Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jan;69(1):117–121. doi: 10.1104/pp.69.1.117

A Potential Pathway for Galactose Metabolism in Cucumis sativus L., A Stachyose Transporting Species 1

Kenneth C Gross 1,2, David M Pharr 1
PMCID: PMC426157  PMID: 16662141

Abstract

Conversion of [14C]galactose (Gal) 1-P, UDP-[14C]Gal, or UDP-[14C]glucose to [14C]sucrose was observed when cell-free homogenates of cucumber (Cucumis sativus L.) fruit peduncles were incubated with individual 14C-labeled substrates, appropriate cofactors, and fructose. The sucrose product was labeled only in the glucose moiety. Conversion of [14C]Gal-1-P to [14C]sucrose was catalyzed by extracts of peduncles from all other stachyose transporting species tested, as well as green bean (a sucrose transporter) but was not catalyzed by peduncle extracts from three other sucrose transporting species. In cucumber, the ability of extracts to form [14C]sucrose from [14C]Gal-1-P was greater when peduncles were harvested from growing fruit than from unpollinated ovaries. [14C]Sucrose formation from [14C]Gal-1-P was inhibited by Mg · PPi, Mg · UDP, UMP, and sucrose. α-Galactosidase, galactokinase, UDP-gal pyrophosphorylase, UDP-Gal-4′-epimerase, UDP-glucose pyrophosphorylase, and sucrose synthase activities were detected in peduncle extracts. Neither sucrose phosphate synthetase nor hexose-1-P uridyltransferase were detected. Peduncle tissue contained a small pool of free galactose. These results suggest a potential pathway for the metabolism of galactose moieties hydrolyzed from stachyose, the major sugar transported by cucumber plants.

Full text

PDF
121

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chacko C. M., McCrone L., Nadler H. L. Uridine diphosphoglucose pyrophosphorylase and uridine diphosphogalactose pyrophosphorylase in human skin fibroblasts derived from normal and galactosemic individuals. Biochim Biophys Acta. 1972 Apr 7;268(1):113–120. doi: 10.1016/0005-2744(72)90204-5. [DOI] [PubMed] [Google Scholar]
  2. FRENCH D. The raffinose family of oligosaccharides. Adv Carbohydr Chem. 1954;9:149–184. doi: 10.1016/s0096-5332(08)60375-6. [DOI] [PubMed] [Google Scholar]
  3. Foglietti M. J., Percheron F. Purification et mécanisme d'action d'une galactokinase végétale. Biochimie. 1976;58(5):499–504. doi: 10.1016/s0300-9084(76)80218-0. [DOI] [PubMed] [Google Scholar]
  4. GINSBURG V. Purification of uridinediphosphate glucose pyrophosphorylase from mung bean seedlings. J Biol Chem. 1958 May;232(1):55–61. [PubMed] [Google Scholar]
  5. Gatt S., Baker E. A. Purification and separation of alpha- and beta-galactosidases from spinach leaves. Biochim Biophys Acta. 1970 Apr 22;206(1):125–135. doi: 10.1016/0005-2744(70)90089-6. [DOI] [PubMed] [Google Scholar]
  6. HASSID W. Z., PUTMAN E. W., GINSBURG V. Metabolism of galactose in Canna leaves and wheat seedlings. Biochim Biophys Acta. 1956 Apr;20(1):17–22. doi: 10.1016/0006-3002(56)90256-6. [DOI] [PubMed] [Google Scholar]
  7. LELOIR L. F. The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch Biochem Biophys. 1951 Sep;33(2):186–190. doi: 10.1016/0003-9861(51)90096-3. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Maretzki A., Thom M. Characteristics of a Galactose-adapted Sugarcane Cell Line Grown in Suspension Culture. Plant Physiol. 1978 Apr;61(4):544–548. doi: 10.1104/pp.61.4.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PAZUR J. H., SHADAKSHARASWAMY M., MEIDELL G. E. The metabolism of oligosaccharides in germinating soybeans, Glycine max. Arch Biochem Biophys. 1962 Oct;99:78–85. doi: 10.1016/0003-9861(62)90246-1. [DOI] [PubMed] [Google Scholar]
  11. SHERMAN J. R., ADLER J. Galactokinse from Escherichia coli. J Biol Chem. 1963 Mar;238:873–878. [PubMed] [Google Scholar]
  12. Sacher J. A., Hatch M. D., Glasziou K. T. Sugar Accumulation Cycle in Sugar Cane. III. Physical & Metabolic Aspects of Cycle in Immature Storage Tissues. Plant Physiol. 1963 May;38(3):348–354. doi: 10.1104/pp.38.3.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Salerno G. L., Pontis H. G. Studies on sucrose phosphate synthetase. The inhibitory action of sucrose. FEBS Lett. 1978 Feb 15;86(2):263–267. doi: 10.1016/0014-5793(78)80576-6. [DOI] [PubMed] [Google Scholar]
  14. Schell M. A., Wilson D. B. Purification and properties of galactokinase from Saccharomyces cerevisiae. J Biol Chem. 1977 Feb 25;252(4):1162–1166. [PubMed] [Google Scholar]
  15. Shannon J. C. Carbon-14 Distribution in Carbohydrates of Immature Zea mays. Kernels Following CO(2) Treatment of Intact Plants. Plant Physiol. 1968 Aug;43(8):1215–1220. doi: 10.1104/pp.43.8.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smart E. L., Pharr D. M. Characterization of alpha-Galactosidase from Cucumber Leaves. Plant Physiol. 1980 Oct;66(4):731–734. doi: 10.1104/pp.66.4.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Su J. C., Preiss J. Purification and properties of sucrose synthase from maize kernels. Plant Physiol. 1978 Mar;61(3):389–393. doi: 10.1104/pp.61.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thomas B., Webb J. A. Distribution of alpha-Galactosidase in Cucurbita pepo. Plant Physiol. 1978 Nov;62(5):713–717. doi: 10.1104/pp.62.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Turnquist R. L., Turnquist M. M., Bachmann R. C., Hansen R. G. Uridine diphosphate glucose pyrophosphorylase: differential heat inactivation and further characterization of human liver enzyme. Biochim Biophys Acta. 1974 Sep 11;364(1):59–67. doi: 10.1016/0005-2744(74)90132-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES