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Abstract

Background: Parameter estimation for differential equation models of intracellular processes is a highly relevant bu
challenging task. The available experimental data do not usually contain enough information to identify all parameters
uniquely, resulting in ill-posed estimation problems with often highly correlated parameters. Sampling-based Bayesian
statistical approaches are appropriate for tackling this problem. The samples are typically generated via Markov chain
Monte Carlo, however such methods are computationally expensive and their convergence may be slow, especially if
there are strong correlations between parameters. Monte Carlo methods based on Euclidean or Riemannian
Hamiltonian dynamics have been shown to outperform other samplers by making proposal moves that take the local
sensitivities of the system’s states into account and accepting these moves with high probability. However, the high
computational cost involved with calculating the Hamiltonian trajectories prevents their widespread use for all but
the smallest differential equation models. The further development of efficient sampling algorithms is therefore an
important step towards improving the statistical analysis of predictive models of intracellular processes.

Results: We show how state of the art Hamiltonian Monte Carlo methods may be significantly improved for steady
state dynamical models. We present a novel approach for efficiently calculating the required geometric quantities by
tracking steady states across the Hamiltonian trajectories using a Newton-Raphson method and employing local
sensitivity information. Using our approach, we compare both Euclidean and Riemannian versions of Hamiltonian
Monte Carlo on three models for intracellular processes with real data and demonstrate at least an order of
magnitude improvement in the effective sampling speed. We further demonstrate the wider applicability of our
approach to other gradient based MCMC methods, such as those based on Langevin diffusions.

Conclusion: Our approach is strictly benefitial in all test cases. The Matlab sources implementing our MCMC
methodology is available from https://github.com/a-kramer/ode_rmhmc.
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Background
Parameter estimation is a major task that paves the way
for building predictive models of intracellular regulation
processes. Experimental data used for fitting these mod-
els however, often do not contain enough information to
identify parameter values uniquely. Especially for param-
eter estimation of quantitative dynamic models such as
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ordinary differential equations (ODE) biological experi-
ments usually do not have the required time resolution,
rendering the estimation particularly challenging. Sparse
data often lead to ill-posed optimization problems with
multiple solutions that are indistinguishable in terms of
fit quality, but might differ substantially when used for
the prediction of new scenarios. Faced with these prob-
lems, optimization based point estimates are generally
not appropriate, since an analysis of the parameter space
around such points of high quality fits is often needed.
Sampling-based Bayesian methods are advantageous in
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these settings as they offer an insight into the surround-
ings of local objective function minima and facilitate the
uncertainty analysis of predictions. Consequently, statisti-
cal methods are being used more and more frequently for
parameter estimation in systems biology (see e.g. [1,2]).
In the Bayesian approach, parameters are considered ran-
dom variables and inferences are formulated in terms of
probability densities.
A major hindrance is the time required to generate sam-

ples from the resulting posterior distributions. Evaluation
of the posterior can be computationally expensive; this is
particularly the case for ODE models, where each sampling
step requires numerical calculation of model trajectories.
Metropolis-Hastings [3,4] algorithms are among the most
popular choices for this task (see e.g. [2,5]). Variants of
these core algorithms are also widely available in parame-
ter estimation software packages, e.g. GNUMCSIM [6], or
the MCMCSTAT MATLAB toolbox [7].
The speed of convergence of the Markov chain is cru-

cial for the efficiency of the MCMC approach. Finding a
good tuning of the Markov chain’s transition distance can
be time consuming and difficult [1,8,9], and it has been
recognized that high correlations between the parame-
ters can substantially slow down the convergence speed
of standard MCMC algorithms [10]. In these cases the
step size must often be chosen to be very small in order
to obtain a reasonable acceptance rate, resulting in highly
auto-correlated samples. A larger number of samples are
then required to obtain low variance estimates of the
inferred quantities.
Various strategies are employed to increase the dis-

tance of transitions in the sampling space, yet at the same
time maintain a high acceptance rate. Several adaptive
versions of the Metropolis-Hastings algorithm have been
suggested in this context (see e.g. Ch.4 in [8]). These adap-
tation processes however only make proposals based on
a global Gaussian approximation of the posterior, which
can be a disadvantage when the posterior density has a
complex lower scale structure.
Hybrid or Hamiltonian Monte Carlo (HMC) algorithms

([11]), can dramatically increase the acceptance rate while
still providing samples with low auto-correlation. This is
accomplished by an elaborate transition step that requires
the integration of a secondary ODE system describing
dynamics in parameter space that depend on the gradient
of the target distribution. In this way, the HMC algorithm
uses the structure of the ODE model more exhaustively.
At first glance this approach increases the computational
costs, but this is often compensated by the improved
sample quality compared to the simpler algorithms. The
advantage of low auto-correlations in typical HMC sam-
ples is that the sample size need not be as large to compute
summaries to a satisfactory precision. A wasteful algo-
rithmmight provide a sample with high auto-correlations

very quickly but at the expense of requiring a much larger
number of samples to obtain low variance Monte Carlo
estimates. Of course, these larger samples also need to be
stored and empirical estimates of posterior predictive dis-
tributions using a larger number of sampled points will be
computationally slower.
The statistical superiority of HMC has already been

demonstrated on a variety of examples, e.g. using a 100-
dimensional multivariate Gaussian distribution as target
density (see Ch.5 in [8]); it seems to be a very promis-
ing approach, however HMC has so far rarely been used
to infer parameters for nonlinear ODE models. A recent
simple example is given in [1], where it is shown that the
sample quality and convergence of HMC to the poste-
rior can be improved even further by using an appropriate
metric to define a Riemannian geometry over the param-
eter space. This approach employs the local sensitivity of
the model at each step to inform the proposal distribu-
tion, leading to more efficient sampling in cases where the
posterior has a complicated covariance structure.
The major difficulty that arises generally for HMC type

algorithms when dealing with ODE models is that the
model outputs and their sensitivities have to be simulated
at every point along trajectories in parameter space. We
address this computational issue by proposing an exten-
sion to HMC algorithms especially designed to sample
efficiently from models with steady state data under mul-
tiple perturbations. In particular, we use sensitivity analy-
sis within a Newton-Raphson approach to efficiently track
the steady states across each of the Hamiltonian trajecto-
ries, instead of calculating them explicitly, thus drastically
reducing this additional cost.
Steady state observations are typically not as informa-

tive as time series data, but can be obtained at com-
paratively low cost. They can be used in the first cycle
of modeling where a qualitative model is validated via
parameter fitting. If the model is not invalidated, dynamic
data should be gathered for further analysis to narrow
down model parameters further. The posterior parame-
ter density from previous analysis cycles may be employed
to inform the prior density of future experiments, and
herein lies one of the benefits of the Bayesian approach.
The properties of steady states offer the possibility to
use analytical calculations to obtain output sensitivi-
ties. This is a lot faster than the numerical integration
of dynamic sensitivities and improves sampling perfor-
mance. We describe this further in Section ‘Efficient cal-
culation of geometry’. Typically, the steady state data will
not be sufficient to uniquely identify all parameters; how-
ever issues of unidentifiability may also occur for dynamic
time series data. Bayesian model analysis is designed
to deal with precisely this case and allows full charac-
terisation of the uncertainties that arise when making
predictions.
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We evaluate our approach on three different steady state
models with real data: a model for Erk phosphorylation in
the MAPK signaling pathway, and two alternative models
for the phosphorylation of insulin receptor substrate IRS
after insulin stimulation. We also provide standard HMC
sampling speeds as reference.

Approach
Our modeling framework is motivated by real biological
experiments: measurements on systems subject to long
term or permanent perturbations, such as gene expres-
sion regulation via different promoters, silencing of genes
or the stable transfection with variants of the system’s
enzymes with altered reactive properties. These types of
experiment, among others, provide steady state responses
to perturbations. In the following, we assume data is accu-
mulated by observing the steady state under different
conditions u.

Model structure
Intracellular processes are often described as biochemical
reaction networks, i.e. ODE models with vector fields that
are based on chemical reaction kinetics. Here we consider
systems of the following form:

ẋ = f (x, ρ, uj) j = 1, . . . , nE , (1)

where the state x ∈ R
n+ describes molecular concen-

trations, ρ ∈ R
m+ denotes the model parameters, uj ∈

R
υ+ is an input vector which describes experimental con-

ditions such as the suppression of certain reactions or
the introduction of mutants, and nE denotes the num-
ber of performed experiments, i.e. the number of different
input vectors. We consider constant inputs, the initial
conditions x(0) = x0 are assumed to be known and unpa-
rameterised and the function f shall be smooth. If the
model exhibits complex bifurcations, special care has to
be taken when dealing with initial conditions and basins
of attraction. We do not address these issues here.
In this study we assume that the system converges to a

steady state characterised by f (x̄, ρ,w) = 0 for any avail-
able input w, which is the generic behaviour of such mod-
els [12]. Measurements are taken only after the system has
reached steady state:

x̄(ρ, uj) = lim
t→∞ ϕ(t, x0, ρ, uj) , (2)

zij = hi(x̄, ρ, uj) = Cx̄(ρ, uj), C ∈ R
ν×n ,

where z ∈ R
ν×nE is the observable model output when

input uj is applied, and x̄(ρ, uj) is the steady state of
the respective trajectory ϕ(t, x0, ρ, uj). We assume linear
output functions characterized by the real matrix C.
Standard HMC methods and the proposed Newton-

Raphson variants differ in the way the steady states are

calculated, but are both initialized with a numerical solu-
tion to the initial value problem. The parameters ρ are
always positive in chemical reaction networks. In order
to avoid dealing with borders of the positive orthant it is
advantageous to sample in logarithmic space θ = log(ρ).
Since we operate on θ we will drop ρ from all subsequent
expressions and consider it implicitly understood that the
model functions f and h will perform the transformation
(the same applies to symbolic expressions like x̄(θ , u)).
Measurements are obscured by noise δij, that is, the

observed data

D = {(
yij, σij

)
: i = 1, . . . , ν; j = 1, . . . , nu

}
(3)

relates to the measurement model in this way,

yij
!= zij + δij, δij ∼ N

(
0, σ 2

ij

)
. (4)

Gaussian noise is important for a vast amount of bio-
logical applications. However, the noise model is not of
crucial importance to the sampling algorithms and can
be changed as needed [13]. We assume that variances
σ 2
ij are available, e.g. from empirical variance estimates of

different experimental replicates.

Bayesian parameter estimation
Equipped with our model and a data set D, we define
the likelihood function p(D|θ), as a measure of plausibil-
ity for each θ . In the case of a Gaussian error model, the
likelihood given all experimental measurements follows as

p(D|θ) ∝ exp

⎛⎝−1
2

nE∑
j=1

ν∑
i=1

(yij − hi(x̄, θ , uj)
σij

)2
⎞⎠ .

We note that we often employ the log-likelihood in
many calculations, which we denote LD(θ) = log p(D|θ).
The likelihood of a set of parameters therefore requires
the steady state solution x̄(θ , uj) of the ODE model, which
is usually calculated by numerical integration of (1) until
convergence is achieved. In a Bayesian approach, prior
knowledge regarding the plausible values of p(θ) is incor-
porated via Bayes’ theorem:

p(θ |D) = p(D|θ)p(θ)

p(D)
, (5)

where p(θ) and p(θ |D) are the prior and posterior dis-
tributions, respectively. In this work we assume Gaussian
priors N (μ,	). The evidence p(D) is a normalization
constant that is independent of θ and is not needed
during Markov chain Monte Carlo sampling, since this
term cancels in the calculation of theMetropolis-Hastings
acceptance ratio. Expected values of a function F(θ) with
respect to the posterior,

Ep(θ |D)[ F(θ)]=
∫

F(θ)p(θ |D) dθ , (6)



Kramer et al. BMC Bioinformatics 2014, 15:253 Page 4 of 11
http://www.biomedcentral.com/1471-2105/15/253

may be estimated using Monte Carlo integration given
posterior samples,

F̂ = 1
N

N∑
i=1

F(θi), θi ∼ p(θ |D) . (7)

Riemannian structure of parameter space
Exploration of the posterior distribution for models
defined by systems of ODEs is often severely hampered by
the strong correlation structure present in the parameter
space, which makes it difficult to propose MCMC moves
that are far from the current point and accepted with high
probability. Recent advances in MCMC attempt to cir-
cumvent these issues by utilising the underlying geometric
structure induced by the sensitivity of a statistical model
[1]. In addition to exploiting gradient information, we
can construct MCMC algorithms based on higher order
geometric structure by considering the expected Fisher
Information, which [14] noted satisfies all the mathemat-
ical properties of a metric tensor and hence induces a
Riemannian geometry on the parameter space. The use
of this geometry allows us to define a measure of dis-
tance between sets of parameters in terms of the change in
posterior probability, rather than changes in the values of
the parameters themselves. In other words, MCMC algo-
rithms based on Riemannian geometry make local moves
according to a local coordinate system that automatically
adapts based on the local sensitivity of the model, tak-
ing small steps in directions of high sensitivity and bigger
steps in directions of lower sensitivity, while also taking
into account local correlation between pairs of parame-
ters. Such approaches have been shown to work incred-
ibly well on a variety of complex statistical models [1],
although computational expense often remains an issue
for some classes of models.
The main quantity of interest here is the metric ten-

sor. From the metric tensor, gradient and log-likelihood,
we can define a Hamiltonian Monte Carlo algorithm
using Riemannian coordinates, rather than the standard
Euclidean coordinate system which is typically used. Both
of these algorithms are given in the next section, and we
refer the reader to [15] for an introductory exposition
of Riemannian geometry for MCMC. We may define the
(r, s)th element of a metric G(θ) based on the posterior
distribution in the following manner,

G(θ)rs = Ep(y|θ)

[
∂ log p(θ |D)

∂θr

∂ log p(θ |D)

∂θs

]
= Ep(y|θ)

[
∂LD(θ)

∂θr

∂LD(θ)

∂θs

]
︸ ︷︷ ︸

Gy(θ)rs

−Ep(y|θ)

[
∂2 log p(θ)

∂θr∂θs

]
︸ ︷︷ ︸

−(	−1)rs

,

where Gy(θ) is the expected Fisher Information and 	 is
the covariance of the prior. We note that the normalising
factor of the likelihood, and prior for that matter, is a con-
stant with respect to θ and vanishes in the derivative of its

logarithm. One of the advantages of employing Rieman-
nian geometry is that the calculation of Gy(θ) requires
only first order sensitivities S r

l = ∂ x̄l/∂θr . For steady
state ODE models, we can calculate a general expression
for the expected Fisher Information based on a likelihood
derived from Gaussian measurement errors with a linear
observation model, as defined in (1) and (2):

Gy(θ)rs = Ep(y|θ)

[(
∂

∂θr
LD(θ)

)(
∂

∂θs
LD(θ)

)]

= Ep(y|θ)

⎡⎣⎛⎝∑
i1j1

(
yi1j1 − ∑

l Ci1lx̄l(θ ,uj1 )
σ 2
i1j1

)∑
l
Ci1lS

r
l

⎞⎠
×

⎛⎝∑
i2j2

(
yi2j2 − ∑

k Ci2kx̄k(θ ,uj2 )
σ 2
i2j2

)∑
k

Ci2kS
s
k

⎞⎠⎤⎦
=

∫ ∑
ij

(yij − ∑
l Cilx̄l(θ ,uj))2

σ 2
ijσ

2
ij

∑
l

CilS r
l

×
∑
k

CikS s
k

∏
ικ

p(yικ |θ)dyικ + 0︸︷︷︸
asymmetric terms: i1 �=i2,j1 �=j2

=
∑
ij

∑
l

CilS r
l

∑
k

CikS s
k

×
∫ (

yij − ∑
l Cilx̄l

(
θ ,uj

))2
σ 2
ijσ

2
ij

p(yij|θ)dyij

=
∑
ij

∑
l

CilS r
l (θ ,uj)

∑
k

CikS s
k (θ ,uj)

σ 2
ij

σ 2
ijσ

2
ij
.

(8)

This calculation yields, taking the prior’s contribution
into account, the overall metric tensor G comprised of an
inner product of the sensitivity matrices and the a-priori
covariance matrix:

G(θ) =
∑
j
S(θ , uj)TCT
−1

j CS(θ , uj) + 	−1 , (9)

where 
j = diag
(
σ 2·j

)
.

Methods
We have named the algorithms presented in this work
using the prefix NR for Newton-Raphson and the pre-
fix RM for Riemannian Manifold, which will be further
explained in this section. When we define the variants of
Hamiltonian Monte Carlo, we restrict our description to
those aspects of the algorithm that are impacted by the
modifications wemake.We note that themodifications do
not affect the correctness of the algorithms, and we there-
fore refer the reader to the original HMC and RMHMC
publications for proofs of correctness and convergence
[1,11].
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The original HMC algorithm is defined on Euclidean
space and performs well in practice for probability distri-
butions that do not exhibit strong correlations between
parameters. The state of the art RMHMC performs far
better for correlated distributions, however the algorithm
is computationally more complex to implement. We con-
sider bothHMC and RMHMCon our variety of examples,
and then present an approach for significantly decreasing
the computational cost of implementing both algorithms
for steady state systems.

HamiltonianMonte Carlo
The Hamiltonian Monte Carlo algorithm can be con-
structed by introducing an auxiliary variable to extend the
state space. We may interpret the auxiliary variable as a
momentum variable and the negative log joint distribu-
tion may be interpreted as a Hamiltonian system [1,16].
The main idea is that the induced dynamics of this system
may then be used for proposing moves within an MCMC
scheme. This is desirable since the dynamics may propose
points that are far from the current point and accepted
with high probability.
We begin by rewriting the posterior probability as

P(θ |D) ∝ exp(−VD(x̄, θ , u)) (10)

where

VD(x̄, θ , u)) = 1
2

nu∑
j=1

ν∑
i=1

(yij − hi(x̄, θ , uj)
σij

)2
− log(p(θ))

The sampling space is then extended by introducing
the momentum variable η, and we may write the joint
distribution as

p(η, θ |D) = e−H(η,θ) (11)

= exp
(

−1
2
ηTη

)
exp

(−VD
({
x̄θ ,u,x0

}
, θ ,u

))
.

We note that the Hamiltonian function H(η, θ) is sim-
ply the negative log joint distribution of our extended state
space and can be used to calculate Hamiltonian trajecto-
ries according to the differential equations defined in the
algorithm below. Given current values for the parameter
and momentum variables, we can simulate the Hamilto-
nian dynamics to propose a new pair of parameter and
momentum variables, which are then accepted accord-
ing to a Metropolis-Hastings ratio to ensure convergence
to the correct stationary distribution. The advantage of
this approach is that this ratio may be close to 100%, far
higher than the typical optimal acceptance ratios for other
MCMC algorithms, which are typically between 20% and
60%. The standard HMC algorithm is given by,

1. Transition step
Starting at θ =: θ(0) = θ0, solve the differential
equations,

∂τ η(τ ) = −∇θVD
({
x̄θ ,u,x0

}
, θ , u

)
,

∂τ θ(τ ) = η , (12)

for τ ∈[ 0, T ] with initial conditions:

η(0) ∼ 1√
2πm exp

(
−1
2
ηTη

)
, η′ := η(T ) ,

θ(0) = θ0 , θ ′ := θ(T ) ,
(13)

where the proposed parameter and momentum
variables at time T are given on the right. The above
equations are Hamilton’s equations of motion for a
particle with momentum η in a potential field
VD({x̄θ ,u,x0 }, θ , u).

2. Acceptance step
Accept θ ′ and η′ with probability

Pacc. = min
(
1,

p(η′, θ ′|D)

p(η, θ |D)

)
= min

(
1, exp

(
H(η, θ) − H(η′, θ ′)

))
. (14)

The numerical solution of (12) must be calculated using
a symplectic integrator [1], which is exactly time reversible
and volume preserving; these properties are required for
ensuring convergence to the correct stationary distri-
bution. Since the Hamiltonian laws of motion conserve
energy, an analytic solution would provide sample points
with perfect acceptance. However the required numerical
integrators introduce a small amount of error and typically
sample at very high but lower than 100% acceptance.
This standard version of HMC also profits from effi-

ciently calculating the sensitivities and steady states along
Hamiltonian trajectories using our approach based on a
multivariate Newton-Raphson method, which we explain
in Section ‘Efficient calculation of geometry’. We call
this version NR-HMC and include it in our performance
evaluation.

Riemannianmanifold HamiltonianMonte Carlo
Hamiltonian Monte Carlo can also be defined using the
induced Riemannian geometry, rather than the usual
Euclidean geometry. The RMHMC algorithm may be
derived in a similar manner to HMC, except now the
momentum variable η is defined to be a Gaussian distri-
bution with position specific covariance matrix, such that
the joint distribution follows as,

p(η, θ |D)= e−H(η,θ) (15)

=exp
(
−1
2
ηT
(θ)−1η

)
exp

(−VD
({x̄θ ,u,x0 }, θ , u

))
,
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where 
(θ) = G(θ). In other words, the dynamics now
take into account the second order sensitivities of the
statistical model of interest, since the covariance of the
momentum variable is based on the expected Fisher Infor-
mation at each point.
This Hamiltonian system is however harder to integrate

numerically, since its equations of motion are now defined
implicitly due to the dependence of the momentum on the
position parameter θ . The generalised Leapfrog integra-
tor is the simplest such algorithm for this task, however
its use may significantly add to the computational expense
of simulating proposals, since a much larger number of
likelihood evaluations are generally necessary to solve the
equations of motion compared to standard HMC [1,15].
In addition to the state sensitivities, we require the gra-
dients of G(θ) for solving the Hamiltonian system, which
necessitates the calculation of second order sensitivities,
denoted from now on by S̃. This provides the motivation
for the next subsection, in which we propose a computa-
tionally efficient approach to evaluate the required geo-
metric quantities for enabling faster inference in steady
state ordinary differential equation models.

Efficient calculation of geometry
Practical implementation of Hamiltonian Monte Carlo
samplers depends critically on the ability to efficiently cal-
culate the required geometric quantities. Here we show
how this may be done for steady state systems.
Output sensitivities dhi(x̄, θ ,w)/dθk (for any given input

w = u[1,nE]) occur in several places in the RMHMC algo-
rithm. For ODE models, they are needed to construct the
metric tensor G and the gradient of VD({x̄}, θ , u). In the
case of steady state data, the sensitivities can be obtained
from the steady state condition:

0 != fi(x̄(θ ,w), θ ,w)

0 != df i(x̄(θ ,w), θ ,w)

dθj
(16)

=
n∑

l=1

∂ fi(x̄, θ ,w)

∂ x̄l
∂ x̄l(θ ,w)

∂θj
+ ∂ fi(x̄, θ ,w)

∂θj
.

We will drop the arguments of x̄ to shorten notation.
In (16) we see that the steady state sensitivity is obtained
by solving the following linear algebraic equation,

0 = Jf (x̄, θ ,w)S(θ ,w) + K(x̄, θ ,w) , (17)

⇒ S(x̄, θ ,w) = −Jf (x̄, θ ,w)−1K(x̄, θ ,w) ,

where K(x̄, θ ,w)
j
i = ∂θj fi(x̄, θ ,w). We denote the solu-

tion to (17) as S(x̄, θ ,w), which is easy to obtain when the

Jacobian is invertiblea. Similarly, we can write the follow-
ing equation for the second order sensitivity,

0 = d
dθk

(∑
l

∂fi(x̄, θ ,w)

∂ x̄l
∂ x̄l(θ ,w)

∂θj
+ ∂fi(x̄, θ ,w)

∂θj

)

=
n∑

r=1

n∑
l=1

(
∂2fi(x̄, θ ,w)

∂ x̄r∂ x̄l
∂ x̄r
∂θk

+ ∂2fi(x̄, θ ,w)

∂θk∂ x̄l

)
∂ x̄l(θ ,w)

∂θj

+
n∑

l=1

∂fi(x̄, θ ,w)

∂ x̄l
∂2x̄l(θ ,w)

∂θk∂θj

+
n∑

r=1

∂2fi(x̄, θ ,w)

∂ x̄r∂θj

∂ x̄r
∂θk

+ ∂2fi(x̄, θ ,w)

∂θk∂θj
,

(18)

leading to a linear equation for the second order sensitivity
S̃ jk
i = ∂θk S

j
i ,

0=
n∑

r=1

n∑
l=1

(
∂2fi(x̄, θ ,w)

∂ x̄r∂ x̄l
S k
r + ∂J li (x̄, θ ,w)

∂θk

)
S j
l +

n∑
l=1

J l
i S̃

jk
l

+
n∑

r=1

∂2fi(x̄, θ ,w)

∂ x̄r∂θj
S k
r + ∂2fi(x̄, θ ,w)

∂θk∂θj
.

(19)

Again, the existence of a solution depends on the
invertibility of the Jacobian Jf (x̄, θ ,w). We note that the
same LU-decomposition of Jf can be used for the first
and second order sensitivities. Usually all derivatives of
f appearing in (16) and (19) can be calculated analyti-
cally; for large systems, a symbolic calculation package
will do the job, e.g. GiNaC, GNUOctave[forge]’s symbolic
package or MATLAB’s symbolic toolbox. A particularly
convenient way of storing the models and doing the sym-
bolic calculations is VFGEN [17] which providesMATLAB
output.
Equipped with these instructions for sensitivity calcu-

lations we can easily calculate the metric G(θ) and the
gradient of the log-likelihood for a given value of θ ,

−dVD(x̄, θ , u)

dθk
= −1

2
d
dθk

nE∑
j=1

ν∑
i=1

×
(yij − hi(x̄(θ , uj), θ , uj)

σij

)2
− d log(p(θ))

dθk
,

=
nE∑
j=1

ν∑
i=1

(
yij − ∑

l Cilx̄l(θ , uj)
σ 2
ij

)

×
∑
l

CilS k
l (x̄, θ , uj) − d log(p(θ))

dθk
.

(20)
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Although HMC algorithms make large transitions
across the parameter space, the transitions are con-
structed using multiple small integration steps of the
Hamiltonian dynamics (12). Since these parameter
changes in the integration are gradual, the sensitivity can
be used directly to estimate the steady state x̄(θ + �,w)

after each small parameter step �,

x̄i(θ + �,w) = x̄i(θ ,w) +
m∑
j=1

S j
i �j , (21)

For this reason, it is very convenient and efficient to recal-
culate the steady states using a Newton Raphson method,
where we begin with x̄0 at the estimate (21),

x̄r+1 = x̄r − Jf (x̄r , θ ,w)−1f (x̄, θ ,w) , (22)

and for any input w, (22) is iterated until satisfactory pre-
cision is reached, otherwise we proceed exactly as in the
original HMC algorithm.We call these variants NR-HMC
and NR-RMHMC.

Sampling efficiency
For the estimation of the auto-correlation we employed
the MATLAB script UWerr documented in [18]. By mea-
suring the execution time tE of the sampling we can
calculate an effective sampling speed, corrected for auto-
correlations:

v = N
2τint.,LtE

, (23)

where N is the sample size and τint.,L the integrated auto-
correlation length with respect to the estimation of the
mean log-likelihood.
Large auto-correlations reduce the effective speed v: the

sampled points strongly depend on their predecessors and
many Markov chain moves are required to obtain inde-
pendent information about the posterior distribution. A
sampling method with increased cost per Markov chain
transition might outperform a simple-but-cheap method
if the returned points are sufficiently less correlated. The
effective speed v takes the purpose of sampling into
account. When comparing algorithms we also list a rela-
tive speed vr, where we normalize each vi using the lowest
observed speed.

Results and discussion
In this section we apply the Bayesian parameter estima-
tion framework to three examples from literature, which
feature the type of data and modeling approach described
in Section ‘Methods’. A comparison of the performance of
all algorithms is provided in Additional file 1: Figure S1.
All simulations were done in MATLAB. We used the

SBPOP Toolbox bundle [19] to store the models and solve
the ODE (x̄) for RMHMC. The implementation makes use
of the symmetry of the second order sensitivity: S̃ jk

i = S̃ kj
i ,

and reuses appropriate fluxes, nevertheless the integra-
tor used by the toolbox has to integrate an initial value
problem with n + nm + nmm state variables (number
of states, number of first order sensitivities, number of
second order sensitivities).
The models are stored as symbolic variables for the

Newton-Raphson type algorithms, symbolic calculations
of the required derivatives of f then yield a standard
matlab function for the Jacobian and the sensitivities.
All linear equations are solved using MATLAB’s backslash
operator. We provide MATLAB code for easy reproduction
of all of the results in this section.
Since the methods we used are not restricted to

the RMHMC algorithm, we also tested the simplified
Metropolis-adjusted Langevin algorithm (SMMALA) [1].
We applied the same modifications to SMMALA and
measured the relative sampling speed, which can be
inspected in Table 1.

Example: Erk phosphorylation in MAPK signaling
We consider a modification of the model for Erk phos-
phorylation in the MAPK signaling cascade introduced in
[20], who investigated robustness of steady state phospho-
rylation of Erk with respect to changes in the total Erk
amount ErkT = u:

ẋ1 = ρ1
u

1 + u
− (2ρ1g(u) + ρ2)x1 + (ρ2 − ρ1g(u))x2 ,

ẋ2 = ρ1g(u)x1 − ρ2x2 ,

g(u) = 1
1 + u

(24)

where x = ([pErk] , [ppErk])T are the once and twice
phosphorylated modifications of Erk.
According to the conclusions in [20] the robustness of

this system with respect to varying ErkT is due to negative
feedback from Erk to Raf and MEK; this was not inves-
tigated by the authors using an ODE model but directly
in experiment and by modifying the steady state solu-
tion of the open loop system. To account for this negative
feedback we modified the phosphorylation rate of the

Table 1 Effective sampling speedmeasurements for
SMMALA and themodified NR-SMMALA

Problem size NR-SMMALA SMMALA

2 × 2
v in s−1 90 ± 2 71 ± 2

τint.,L 0.88± 0.02 0.88± 2

3 × 6
v in s−1 62 ± 1 32 ± 1

τint.,L 1.20± 0.03 1.52± 0.04

6 × 14
v in s−1 0.30± 0.07 0.031± 0.006

τint.,L 290 ± 67 166 ± 31
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Figure 1MAPK posterior comparisons fltr. (1) posterior inferred from RMHMC sample. (2) Newton Raphson driven RMHMC posterior inferred
from sample. (3) posterior inferred from NR-HMC sample (4) exact posterior on a grid. We used a kernel density estimator (kde) to infer densities from
samples.

original model by multiplying it with u/(1 + u). This
modification of the model does provide negative feed-
back, though we do not suggest any specific mechanism
or interpretation for it, but rather we aim at illustrating
how a modeling hypothesis can be tested. The two dif-
ferent Erk variants can be knocked out individually, but
have a very similar function. This enables the experimen-
talists to reduce the amount of Erk to several intermediate
levels. For more details on the biological system we refer
to [20].
The normalized data provided in the supplementary

material of [20] contains 10 steady state measurements of
x2 obtained with western blots under different perturba-
tion conditions in which Erk1 and/or Erk2 were knocked
down, resulting in different ErkT concentrations. The data
point belonging to the experiment in which no knock-
down was performed serves as control experiment with
u = 1 in normalized units.
Unfortunately these measurements are not acompanied

by information about standard deviations in the publi-
cation. For the purposes of an illustrative example we
suggest that the value σij = 0.2 seems reasonable. The
corresponding measurement model reads

h(x̄, ρ, uj) = Cx̄(ρ, uj) ,
C = (0, 1) , σij = 0.2 ∀ i, j .

(25)

We used a normal prior in the logarithmic parameter
space which covers several orders of magnitude for both
parameters. This example has two parameters, making it
convenient to compare the kernel density estimate of the
posteriors to an evaluation of the posterior on a regu-
lar grid, which removes any sampling related errors. This
comparison can be seen in Figure 1. All posteriors look
very similar, which indicates proper convergence for all
three algorithms.
When looking at Additional file 1: Figure S1, we see that

the effective sampling speed of NR-RMHMC is 2.6 times
higher than that of the original RMHMC, while NR-HMC
is better still.

Example: insulin dose response
A larger example is provided in [21], in which the authors
analyze the insulin pathway in eukaryotic cells (primary
human adipocytes). Different models were tested in their
ability to describe phosphorylation of the insulin recep-
tor substrate (IRS) after insulin stimulation. The data sets
provided in their supplementary material consist of dose
response curves, which we interpret as steady state data,
as well as dynamic responses, which we disregard here.
From the set of models provided, we chose one of the

least complex models (shorthand label: Mma) with m =
6 parameters, which was nevertheless sufficient to fit the
steady state data, as well as the best fitting model (Mifa).
The interaction graph of Mma is shown in Figure 2. The
model comprises 5 molecular species: the insulin receptor
(IR and IR∗), phosphorylated IR (IRP), IR substrate (IRS),
and phosphorylated IRS (IRSP). These reactants form two
groupswith built in conservation relations. Since the sums

d
dt

(
[IR] + [IRP] + [

IR∗]) = 0 ,

d
dt

([IRS] + [IRSP]) = 0 ,
(26)

Figure 2 Interaction graph of the Mmamodel of [21] for IRS
phosphorylation after insulin stimulation.
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Figure 3 Comparison of five different fits for the insulin dose resonse data. The data is shown as error bars (last in each group), the fits are
shown in boxplot style in the order: (i) Mifa model and NR-RMHMC sampler, (ii) Mifa model NR-HMC sampler, (iii) Mmamodel NR-RMHMC sampler,
(iv) Mmamodel NR-HMC sampler, (v) Mma model and unchanged RMHMC sampler with numerical ODE solutions using SBToolBox2[mex]. All
algorithms succeeded in fitting the data.

do not change over time, we only require n = 3 indepen-
dent state variables to write down the ODE model:

x1 = [IR] , x2 = [IRP] , x3 = [IRSP] ,
u = [ins] % the insulin concentration ,

x0 = (
10 0 0

)T ,

which defines the initial value problem (ivp) for

ẋ =
⎛⎝ −1 −1 1 0 0 0

1 1 0 −1 0 0
0 0 0 0 1 −1

⎞⎠diag(ρ)φ(x) ,

φ(x) =

⎛⎜⎜⎜⎜⎜⎜⎝

x1u
x1

10 − x1 − x2
x2

x2(10 − x3)
x3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with measurement model

h({x̄ρ ,u}, ρ, uj) = Cx̄(ρ, uj) , C = (0, 0, 98) . (27)

We have used the value for the output parameter C1,3
reported in the publication and will not estimate it during
sampling.
The larger Mifa model, which comprises 6 independent

state variables and 14 parameters and is capable of fit-
ting dynamic responses as well, is treated similarly and
included as SB model in the supplement.
Figure 3 shows a comparison of fits using different mod-

els and samplers, illustrated as box plots. The boxes fit
the observed experimental data well (error bars). It was
not computationally feasible to sample the 14 parameter

Mifa model on our desktopmachine using the unmodified
RMHMC algorithm.
As shown in Additional file 1: Figure S1, the effec-

tive speed of NR-RMHMC was about 23 times higher
than that of standard RMHMC for the 3 × 6 Mma

Figure 4 Relative speed for the Simplified Manifold
Metropolis-Adjusted Langevin Algorithm (SMMALA) using the
samemodifications as in the RMHMC code.We calculate the
sensitivities using systems of linear equations, we use the sensitivities
to obtain the metric and the starting point for the Newton Raphson
methodwhich is used to calculate steady states. We tested the relative
speed of both the modified and unmodified SMMALA on all three
example models with uninformative priors. In all cases, the modified
version of SMMALA was faster than the reference implementation.
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model, indicating a significant speed up. The largest
observed correlation coefficient of the posterior was
�56(Mma) ≈ 0.8. Since the posterior does not exhibit
strong enough correlations between the parameters,
the flat (Euclidean) metric used in NR-HMC was of no
disadvantage and hence NR-HMC performed best. With
the larger Mifa model RMHMC came to its limits, while
the modified NR-RMHMC was still able to generate sam-
ples in an acceptable time. The use of a Newton-Raphson
approach for this model resulted in two orders of mag-
nitude improvement in sampling performance for the
NR-HMC algorithm. Although NR-HMC was superior
in cases with uninformative priors, the advantage of NR-
RMHMC becomes evident in the case of an informative
prior. The informative prior was built by assigning smaller
variances to some of the parameters θi while keeping
the rest vague (large variances). See the setup files in the
supplement for details.

Conclusion
We have demonstrated on three real world examples of
different sizes how Hamiltonian Monte Carlo methods
may be implemented in an efficient manner for the class
of steady state dynamical systems. Using sensitivity anal-
ysis to track the steady states during each (RM)HMC
trajectory calculation in the proposal step leads to a sig-
nificant improvement in terms of effective sampling speed
in all examples. Furthermore, the speed up was even
more pronounced for larger problems comprising more
parameters.
The proposed approach is also applicable to other Rie-

mannian manifold MCMC algorithms like SMMALA.
Figure 4 shows that there are significant albeit less dra-
matic benefits for the introduced techniques for this algo-
rithm as well. Once again, we can use the comparatively
inexpensive steady state sensitivity analysis to obtain the
metric tensor G as well as the Newton-Raphson method
for the calculation of steady states to great effect.
There remains the question of whether to employ NR-

HMC or the more complicated NR-RMHMC algorithm
for performing inference over steady state systems. In
most cases, steady state data is not sufficient to uniquely
fit the parameters to specific values, and we are unable to
know a priori whether the parameters in the system will
exhibit strong correlation structure. In practice, one might
therefore start with the simpler NR-HMC scheme, and
resort to the Riemannian version of it if the need arises.
In cases where the prior may be well specified, the differ-
ences in scale between different parameters may require
NR-RMHMC for improved efficiency, as we observed in
the example section.
We conclude that the use of Newton-Raphson meth-

ods for calculating the steady states within HMC algo-
rithms is a valuable contribution to the field of numerical

parameter estimation for this special class of ODE mod-
els and improves scalability of statistical sampling-based
approaches for these models in general. The success of
this approach motivates further development of HMC
algorithms for the more general case of dynamic time
series data, which would broaden its utility.

Endnote
aWe note that this is not always the case: whenever

conservation relations are present, for example, the
Jacaobian is not invertible anywhere. However, in such
cases it is sufficient to use these conservation relations to
reduce the number of state variables, as we do in the
examples.

Additional file

Additional file 1: Figure S1. Performance analysis for the original RMHMC
for ODE models and two steady state data adapted HMC algorithms.
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