Skip to main content
. 2014 Sep 29;14:521. doi: 10.1186/1471-2334-14-521

Table 2.

Regression coefficients estimating the associations between biomarkers of microbial translocation and inflammation

Inflammation biomarkers
Microbial translocation biomarkers C-reactive protein Soluble CD163 TNF-α receptor 1
Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)
p-value; model size p-value; model size p-value; model size
Lipopolysaccharide binding protein 28.9 (8.6, 49.1) 169 (−14, 352) 773 (−11, 1559)
p = 0.01; n = 40 p = 0.13; n = 40 p = 0.08; n = 40
Endotoxin core IgM antibody −25.7 (−42.7, −8.7) −4.4 (−164, 155) −713 (−1439, 12)
p = 0.01; n = 38 p = 0.90; n = 38 p = 0.04; n = 40
Endotoxin core IgG antibody −4.9 (−17.1, 7.4) 39 (−58, 137) −324 (−762, 113)
p = 0.58; n = 36 p = 0.76; n = 36 p = 0.54; n = 38
Soluble CD14 44.7 (21.3, 68.2) 595 (289, 902) 620 (8, 1232)
p < 0.01; n = 40 p < 0.01; n = 62 p = 0.07; n = 62
Urine lactulose/creatinine ratio (linear) 0.22 (−0.02, 0.45) 11 (−118, 140) 141 (−186, 468)
p = 0.33; n = 27 p = 0.68; n = 38 p = 0.81; n = 39

Results from linear mixed models pooling data across both recruitment and 12 weeks of ART. Models adjusted for age, sex, and baseline CD4+ T-cell count.

Microbial translocation biomarkers (regression predictor) are log-transformed and inflammation biomarkers (regression outcome) remain on the unit scale.

Model size represents total observations (recruitment and 12 week). Bold values represent statistically significant findings.