Catabolism of 5-Aminolevulinic Acid to CO₂ by Etiolated Barley Leaves¹

Received for publication May 19, 1981 and in revised form August 14, 1981

JEFFREY X. DUGGAN², ERNA MELLER, AND MERRILL L. GASSMAN³ Department of Biological Sciences, University of Illinois at Chicago Circle, Chicago, Illinois 60680

ABSTRACT

The *in vivo* oxidation of the C₄ and C₅ of 5-aminolevulinic acid (ALA) to CO₂ has been studied in etiolated barley (*Hordeum vulgare* L. var. Larker) leaves in darkness. The rate of ¹⁴CO₂ evolution from leaves fed [4-¹⁴C]ALA is strongly inhibited by aminooxyacetate, anaerobiosis, and malonate. The rate of ¹⁴CO₂ evolution from leaves fed [5-¹⁴C]ALA is also inhibited by these treatments but to a lesser extent. These results suggest that (a) one step in ALA catabolism is a transamination reaction and (b) the C₄ is oxidized to CO₂ via the tricarboxylic acid cycle to a greater extent than is the C₅.

ALA⁴ is a key precursor of porphyrins in plants, animals, and bacteria. The role of this compound as a rate-limiting precursor in Chl synthesis in angiosperm leaves is well documented (1, 2, 4, 10).

Until recently, ALA was thought to be the first metabolite specifically committed to the tetrapyrrole biosynthetic pathway (9). However, there is a growing body of evidence which indicates that ALA may be metabolized via nonporphyrin pathway(s) in a number of organisms (7, 13, 15). For example, etiolated barley leaves evolve ¹⁴CO₂ when fed [4-¹⁴C]ALA or [5-¹⁴C]ALA in the dark (7). The nature of the metabolism of the C₄ and C₅ of ALA to CO₂ is the subject of these studies.

A preliminary report of this work has appeared (5).

MATERIALS AND METHODS

Growth and Manipulation of Plant Material. Seeds of *Hordeum* vulgare L. var. Larker (Field Seed Farm, Byron, MN) were germinated in vermiculite in the dark at $23 \pm 1^{\circ}$ C. All operations were performed under a low-intensity green safelight (6). The apical 6 cm of the leaves of 7-day-old etiolated seedlings was excised and cut into 1-cm segments. Unless otherwise noted, 1 g

³ To whom correspondence should be addressed.

of tissue was preincubated for 30 min in a 125-ml Erlenmeyer flask containing distilled H₂O plus the indicated additions. Radiolabeled substrate was then added, bringing the total volume to 1.0 ml. The flasks were then sealed with rubber stoppers and incubated at 22°C for up to 4 h in the dark.

bated at 22°C for up to 4 h in the dark. Measurement of ¹⁴CO₂ Evolution in Vivo. Respired ¹⁴CO₂ was trapped on filter paper discs moistened with 2 N KOH and suspended from wire hooks attached to the rubber stoppers in the flask (3, 7). These wicks were replaced periodically for liquid scintillation analysis as described previously (3, 7). Values shown in the figures represent the mean of three determinations. The standard errors are indicated by bars.

Radiochemicals and Reagents. [4-¹⁴C]ALA and [5-¹⁴C]ALA (40–60 mCi/mmol), [1,4-¹⁴C]succinic acid (20.4 mCi/mmol), and [1-¹⁴C]DL-glutamic acid (42 mCi/mmol) were purchased from Research Products International Corp. (Mt. Prospect, IL). Scintillants, inorganic compounds, and solvents of reagent grade were purchased from Fisher Chemical Co. AOA, L-glutamic acid, and malonic acid were obtained from Sigma Chemical Co. PBG was a gift from Professor B. Frydman, University of Buenos Aires.

RESULTS

¹⁴CO₂ Evolution from [¹⁴C]ALA in Vivo. The rate of ¹⁴CO₂ evolution by etiolated barley leaves was examined as a function of [¹⁴C]ALA concentration during a 1-h incubation in darkness (Fig. 1). Increasing the concentration of both substrates produces an increase in the rate of ¹⁴CO₂ evolution. Subsequent experiments, unless otherwise specified, used [¹⁴C]ALA at 5 μ Ci/ml.

The dependence of $^{14}CO_2$ evolution on tissue sample size is shown in Figure 2. The rate of this activity was proportional to the amount of tissue added, and 1-g samples were chosen for subsequent experiments.

FIG. 1. The evolution of ${}^{14}CO_2$ by etiolated barley leaves as a function of $[{}^{14}C]ALA$ concentration during a 1-h incubation in darkness.

¹ Supported by National Science Foundation Grants PCM 76-02308 and PCM 79-01605 and a grant from the University of Illinois at Chicago Circle Research Board (to M. L. G.). These studies formed a part of a thesis submitted (by J. X. D.) to the Graduate College of the University of Illinois at Chicago Circle in partial fulfillment of the requirements for the PhD degree.

² Present address: The Perkin-Elmer Corp., Oak Brook Instrument Division, 2000 York Road, Oak Brook, IL 60521.

⁴ Abbreviations: \overline{ALA} , 5-aminolevulinic acid; PBG, porphobilinogen; DOVA, 4,5-dioxovaleric acid; C-4 activity, the rate of ${}^{14}CO_2$ evolution from barley leaves fed [4- ${}^{14}C$]ALA; C-5 activity, the rate of ${}^{14}CO_2$ evolution from barley leaves fed [5- ${}^{14}C$]ALA.

Effect of AOA under Aerobic and Anaerobic Conditions. The metabolic origin of CO_2 from ALA could be the tricarboxylic acid cycle. One possible route by which ALA could reach the tricarboxylic acid cycle might be via a reversal of one of the postulated biosynthetic pathways. One of these pathways involves the transamination of DOVA to ALA (1, 2, 8). To test whether a trans-

FIG. 2. The dependence of ${}^{14}CO_2$ evolution from [4- ${}^{14}C$]ALA on the size of the tissue sample.

FIG. 3. The effect of AOA on C-4 and C-5 activities under aerobic and anaerobic conditions.

amination is involved in this oxidative metabolism of ALA, etiolated barley leaves were fed [¹⁴C]ALA in the darkness in the presence and absence of AOA, an inhibitor of transamination (Ref. 16; Fig. 3). While AOA inhibited the evolution of ¹⁴CO₂ from both substrates, its effect upon C-4 activity was greater than that upon C-5 activity.

Figure 3 also shows the effect of O_2 on C-4 and C-5 activities. As was observed with AOA, the inhibition of C-4 activity by anaerobiosis was greater than that of C-5 activity. Each treatment yielded the same degree of inhibition on the respective activity, alone or in combination with the other. The inhibitory effect by AOA is probably greater than that shown by the figure since AOA was found to increase the uptake of [¹⁴C]ALA. Anaerobiosis inhibited the uptake of [¹⁴C]ALA by about 20%.

To assess the specificity of AOA on this system, the effect of this compound was determined on a reaction known not to involve transamination. The oxidation of succinic acid to CO_2 was chosen; and, for comparative purposes, the effects of malonate, a competitive inhibitor of succinate oxidation, and anaerobiosis, were also examined. The results of an experiment in which [1,4-¹⁴C]succinic acid was administered to etiolated barley leaf segments in darkness, with or without O_2 , 1 mm AOA, or 10 mm malonate, are shown in Figure 4. Succinate respiration was substantially in-

FIG. 4. The effect of anaerobiosis, AOA, and malonate on $^{14}CO_2$ evolution from [1,4- ^{14}C]succinate. Etiolated barley leaves were incubated in darkness with 3.0 μ Ci/ml of [1,4- ^{14}C]succinate.

FIG. 5. The effect of malonate on C-4 and C-5 activities.

hibited by anaerobiosis and by malonate. The rate of ${}^{14}CO_2$ evolution from this substrate was substantially greater in AOA-treated tissue than in control tissue. These results are consistent with the proposition that AOA is inhibiting transamination reactions which would divert labeled intermediates out of the tricarboxylic acid cycle into amino acid biosynthesis. The consequence would be that more labeled carbon would remain in the cycle for oxidation to ${}^{14}CO_2$. These data also suggest that AOA-elicited inhibition of C-4 and C-5 activities cannot be attributed to non-specific effects on respiratory metabolism.

Effect of Malonate on CO_2 Evolution from ALA. To examine the role of the tricarboxylic acid cycle in the respiration of ALA, barley leaf segments were treated with malonate (Fig. 5). At 3 mm,

FIG. 6. The effect of anaerobiosis and malonate on ${}^{14}CO_2$ evolution from [1- ${}^{14}C$]DL-glutamic acid. Etiolated barley leaves were incubated in darkness with 2.5 μ Ci/ml of [1- ${}^{14}C$]DL-glutamic acid.

this compound caused 30% inhibition of C-4 activity and, at 10 mM, almost complete inhibition. C-5 activity was less sensitive to the effect of this inhibitor. Malonate, at 2 mM, did not affect [¹⁴C]ALA uptake. Malonate does indeed interfere with tricarboxylic acid cycle activity in these tissues since, at 10 mM, it causes a considerable reduction in the rate of ¹⁴CO₂ evolution from [1,4-¹⁴C]succinate (Fig. 4).

¹⁴CO₂ Evolution from [1-¹⁴C]pL-Glutamate. If the oxidation of ALA proceeds via glutamate through the tricarboxylic acid cycle, then the sensitivity of C-5 activity to respiratory inhibitors should show similarities to that of the C₁ of glutamate, assuming reversal of the 5-carbon pathway for ALA biosynthesis (1, 2). The kinetics of ¹⁴CO₂ evolution from [1-¹⁴C]DL-glutamate administered to etiolated barley leaves in the dark are shown in Figure 6. Anaerobiosis and 10 mM malonate both caused 62% inhibition, suggesting that a considerable amount of the CO₂ lost from the C₁ of glutamate is dependent upon respiratory activity (cf. Figs. 3B and 5).

Effect of PBG. If C-4 and C-5 activities are the result of the degradation of [¹⁴C]PBG, formed within the tissue from [¹⁴C]ALA, then the treatment of leaves with unlabeled PBG might be expected to cause reduction of $^{14}CO_2$ evolution by isotopic dilution. The application of 2 mM PBG caused no change in either C-4 or C-5 activity (data not shown). The lack of effect may also be due to difficulty in PBG reaching the site of oxidation within the cell.

DISCUSSION

These results confirm earlier studies which show that ALA can be catabolized to CO_2 (7). The catabolism of ALA depends upon respiratory activity (Figs. 3 and 5) and a pyridoxal phosphatedependent reaction (Fig. 3). Furthermore, we have provided evidence that the metabolic fate of the C₅ of ALA differs from that of the C₄. The stronger dependence of C-4 activity upon respiration can be deduced from its greater sensitivity to anaerobiosis and to malonate (Figs. 3 and 5).

The inhibitory effects of anaerobiosis and AOA are not compounded when the two treatments are administered simultane-

FIG. 7. A scheme for the catabolism of ALA. THFA, tetrahydrofolic acid.

ously (Fig. 3). It is interesting that the inhibitory effect of AOA on both activities is the same in the presence or absence of O_2 . These results suggest the following interpretation: one step in the catabolism of ALA involves a transamination and is independent of O_2 . Following this step, the C_4 — C_5 bond would be cleaved. The C_4 of ALA would then be oxidized via (an) O_2 -sensitive reaction(s), while the C_5 would be oxidized via both O_2 -sensitive and O_2 -insensitive reactions.

The 5-carbon skeleton of ALA is biosynthetically derived from 5-carbon compounds such as glutamate or α -ketoglutarate in greening leaves (1-3, 10). The conversion of these compounds to ALA is thought to proceed through an internal transamination of glutamate-1-semialdehyde (1, 10, 12) or via transamination of DOVA (1, 2, 8, 10). It is possible that the biosynthetic route is reversible. ALA might then be metabolized to glutamate and/or α -ketoglutarate, the C₅ and C₄ becoming the C₁ and C₂, respectively, of these dicarboxylic acids (Fig. 7). The sensitivity of C-4 and C-5 activities to AOA and to anaerobiosis would be consistent with this explanation. The synthesis of [¹⁴C]ALA from [¹⁴C]glutamate and [¹⁴C] α -ketoglutarate by barley chloroplasts is inhibited by AOA (11).

C-5 activity is less sensitive to inhibition by anaerobiosis or by malonate than is C-4 activity (Figs. 3 and 5). In addition, the evolution of $^{14}CO_2$ from $[1-^{14}C]$ glutamate was inhibited by anaerobiosis to about the same extent as was C-5 activity (Figs. 3b and 6). The metabolism of the C₁ of glutamate to CO₂ via glutamate decarboxylase (Fig. 7) would account for the incomplete inhibition by anaerobiosis on $^{14}CO_2$ evolution from $[1-^{14}C]$ glutamate (Fig. 6). These data tend to support the suggestion that glutamate is an intermediate in ALA catabolism.

The catabolism of ALA might be initiated by a transamination to DOVA followed by the oxidation of the latter compound via the succinate-glycine cycle proposed by Shemin and Russell (14). If ALA breakdown proceeds through this cycle, carbons 1 to 4 would become succinate, while C_5 would become a formyl group carried by tetrahydrofolic acid into the 'C₁' pool (Fig. 7). The studies reported here further establish that the metabolic fate of ALA is not exclusively associated with porphyrin biosynthesis and that this amino acid can be respired to CO_2 .

LITERATURE CITED

- BEALE SI 1976 The biosynthesis of δ-aminolevulinic acid in plants. Philos Trans R Soc Lond B Biol Sci 273: 99-108
- BEALE SI 1978 & Aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. Annu Rev Plant Physiol 29: 95-120
- BEALE SI, PA CASTELFRANCO 1974 The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of ¹⁴C-δ-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol 53: 297-302
- BOGORAD L 1976 Chlorophyll biosynthesis. In TW Goodwin, ed, Chemistry and Biochemistry of Plant Pigments, Vol 1. Academic Press, New York, pp 64–148
- DUGGAN JX, ML GASSMAN 1979 Oxidation and metabolism of 5-aminolevulinic acid and porphobilinogen by shoots of *Hordeum vulgare*. Plant Physiol 63: S-891
- GASSMAN ML 1973 A reversible conversion of phototransformable protochlorophyll(ide)₆₅₀ to photoinactive protochlorophyll(ide)₆₃₃ by hydrogen sulfide in etiolated bean leaves. Plant Physiol 51: 139–145
- GASSMAN ML, JX DUGGAN, LC STILLMAN, LM VLCEK, PA CASTELFRANCO, B WEZELMAN 1978 Oxidation of chlorophyll precursors and its relation to the control of greening. In G. Akoyunoglou, JH Argyroudi-Akoyunoglou, eds, Chloroplast Development. Elsevier/North Holland, Amsterdam, pp 167-181
- GASSMAN M, J PLUSCEC, L BOGORAD 1968 &-Aminolevulinic acid transaminase in Chlorella vulgaris. Plant Physiol 43: 1411-1414
- GRANICK S, SI BEALE 1978 Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. Adv Enzymol Relat Areas Mol Biol 46: 33-203
- HAREL E 1978 Chlorophyll biosynthesis and its control. Prog Phytochem 5: 127-180
- KANNANGARA CG, SP GOUGH 1978 Biosynthesis of δ-aminolevulinic acid and chlorophyll by isolated chloroplasts. Carlsberg Res Commun 42: 441-457
- KANNANGARA CG, SP GOUGH 1978 Biosynthesis of δ-aminolevulinate in greening barley leaves: glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 43: 185-194
- OWENS TG, DM RIPER, PG FALKOWSKI 1978 Studies of delta-aminolevulinic acid dehydrase from Skeletonema costatum, a marine plankton diatom. Plant Physiol 62: 516-521
- SHEMIN D, CS RUSSELL 1953 & Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J Am Chem Soc 75: 4873-4874
- TROXLER ŘF, AS BROWN 1975 Metabolism of &-aminolevulinic acid in red and blue-green algae. Plant Physiol 55: 463–467
- WEBB JL 1966 Enzyme and Metabolic Inhibitors, Vol II. Academic Press, New York