics of a patient that are 

predictive of the outcome and that are unmeasured in the study or yet unknown to the 

scientific community. In other words, U represents what is missing from X that makes 

assumption (4) break down. The assumption that U is independent of X is not as stringent as 

it may seem, because a candidate U could be orthogonalized with respect to X. Under 

assumption (5), assumption (4) corresponds to the special case that U is a constant. In 

general, the distribution of U is not identifiable if we observe only a random sample of (T, 

X, Y). We therefore propose in Section 3.2 a sensitivity analysis approach based on a range 

of assumptions about the variability of U. We also show how to gauge the variability of U 

from longitudinal data and thus narrow the range of the sensitivity analysis.

2.3. Sensitivity analysis based on an odds ratio

The inclusion of a random effect imposes a particular positive dependence structure for Y(0) 

and Y(1) given X. Although this structure may be plausible in some situations, it is not 

guaranteed to hold. To accommodate negative dependence as well as different forms of 

positive dependence between Y(0) and Y(1) given X, we also propose another sensitivity 

analysis approach based on the odds ratio

(6)
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Note that ρ(X) captures the entire dependence structure for Y(0) and Y(1) given X and is not 

constrained by the conditional probabilities π1+|X(X) and π+1|X(X). This approach is 

described in Section 3.3.

3. Methodology

This section presents methods for estimating the joint probabilities πjk from a random 

sample of subjects, with individual subjects denoted by the subscript i=1,…,n (attached to 

random variables). Our methodological discussion will be focused on point estimation and 

sensitivity analysis. For the methods proposed, asymptotic normality is usually immediate 

from standard M-estimation theory (e.g. van der Vaart (1998) and Stefanski and Boos 

(2002)), and asymptotic variance formulae are straightforward to derive though cumbersome 

to present. For ease of implementation, we recommend non-parametric bootstrap standard 

errors and confidence intervals for inference.

3.1. Covariate adjustment based on conditional independence

Under the conditional independence assumption (4), the cell probabilities can be identified 

as

(7)

where the last step follows from randomization.

Assume first that X is discrete, taking values in {x1,…, xL}, say. Write Stl = {i: Ti = t, Xi = 

xl} and ntl = |Stl|, where |·| denotes the size of a set. Then the conditional probability p(y|t, x) 

= P(Y = y|T = t, X = x) can be estimated empirically by

and the corresponding estimate of πjk is given by

where n+l = n0l + n1l.

For a general covariate vector X, one could specify a regression model for p(y|t, x), such as 

the generalized linear model (GLM)
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(8)

where ψ is an inverse link function. The exact form of model (8) is not important; for 

example, the interaction term can be omitted if X does not include effect modifiers. The 

regression parameter θ can be estimated by maximizing the likelihood 

and the resulting estimate will be denoted by θ̂. Now equation (7) can be used to estimate πjk 

by

(9)

3.2. Sensitivity analysis based on a random-effect model

Under assumption (5), it can be shown as in equation (7) that

(10)

where p*(y|t, x, u) = P(Y = y|T = t, X = x, U = u). Here and in what follows, F denotes a 

(conditional) distribution function with the subscript indicating the random variable(s) 

concerned. To fix ideas, consider the generalized linear mixed model (GLMM)

(11)

with . Then equation (10) suggests that πjk may be estimated by

(12)

where ϕ(·; μ, σ2) is the density function of N(μ, σ2), with  replaced by estimates or 

plausible values (as in a sensitivity analysis). The question is how to obtain such values. In 

general, the parameters  are not completely identifiable from the (Ti, Xi, Yi), i= 1,…, 

n; this is essentially fitting a GLMM to cross-sectional data. However, some relevant 

information may be available from repeated measurements, which are typically available at 

baseline and follow-up visits. In the MOTIVATE trial, for example, repeated measurements 

of virologic response are available at 11 time points from baseline to week 48 of treatment. 

In the rest of this subsection, we consider estimation of θ* and πjk with  fixed, discuss 

how the resulting inference depends on  and then suggest ways to extract information 

about  from longitudinal data.

For a given value of , θ* can be estimated by maximizing the likelihood

Zhang et al. Page 8

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(13)

Although this may appear complicated, it can be simplified for common link functions. In 

Appendix A, we show that, under the GLMM (11), the GLM (8) is correct with 

 for the probit link, and approximately correct with , 

where c ≈ 1.70, for the logit link. This suggests that we can fit model (8) by using standard 

GLM software and then recover θ* as  for the probit link or as 

(approximately) for the logit link. The resulting estimate of θ* can then be substituted into 

expression (12) together with the given value of .

Given a GLM estimate of θ, θ* in expression (12) varies as a function of . When 

 approaches 0, θ* approaches θ and expression (12) approaches the estimate (9) based on 

conditional independence. When , expression (12) approaches a limit that 

corresponds to maximal positive dependence between Y(0) and Y(1) given X, as shown in 

Appendix B. For the case of π10, Appendix B also shows that the limit of expression (12) 

when n and  both approach ∞ is just the lower limit in inequality (3), which is analogous 

to but generally higher than the lower limit in inequality (1). Thus, a sensitivity analysis 

based on  can account for any and all positive dependence between Y(0) and 

Y(1) given X.

Such a sensitivity analysis can be sharpened by using reliable information about , which 

may be available from longitudinal data. Suppose that we have longitudinal measurements 

of the same outcome following an expanded GLMM:

(14)

where the subscript m denotes the mth measurement. We let m = 1,…, M with M 

corresponding to the outcome of primary interest. The original Yi, Ui and θ* are now known 

as Yim, Uim and  respectively. Although  is allowed to depend 

on m in an arbitrary fashion, some components may be assumed constant in m if this is 

scientifically plausible. Suppose that Uim = Vi + Wim, where Vi is characteristic of a subject 

and Wim represents random fluctuation within a subject. The essence of this assumption is 

that, within a subject, the contemporaneous correlation (between potential outcomes at the 

same time point) is stronger than the non-contemporaneous correlation (between two 

outcomes at different time points). Suppose that the Vi and the Wim are independent of each 

other and of the (Ti, Xi). If  and  (i = 1,…,n; m = 1,…, M), 

then . This requires var(Uim) to be constant over time, at least within a suitable 

time window containing the primary end point (to be discussed later). Using the arguments 

of Appendix A, we can integrate the Wim-component of Ui out of GLMM (14) and obtain
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(15)

exactly for the probit link and approximately for the logit link. Here,

 for the probit link and  for the logit link. Note that r ≤ 1 

with equality holding if and only if . Because model (15) is a standard GLMM, 

 is directly estimable by using standard GLMM software. If we assume that 

, so that Wim≡0, then  becomes identifiable and estimable. 

Otherwise, noting that , var(rVi) may serve as a lower bound for  in a 

sensitivity analysis. To implement this analysis based on model (15), one should choose a 

set of repeated measurements containing the outcome of primary interest as well as some 

adjacent measurements within a suitable time window. The choice of the time window 

represents a bias–variance trade-off, with wider windows affording better precision at the 

expense of potential bias due to model misspecification.

In addition to a lower bound for , one could recover θ* from model (15) as 

 for the probit link or as  for the logit link, if one 

is confident about model (15). The resulting estimate of θ* (based on a given value of ) 

may be more efficient than the estimate that maximizes likelihood (13) (based on a given 

value of ), especially when the  (m = 1,…, M) are closely related to each other. 

However, this approach relies heavily on correct specification of model (15) and is thus 

more susceptible to misspecification bias.

3.3. Sensitivity analysis based on an odds ratio

To accommodate alternative dependence structures (e.g. negative dependence) for Y(0) and 

Y(1) given X, we now propose a sensitivity analysis approach based on the odds ratio given 

by equation (6). Note that assumption (4) corresponds to ρ(X) ≡ 1. In general, we could 

specify a model for the odds ratio such as , where . 

Specification of the model and plausible parameter values must be based on substantive 

knowledge, because the observed data provide no information about ρ(X). When the 

dimension of β is high, it can be difficult to cover a wide range of β-values in obtaining and 

presenting estimates of the πjk as functions of β. Therefore, without reliable and concrete 

information about ρ(X), it does not seem advantageous to perform a sensitivity analysis 

based on a covariate-dependent odds ratio. In the rest of this subsection, we shall work with 

a fixed odds ratio, ρ(X) ≡ ρ ∈ (0,∞), for ease of interpretation, implementation and 

presentation, although the methodology extends easily to a more general model for ρ(X).
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In a 2×2 contingency table with cell probabilities q = (q00, q01, q10, q11)′, q11 can be 

determined from the odds ratio ρ and the marginal probabilities q1+ = q10 + q11 and q+1 = 

q01 + q11 as

where

The rest of q can then be obtained as q10 = q1+ − q11, q01 =q+1 − q11 and q00 = 1 − q11 − q10 

− q01. Let Q denote the map (q1+, q+1, ρ) ↦ q for recovering cell probabilities. Then we can 

write

Now let p̂(y|t, X) be an estimate of p(y|t, x) = P(Y = y|T = t, X = x) from Section 3.1, which 

may be obtained non-parametrically through stratification or parametrically under a 

regression model. Because of randomization, p̂(1|0, x) estimates π1+|X(x) and p̂(1|t, x) 

estimates π+1|X(x). It follows that π, the vector of joint probabilities, is estimated by

It is easy to see that, when n and ρ both approach ∞, the estimate of π10 given above 

converges to the lower bound in inequality (3) corresponding to maximal positive 

dependence (conditional on X). Analogous results hold for ρ → − ∞ and for the other cell 

probabilities. Thus, stringent as it may seem, the assumption of a constant odds ratio does 

not exclude any possible value of the πjk.

3.4. Summarizing remarks

We have presented three methods that are roughly increasing in generality, except for some 

modelling assumptions (GLMMs in Section 3.2; a constant odds ratio in Section 3.3). The 

method of Section 3.1 assumes conditional independence of Y(0) and Y(1) given X, the 

method of Section 3.2 assumes positive conditional dependence (of a particular structure), 

and the method of Section 3.3 accommodates both positive and negative conditional 

dependence. The first method is simpler though perhaps less credible than the other two. 
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The second method is probably the most demanding in terms of data, modelling assumptions 

and possibly computation, but it also can be the most informative, because it provides a 

data-driven lower bound on the extent of positive dependence. The last method can be 

restricted to positive dependence by forcing ρ > 1, but further restriction would require 

substantive knowledge.

4. Application

We now apply the methods of Section 3 to the MOTIVATE trial that was introduced in 

Section 1, a randomized, double-blinded, placebo-controlled, confirmatory clinical trial 

comparing maraviroc plus OBT with placebo plus OBT for treating HIV-1. The 

MOTIVATE study consists of two substudies that were identically designed and conducted 

(albeit in different countries), produced similar results and are therefore combined in our 

analysis. The study enrolled a total of 1049 patients with R5 HIV-1 who had been treated 

with or had resistance to three antiretroviral drug classes and had HIV-1 RNA levels of more 

than 5000 copies ml−1. The patients were randomized in a 2:2:1 ratio to receive one of three 

antiretroviral regimens (maraviroc once daily, maraviroc twice daily and placebo), each of 

which also included OBT based on treatment history and drug resistance testing. Our 

analysis is focused on comparing the maraviroc twice daily group with the placebo group, as 

the two maraviroc groups produced similar results.

The outcome of interest to us is virologic response (defined as HIV RNA level below 400 

copies ml−1) at week 48 of treatment. As mentioned earlier, the observed virologic response 

rates are 57.5% and 22.5% in the maraviroc twice daily and placebo groups respectively, 

and the difference between the two groups (35.0%; 95% confidence interval 27.7−42.4%) is 

highly significant (p < 0.0001). Fig. 1 shows that the cell probabilities πjk (j, k = 0, 1) vary 

widely as functions of the marginal log-odds ratio, log{π00π11/(π01π10)}, which is not 

identifiable from the data. Without prior information about the marginal log-odds ratio, a 

sensitivity analysis based on Fig. 1 would not be very informative. Using the methods 

proposed, we now show that the ranges of the πjk can be narrowed by borrowing information 

from relevant covariates and repeated measurements.

The covariates that were included in our analysis are age, RNA (the logarithm of the 

baseline level of HIV RNA), CD4 (the logarithm of the baseline count of CD4 cells), and 

GSS and PSS (genotypic and phenotypic sensitivity scores, defined as the number of 

antiretroviral drugs used concomitantly to which a patient's HIV was fully susceptible, as 

determined by genotypic and phenotypic resistance testing at baseline). GSS and PSS take 

integer values from 0 to 3. The regression model for covariate adjustment is a logistic 

regression model given by equation (8), where X consists of the five covariates just defined. 

An estimate of (π00, π01, π10, π11) is obtained as (0.359, 0.432, 0.062, 0.147) by using the 

method of Section 3.1, with respective standard errors (0.0092, 0.0061, 0.0021, 0.0069). 

Throughout this section, we base inference on 400 non-parametric bootstrap samples 

obtained by sampling with replacement from the original subjects, without changing the 

observed data within a subject. Standard errors are obtained as empirical standard 

deviations, and confidence intervals as 2.5th and 97.5th empirical percentiles, across the 400 

bootstrap samples.
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The data are also analysed by using the method of Section 3.2 under the random-effect 

model given by equation (11), with a logit link and the same covariate vector X as in the 

previous analysis. For a given value of , we estimate θ* as  and the πjk by 

using expression (12). The results (point estimates and confidence intervals of cell 

probabilities) are plotted in Fig. 2 as functions of . As , the results converge to 

those reported in the preceding paragraph (based on conditional independence), as expected. 

With increasing , the estimated probabilities tend to increase for concordant pairs (π00, 

π11) and to decrease for discordant pairs (π01, π10). To gauge the magnitude of , a GLMM 

analysis based on model (15) is performed on repeated measurements at 24, 32, 40 and 48 

weeks. Although earlier measurements (from baseline to 20 weeks) are also available, we 

restrict our analysis to the later measurements in an attempt to reduce misspecification bias. 

Indeed, Fig. 2A of Gulick et al. (2008) shows that virologic response rates first rise in a non-

linear fashion and then decline in a slow, steady and apparently linear fashion. An analysis 

of all repeated measurements would require a complex model for the mean structure and 

possibly additional random effects for the correlation structure. The resulting inference 

would be more susceptible to bias and of questionable relevance to our goal of 

understanding . Our restricted analysis of later measurements is carried out with 

depending on m freely and the rest of  independent of m; this amounts to adding an 

indicator for the follow-up visit as a categorical covariate. From this analysis, var(rVi) is 

estimated to be 20.2 (95% confidence interval 12.2−30.2). Because , a 

conservative 97.5% lower confidence bound for  is given by 12.2, the lower confidence 

bound for var(rVi). This suggests that interpretation of Fig. 2 should be focused on later 

portions of the curves, which happen to be flatter than the earlier portions and have narrower 

ranges. In particular, the range of π10, the proportion of patients who would be harmed by 

maraviroc, is much narrower in Fig. 2 than in Fig. 1. The argument of Berger and Boos 

(1994) can be used to conclude that, with  treated as an unknown nuisance parameter, a 

95% upper confidence bound for π10 is below 4%; this is obtained by evaluating the upper 

confidence bound curve for π10 at the lower confidence bound for . In contrast, a 97.5% 

lower confidence bound for π01, the proportion of patients who would benefit from 

maraviroc, is clearly above 25%; the Berger−Boos argument is not needed here because we 

are taking the infimum of the lower confidence bound curve.

Fig. 3 shows another sensitivity analysis based on ρ(X) ≡ ρ, as described in Section 3.3. It 

includes negative conditional dependence (i.e. ρ < 1) for completeness, although there is no 

reason to expect a negative dependence between Y(0) and Y(1) given X in this situation. 

Even without prior information about ρ, the curves in Fig. 3 are notably more constrained 

than those in Fig. 1. The extra information obviously comes from the covariates as well as 

the regression model (8). The results at ρ= 1 correspond to those based on conditional 

independence as well as those in Fig. 2 with . If we restrict attention to positive 

conditional dependence (i.e. ρ > 1), then this analysis yields the same range of point 

estimates for each joint probability πjk as in Fig. 2.
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The above results should be weighed according to the plausibility of the underlying 

assumptions for the different methods. Because the GLMM analysis indicates a high level of 

within-subject correlation (after adjusting for X), the conditional independence assumption 

(4) is seriously in doubt, and the resulting analysis is not as credible as the two sensitivity 

analyses. Although based on different assumptions, both sensitivity analyses can cover the 

full range between conditional independence and maximal positive conditional dependence 

of Y(0) and Y(1) given X. In addition, the random-effect-based approach, under the 

assumptions of Section 3.2, also provides a lower bound on the extent of positive 

conditional dependence, which can be used to narrow the spectrum of the sensitivity 

analysis. The key assumption for the lower bound, that the contemporaneous correlation is 

stronger than the non-contemporaneous correlation, seems quite plausible in the present 

situation, and we therefore place more emphasis on the random-effect-based analysis than 

on the odds-ratio-based analysis.

The random-effect-based analysis suggests that it is fairly unlikely for maraviroc to affect 

adversely the virologic response (at week 48) of a patient who already receives OBT. This 

finding adds considerable assurance to the current knowledge of maraviroc (Gulick et al., 

2008; Fatkenheuer et al., 2008). If this were not so (i.e. if the analysis showed that a large 

proportion of patients could be harmed by the addition of maraviroc to OBT), it might be 

necessary to consider restricting the use of maraviroc to a subpopulation of patients with a 

more favourable benefit–risk profile. The search for such a subpopulation could be 

facilitated by intermediate results in the preceding analyses. For example, potential effect 

modifiers could be identified by examining the regression coefficients in models (8) and 

(15), and the various estimates of πjk|X(X) could be used to develop a candidate 

subpopulation. To contain the adverse effect of maraviroc, it makes sense to look for 

patients with small estimates of π10|X(X). Once a candidate subpopulation has been 

identified, the methods proposed can then be applied to the target subpopulation to re-

estimate the πjk, presumably by using a cross-validation approach to avoid overfitting. If no 

subpopulation based on X can be found with a satisfactory benefit–risk profile, the scientific 

community may then be motivated to search for new and more informative biomarkers.

5. Discussion

This paper adds to the literature on HTE assessment, which is currently dominated by 

subgroup analyses and multiplicity adjustments, with a different approach based on potential 

outcomes of individual patients. Gadbury and colleagues have previously studied HTE in 

terms of potential outcomes. This paper builds on their work by developing new and 

practical methods that incorporate relevant information in covariates and repeated 

measurements in assessing HTE. To address the inherent identifiability issue, we propose a 

covariate adjustment method based on conditional independence as well as two sensitivity 

analysis methods, one of which extends the work of Gadbury et al. (2001). The HIV 

example in Section 4 shows that relevant covariates and repeated measurements can indeed 

help to reduce the uncertainty about HTE. Originally developed for a binary outcome, the 

methods are extended to a continuous outcome in Appendix C.
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In practice, the choice between the three methods proposed should be based on the available 

information and the plausibility of the underlying assumptions. The first method (Section 

3.1), which is conceptually simple and easy to implement, could serve as a starting point. It 

would not be the final analysis, though, unless one is fairly confident about the conditional 

independence assumption. In situations like the MOTIVATE study, where longitudinal data 

are available, the second method (Section 3.2) could be used to assess the effect of positive 

conditional dependence and also to estimate a lower bound for that dependence, under a 

suitable GLMM framework. The last method (Section 3.3), which is even more general 

though perhaps less informative than the second method, could nonetheless be used as a 

safety net when reliable information is unavailable about the dependence structure of Y(0) 

and Y(1) given X.

As alluded to earlier, a promising approach to understanding HTE may be the crossover 

design, where potential outcomes for different treatments are actually observed on the same 

subject, albeit in different time periods. However, the crossover design has its own issues, as 

noted by Poulson et al. (2012). Depending on the disease being studied and the treatments 

being compared, a crossover design may be infeasible or seriously compromised by a 

substantial carry-over effect. Even without these problems, evaluation of HTE in a crossover 

study could be complicated by an individual period effect. Poulson et al. (2012) show in a 

two-period two-treatment setting that the sample variance of the observed individual 

treatment difference overestimates the true variance of the individual treatment effect. 

Nonetheless, the crossover design can still be a valuable tool for studying HTE. It will be of 

interest to see whether the methods that are developed here can be extended to the crossover 

design and combined with the results of Poulson et al. (2012) to yield further insights into 

HTE.

Although developed for randomized clinical trials, our methods can certainly be extended to 

observational studies. The main issue in such extensions is to ensure adequate control for 

confounding. For this, all potential confounders need to be measured and included in X to 

meet the condition of strongly ignorable treatment assignment (Rosenbaum and Rubin, 

1983).
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Appendix A: Relationship between θ and (θ, σU2) in Section 3.2

For the probit link, model (11) implies that model (8) holds with . This 

observation, which was noted previously by Carroll et al. (1984), can be argued as follows. 

With ψ = Φ, the standard normal distribution function, we have
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where Z is a standard normal variable independent of U. The second step in this expression 

makes use of the assumed independence between U and (T, X), and the last step follows 

from the definition of Φ. Now we can write p(1|t, x) as the marginal probability

which leads to the result claimed.

For the logit link, we can approximate ψ(a) = exp(a)/{1 + exp(a)} by Φ(a/c), where c= 

15π/(16√3)≈ 1.70 (e.g. Johnson and Kotz (1970), Zeger et al. (1988) and Liang and Liu 

(1991)). This allows us to write

In this case, model (11) implies that model (8) holds approximately with 

.

Appendix B: Limit of expression (12) as σU2→∞

We fix θ and consider θ* as a function of  for the probit link and 

 for the logit link. To fix ideas, we focus on estimating π10, i.e. the 

case that j = 1 and k = 0 in expression (12); the other cases can be treated with the same 

argument. Let us define

(16)
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where b(t, x) = (1, t, x′, tx′)′, zq is the qth quantile of the standard normal distribution and a 

change of variables is used in the last step. Now expression (12) can be rewritten as 

.

Let us focus on the probit link for the moment. As , we have, for t = 0, 1,

The case that θ′ b(t, x) + zq = 0 is irrelevant for our purpose. The above expression implies 

that the integrand in equation (16) converges to

where I is the indicator function, for almost every q (write respect to Lebesgue measure). By 

the dominated convergence theorem,

Note that the above limit is simply the lower limit for π10|X(x) given in inequality (2), which 

is attained under maximal positive dependence between Y(0) and Y(1) given X = x. 

Applying the dominated convergence theorem once again (with respect to x), we see that 

expression (12) converges to  as . Furthermore, the population 

counterpart of expression (12), with the sample average replaced by expectation (with 

respect to X), converges to E{h(X, ∞)}. Note that

Thus, the limit E{h(X, ∞)}, which is also the lower limit in inequality (3), is indeed higher 

(i.e. sharper) than the lower limit in inequality (1), which does not involve any covariate 

information.

With minimal modifications, the result in the above paragraph remains valid 

(approximately) for the logit link.
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Appendix C: Extension to continuous outcomes

The joint distribution, F(y0, y1) = P{Y(0) ≤y0, Y(1)≤y1}, contains all relevant information 

about HTE for an arbitrary outcome variable. This joint distribution is itself a succinct 

summary of HTE for a binary outcome and categorical outcomes with more than two levels, 

to which the methods of Section 3 extend readily. This appendix is therefore focused on a 

continuous or quantitative outcome, for which there may be more succinct summaries of 

HTE than the joint distribution of potential outcomes. For example, the difference D = Y(1) 

− Y(0) can be used to represent the effect of the experimental treatment relative to the 

control on an individual patient, and one might be interested in estimating , 

which measures the overall extent of HTE, or more generally the distribution function FD. 

From FD one could further derive important quantities such as selected quantiles of D or the 

proportion of patients who would benefit from, or be harmed by, the new treatment. These 

quantities are functionals of the joint distribution F which are not determined by the 

marginal distributions Ft(y) = P{Y(t) ≤ y}, t = 0, 1.

Under assumption (4), F(y0, y1) = E{FY|T, X (y0|0, X) FY|T, X (y1|1, X)} can be estimated by 

substituting an estimate of FY|T, X, which may be parametric or non-parametric, and 

replacing expectation with sample average (over the Xi). From this it is straightforward to 

derive estimates of HTE-related quantities. For example, suppose that FY|T, X follows a 

normal linear model given by

(17)

where , independently of (T, X). Then assumption (4) implies that

When assumption (4) is in doubt, the random-effect-based approach of Section 3.2 extends 

easily to any outcome for which a GLMM is appropriate. Suppose, for example, that 

FY|T, X, U follows the linear mixed model

(18)

where  and , independently of each other and of (T, X). Then 

assumption (5) implies that

(19)
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The parameters in model (18) may be (partially) estimable from longitudinal data under 

suitable assumptions (see Section 3.2). In any case, we note that model (18) implies model 

(17) with θ = θ* and , so that θ* is directly estimable from a linear regression 

analysis based on model (17), and  can be recovered as  for a specified value of 

.

The odds-ratio-based approach of Section 3.3 can be extended to general outcomes by using 

copulas (Nelsen, 1999). A copula is a multivariate distribution function with uniform (0, 1) 

marginals. It captures the dependence structure in a multivariate distribution without being 

constrained by the marginal distributions. In the present context, it allows us to represent the 

joint distribution of Y(0) and Y(1) given X as

where C is the copula. Instead of conditional independence, we now assume that, given X, 

the conditional dependence of Y(0) and Y(1) is described by the copula C(·, ·; ρ), where C is 

taken from a parametric family of copulas and ρ is a parameter that represents the strength of 

the dependence. Note that the copula could be allowed to depend on X if necessary. Now 

F(y0, y1) can be identified and estimated as E[C{FY|T, X (y0|0, X), FY|T, X (y1|1, X); ρ}]. In 

particular, if FY|T, X follows model (17) and C(·, ·; ρ) is a normal copula with correlation 

coefficient ρ, we then have

(20)

A sensitivity analysis based on equation (20) is similar to an analysis based on equation (19) 

but perhaps more general in that it accommodates negative dependence between Y(0) and 

Y(1) given X.
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Fig. 1. 
Possible values of the cell probabilities in Table 1 as functions of the log-odds ratio, 

log{π11π00/(π01π10)} for fixed marginal probabilities π1+ = 0.225 and π+1 = 0.575 as 

estimated from the MOTIVATE study (see Section 4 for details): , π00;— — —, π01; · 

· · · · ·, π10; · — · —, π11
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Fig. 2. 
Sensitivity analysis for the MOTIVATE study of Section 4 based on a random-effect model 

(|, conservative 97.5% lower confidence bound for , which is obtained as 12.2 from a 

GLMM analysis (see Section 4 for details)): point estimates ( , — — —, · — · —, · · · · 

· · ·) and 95% confidence intervals ( , — — —, · — · —, · · · · · · ·) for π00 

( ),π01(— — —),π10(· · · · · · ·) and π11 (· — · —)
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Fig. 3. 
Sensitivity analysis for the MOTIVATE study of Section 4 based on the conditional odds 

ratio ρ(X) defined by equation (6): point estimates ( , — — —, · — · —, · · · · · · ·) and 

95% confidence intervals ( , — — —, ·— · —, ·· · · · ·) for π00 ( ), π01 

(— — —), π10 (· · · · · · ·) and π11 (· — · —), as functions of ρ(X) ≡ ρ
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Table 1
Contingency table for binary potential outcomes in HIV-1 patients treated with placebo 
or maraviroc (in addition to optimized background therapy)

Placebo Maraviroc Row sum

Failure Success

Failure π00 π01 π0+

Success π10 π11 π1+

Column sum π+0 π+1 1
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