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Abstract

Developing improved methods for breast cancer risk prediction could facilitate the targeting of 

interventions to women at highest risk, thereby reducing mortality, while sparing low-risk women 

the costs and inconvenience of unnecessary testing and procedures. However, currently available 

risk assessment tools fall short of achieving accurate individual risk prediction, precluding 

implementation of this approach. Improving these tools will require the identification of new 

methods of assessing risk and increasing the accuracy of existing risk indicators. We review four 

emerging topics that may have importance for breast cancer risk assessment: etiological 

heterogeneity, genetic susceptibility, mammographic breast density and assessment of breast 

involution.
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Introduction

Accurate estimation of breast cancer risk could enable the identification of high-risk women 

who might be most likely to benefit from specific interventions, while allowing low-risk 

women to safely avoid unnecessary screening and procedures. Successful application of this 

strategy could help reduce breast cancer mortality and limit false positive screening tests.
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Breast cancer risk models are generally useful in predicting the number of cancers that will 

develop in populations, but cannot identify which individuals will develop cancer [1]. Thus, 

risk models are useful for determining sample sizes needed for adequate statistical power in 

clinical trials, but have less value for patient management. Accordingly, discovering new 

breast cancer risk factors and refining the assessment of established ones is important for 

improving risk assessment. In this review, we discuss four emerging topics in breast cancer 

risk prediction (Table 1): 1) etiological heterogeneity; 2) genetic susceptibility; 3) 

mammographic breast density and 4) molecular histology: involution of normal breast 

tissue.

Etiological Heterogeneity

Breast cancer can be classified into distinctive, clinically relevant molecular subtypes based 

on mRNA profiling [2–5]. Detailed molecular characterization of breast cancer has revealed 

increasing biological diversity, which has been matched by a growing recognition that risk 

factor associations vary by tumor subtype.

Molecular epidemiological studies using immunohistochemistry for tumor subtyping show 

that reproductive risk factors are more strongly linked to estrogen receptor (ER)-positive or 

progesterone receptor (PR)-positive cancers than to receptor negative tumors [6, 7]. These 

relationships are compatible with the probable importance of cumulative exposure to sex-

steroid hormones in the pathogenesis of ER-positive breast cancer [8].

In contrast to cancers that are ER-positive/PR-positive and human epidermal growth factor 

receptor 2 (HER 2) negative (“luminal” molecular subtype), triple-negative (TN) breast 

cancers are less strongly related to reproductive factors [9]. In particular, basal-like cancers 

(a subset of TN tumors) are clinically aggressive and associated with early onset, African 

American race and BRCA1 germline mutations [10–13]. Data suggest that basal-like cancers 

may underlie many of the differences in risk factor associations between ER-positive and 

ER-negative cancers [9].

Nulliparity

Nulliparity is associated with increased breast cancer risk overall, but does not seem to 

increase risk of TN tumors [7, 9], and may even be protective [10, 14, 15]. In a pooled 

analysis including up to 35,568 cases within the Breast Cancer Association Consortium 

(BCAC), women diagnosed with ER-negative breast cancers were less likely to be 

nulliparous than women diagnosed with ER-positive tumors (P=3×10−6), and the frequency 

of nulliparity was lowest among TN tumors (13% among women with TN cancers vs. 17% 

among women with luminal cancers). In a subset of 12 population-based BCAC studies, 

nulliparity was associated with increased risk of luminal tumors but not TN cancers [9]. 

Similarly, nulliparity was not associated with risk for TN tumors in another population-

based case-control study not included within the BCAC analysis [16]. Moreover, nulliparity 

was associated with decreased risk of TN cancer in the Women’s Health Initiative (WHI) 

cohort [14] and decreased risk of ER-negative/PR-negative breast cancer in the Black 

Women’s Health Study [15], and the Carolina Breast Cancer Study [10], which included a 

high percentage of African American women. In addition, increasing age at first birth, an 
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established breast cancer risk factor, was not associated with increased risk for TN tumors in 

several studies [9, 14, 16]

Breastfeeding

Breastfeeding for long durations has been associated with a modest reduction in breast 

cancer risk in two meta-analyses [17, 18], one of which included prospective data. However, 

some studies have found that breastfeeding is associated specifically with a substantial risk 

reduction for ER-negative/PR-negative or basal-like tumors, but not for ER-positive cancers 

[10, 15], whereas another did not find significant protection for any tumor type [14]. In 

addition, data suggest that breastfeeding eliminates the association between high parity and 

increased risk of ER-negative/PR-negative or basal-like breast cancers [10, 15, 19]. Limited 

data also suggest that breastfeeding may be particularly protective for women with a family 

history of breast cancer [20] and carriers of germline BRCA1 mutations [21].

Age at menarche

Most investigations suggest that early age at menarche is more strongly associated with 

increased risk of hormone receptor positive than receptor negative cancers [6, 7, 9, 14], with 

one investigation finding the strongest relationship with PR status [9]. However, data 

suggest that early age at menarche is not significantly different between women with TN 

tumors versus women with luminal tumors [9].

Obesity

Premenopausal obesity is protective for breast cancer, whereas postmenopausal obesity is 

associated with increased risk [22, 23]. Obesity may produce several potentially pro-

carcinogenic effects, related to sex-steroid hormones, growth factors and inflammation [24]. 

In one report, waist-to-hip ratio (WHR), a measure of central obesity, was related to 

increased risk for TN tumors, among both premenopausal women (Odds ratio (OR)=1.8, 

95% confidence interval (CI)=1.0, 3.4, Ptrend=0.07) and postmenopausal women (OR=2.7, 

95% CI=1.3, 5.4, Ptrend=0.006) [10]. Obesity has been related to increased risk for TN 

tumors in two studies of predominantly white women [19, 25] and a similar suggestion was 

found in the pooled BCAC analysis [9].

Other risk factors

Menopausal hormone therapy (MHT) use has been associated with increased risk of ER-

positive but not ER-negative tumors [26–28], whereas reported associations between oral 

contraceptive use and breast cancer subtypes are more variable [14, 16, 29]. A positive 

family history increases risk, irrespective of ER status [9, 30], though risks may be greatest 

for basal-like cancers [9].

Etiological heterogeneity: risk prediction and future directions

Data suggest that the Gail Model provides more accurate risk prediction of ER-positive 

breast cancer than ER-negative tumors [31]. The development of a risk model for ER-

positive breast cancer could enable more specific identification of women most likely to 

benefit from chemoprevention with endocrine agents, which may only reduce risk for 
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hormone-dependent tumors. By analogy, models could be developed to identify women at 

high-risk for other specific molecular subtypes of breast cancer that could be prevented with 

targeted interventions. However, implementation of multiple risk models would be complex 

compared with use of an omnibus risk prediction model for all tumor types.

Genetic susceptibility

Women who have a family history of breast cancer are personally at increased risk, 

suggesting the importance of genetic factors in the etiology of the disease [32]. Furthermore, 

risk varies with the number of affected relatives, the closeness of their relationship (i.e. first 

or second degree) and the relatives’ ages at diagnosis [32]. Risk is similar for women with 

an affected maternal as compared to an affected paternal relative. A meta-analysis of 74 

studies showed that women who have a first-degree relative with breast cancer are at 

approximately 2-fold increased risk, whereas those with an affected second-degree relative 

were at approximately 1.5-fold increased risk [32]. Having a relative diagnosed by age 40 

years increases risk fivefold whereas having a relative diagnosed at age 60 years or older 

increases risk by 40%. In contrast to a positive family history, a negative family history 

provides limited risk information because 80% to 90% breast cancers occur among women 

without an affected close relative. Increasingly, genetic research has focused on identifying 

specific markers of risk, including uncommon variants conferring large or moderate risk, 

and common variants conferring small increases in risk.

Genetic risk factors for breast cancer: Genes with high or moderate penetrance

An estimated 57% of women with BRCA1 mutations and 49% of those with BRCA2 

mutations will develop breast cancer by age 70 years [33]. Cancers among BRCA2 mutation 

carriers differ from those among BRCA1 carriers in that they more close resemble the range 

of cancer subtypes that occur in the general population (i.e. predominantly ER-positive) and 

are diagnosed at older ages. Other high penetrance mutations linked to elevated breast 

cancer risk are discussed elsewhere, including: TP53 in Li-Fraumeni syndrome [34], PTEN 

in Cowden syndrome [35, 36], and STK11/LKB1 in Peutz-Jegher syndrome [37]. Mutations 

in CDH1 (which encodes e-cadherin) have been linked to increased risk, especially for 

lobular cancers [38].

Mutations with moderate penetrance (ATM, CHEK2, BRIP1, and PALB2) [39–42] confer a 

two- to four-fold increase in breast cancer risk and are quite rare in the general population. 

CHEK2 mutations may confer susceptibility specifically to luminal breast cancer subtypes, 

including tumors with lobular histology [43–45]. Clear links between mutations in ATM, 

PALB2, and BRIP1 and breast cancers with specific molecular or pathologic characteristics 

have not been established. Efforts to identify additional moderately penetrant susceptibility 

mutations are ongoing.

Common variants of low penetrance

A prior report based on 13 common low penetrant genetic variants suggested that these 

factors explained about 8.3% of familial risk, as compared with 5% for moderately penetrant 

genes and 22% for highly penetrant mutations [46]. Genome-wide association studies 
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(GWAS) have identified over 30 common low penetrant variants as of this writing, the 

majority of which are single nucleotide polymorphism (SNP) markers, which confer breast 

cancer risks ranging from 1.04–1.40 per-allele. SNPs have been associated with important 

breast cancer features, such as ER, PR or HER2 status, grade, and histology [47–54].

Genetic susceptibility: risk prediction and future directions

Analyses suggest that adding known SNPs to breast cancer risk models produces only 

modest improvements in risk prediction [55]. In addition, strong gene-gene or gene-

environment interactions that would identify subsets of high-risk women have not been 

found [56–58], nor have variants been strongly linked to breast cancer outcomes [59]. 

Research on the functional consequences of SNPs on carcinogenic processes is in its 

infancy, and the identification of SNPs in non-coding regions of the genome raises 

intriguing questions about the mechanisms that mediate the risk associated with of these 

variants. Identification of variants related to ER-negative breast cancers and early onset 

tumors is a research priority. A web-based computer program for assessing risk among 

patients with a family history of breast and/or ovarian cancer has been developed 

(BOADICEA) [60]. Finally, a polygenic model that combines multiple common 

susceptibility variants to predict risk has been developed, which could inform future public 

health recommendations about screening women based on level of risk [54, 61, 62].

Mammographic breast density

Mammographic breast density (MBD) reflects the tissue composition of the breast: high 

MBD corresponds to a greater percentage of fibroglandular tissue relative to fat, whereas 

low MBD is related to a higher percentage of fat relative to non-fatty tissue. Although high 

MBD is related to some breast cancer risk factors such as nulliparity, a positive family 

history, and MHT use, many cross-sectional and prospective studies have consistently 

demonstrated that high MBD is a strong and independent breast cancer risk factor, 

conferring relative risks (RRs) of 4- to 5-fold when comparing women with highest to 

lowest MBD (reviewed in [63]). Dense areas on a mammogram, which appear white (Figure 

1B), may mask tumors, leading to delayed detection; however, high MBD is related to long-

term prospective increases in tumor incidence, independent of its effects on detection [64]. 

Given that elevated MBD is the strongest risk factor for non-familial breast cancer apart 

from age and gender [65, 66], and that many women have high MBD [66], assessment of 

MBD represents a potentially useful breast cancer risk assessment tool.

Little is known about the biology of high MBD and why it is related to breast cancer risk. 

MBD has a substantial heritable component; it is estimated that ~2/3 of the variance in 

density is genetically determined [67], suggesting that density acts at early stages in 

carcinogenesis. As described by Boyd et al. [68], density at young ages may be a key risk 

marker because it reflects the number of undifferentiated cells that are vulnerable to 

carcinogenic insults before the differentiating effects of pregnancy and age-related 

involution.
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Methods for assessing mammographic breast density

Methods for assessing MBD have become increasingly more quantitative, reproducible and 

automated. MBD can be estimated visually as the extent of dense tissue in mammograms 

(e.g., Wolfe’s parenchymal patterns and the American College of Radiology Breast 

Imaging-Reporting and Data System (BI-RADS)) or quantitatively as an absolute area or as 

a percentage of total breast area using planimetry or computer-assisted methods, which are 

more reliable. Recently, techniques to assess radiologically dense tissue as a volume have 

been developed (reviewed in [69]).

Clinical relevance of mammographic breast density

High MBD is clinically important because women with such breasts are more likely to 

develop interval cancers (undetected by screening mammography). Furthermore, most 

studies have found that high MBD increases risk for both ER-positive and ER-negative 

cancers [70–73]. MBD and its associations with risk also do not appear to differ between 

carriers of high penetrant mutations, such as BRCA1/2, as compared to non-carriers [74, 75]. 

Therefore, understanding the mechanisms that mediate the risk related to high MBD may 

increase our knowledge about etiological factors that contribute to most subtypes of breast 

cancer and could facilitate the development of prevention strategies with broad impact.

High MBD has been linked to increased risk of breast cancer recurrence (reviewed in [76]). 

In addition, MBD may reflect the breast cancer risk associated with use of exogenous 

hormones. Specifically, limited data suggest that women whose MBD declines after 

receiving endocrine agents for chemoprevention [77] or adjuvant treatment [78] are more 

likely to benefit from these medications than those whose MBD does not fall. In contrast, 

elevated MBD in the context of MHT or oral contraceptive use may be associated with 

increased breast cancer risk [79]. Thus, MBD is potentially a strong, modifiable “biosensor” 

of breast cancer risk, which may have utility in multiple populations and in different clinical 

settings.

Mammographic breast density: risk prediction and future directions—Several 

studies [80–83] have suggested that adding MBD to the Gail model may improve breast 

cancer risk prediction modestly and efforts to incorporate MBD in newer risk models are 

ongoing [84]. Of those studies incorporating MBD into the Gail model, three [80, 81, 83] 

evaluated the addition of BI-RADS density categories and the fourth [82] used a quantitative 

measure of MBD as assessed by planimetry. These results show modest but consistent 

improvements in risk prediction by adding MBD to existing risk prediction models [80–82]. 

However, the potential gains in risk prediction that might be realized by using automated, 

quantitative measures of density obtained through full field digital mammography or other 

emerging technologies have not been fully explored. In addition, data related to MBD and 

breast cancer risk in non-White populations are limited. Finally, elevated MBD may produce 

its strongest effect among young women who are below the age of initiation of 

mammographic screening, but who might benefit from preventive interventions [66]. 

Evaluating density without exposing young women to ionizing radiation is critical, and these 

approaches have not been implemented in clinical practice.
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Subjective visual assessment of MBD is often performed clinically, but this approach has 

only moderate inter-rater reliability [85, 86] and assigns most women to two of four possible 

categories, thereby providing limited risk discrimination. Measurement of MBD is limited 

by properties of mammography, including: 1) two-dimensional representation; 2) need for 

compression, which distorts tissue architecture and varies between examinations; and 3) 

ionizing radiation exposure, which poses cancers risks.

It is hoped that more accurate and precise measurement of MBD is achievable through 

technological advances, which will increase its clinical utility. Methods for measuring breast 

density as a volume and in specific regions of the breast using digital mammography with 

density phantoms [87] and other breast imaging modalities are rapidly evolving [69]. Non-

ionizing technologies, such as MRI and ultrasound tomography, may be ideally suited for 

assessing volumetric density in young or high risk women or in situations where it is 

desirable to perform more frequent measurements [88]. These evolving technologies may 

also offer further opportunities for increasing accuracy in measurement and identifying 

stronger risk associations.

Molecular histology: involution of normal breast tissue

“Molecular histology” may be defined as the sum total of all microscopic and molecular 

characteristics of the breast [89]. With aging, the breast undergoes dramatic structural and 

compositional changes, including a reduction in epithelium, followed successively by 

stromal and then adipose tissue replacement [90–92]. Recent studies suggest that analysis of 

terminal duct lobular units (TDLUs), the benign structures from which most breast cancers 

arise, may be useful for breast cancer risk prediction [92–94]. TDLU involution begins prior 

to menopause, progresses with aging, and varies substantially among women, reflecting 

differences in reproductive history and other factors [90, 91, 93]. Thus, TDLU involution 

could represent a global measure of risk, which reflects the interaction of genetic and 

environmental risk factors over time.

The number of TDLUs in the breast, like MBD, declines with aging, although breast cancer 

risk increases [95]. As has been proposed for MBD [88], this apparent paradox may be 

reconciled by viewing these factors as proxies for exposure to carcinogenic influences, 

culminating during critical periods of heightened susceptibility to malignant transformation, 

like prior to a first birth. From this perspective, women with less TDLU involution are 

postulated to have had more at-risk epithelium over their lifetimes or during vulnerable 

periods.

TDLU involution may be viewed as a reduction in the number of TDLUs or simplification 

of the structure of individual TDLUs, manifested as a shorter diameter or a reduced number 

of acini (functional subunits of TDLUs). A retrospective analysis of 8,736 benign breast 

biopsies found that TDLU involution was absent in 18.6%, partial in 59.5% and complete in 

21.9% [93]. The percentage of biopsies with complete TDLU involution increased with age, 

reaching 53.1% among women aged 70 years or older. Having given birth, a strong family 

history of breast cancer, use of menopausal hormones or having proliferative breast disease 
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was associated with less TDLU involution. Preliminary analyses suggest that many of these 

relationships hold in normal breast tissues donated by volunteers (unpublished observation).

Compared with population-based rates, Milanese et al. reported that women with TDLU 

involution categorized as “none” had increased breast cancer risk (RR=1.88, 95% CI=1.59, 

2.21), as did women with “partial” involution (RR=1.47, 95% CI=1.33, 1.61); risk for 

women with “complete” involution was close to unity [93]. Levels of TDLU involution 

stratified women’s breast cancer risk irrespective of other factors including family history, 

parity, age at first birth biopsy and the presence of hyperplasia or atypical hyperplasia. 

Similar but less significant relationships with risk were reported in a smaller case-control 

comparison nested within another cohort [94].

Data indicated that levels of TDLU involution are similar throughout both breasts [96], 

suggesting that TDLU involution represents a global marker of risk. Breasts that contain 

more TDLUs (less involution) are associated with high MBD [95].

Molecular histology: risk prediction and future directions

The degree of TDLU involution is generally inversely related to factors that increase breast 

cancer risk. However, these associations raise questions as to whether TDLU involution 

represents an independent risk marker. In one analysis, both MBD and TDLU involution 

were significantly associated with breast cancer risk after mutual adjustment. Compared 

with women who had low MBD and complete involution, women who had high MBD and 

no involution had a RR=4.08 (95% CI=1.72, 9.68) [97]. Limited data also suggest that 

TLDU involution levels in tissues surrounding breast cancers may represent a marker of 

etiological heterogeneity. Specifically, TDLUs associated with basal-like cancers showed 

significantly less involution than those surrounding luminal cancers in age-adjusted analyses 

[98].

Molecular histology generally, and TDLU analysis specifically, may offer an objective 

method for breast cancer risk assessment that reflects cumulative effects of exposures on the 

target organ. The approach bypasses concerns related to imperfect recall of medical history 

and may reflect important effects of unknown risk factors and interactions among factors, 

both genetic and environmental [89]. Despite subjectivity, data suggest that visual and 

computer-assisted assessment of TDLU characteristics yield reproducible results [98, 99] 

(and unpublished data). A limitation of TDLU analysis is that it requires access to tissue; 

however, breast biopsies are common and precede a cancer diagnosis among many women. 

Another significant challenge is that when TDLUs are not identified in a biopsy of limited 

dimensions, it is difficult to judge whether this represents complete involution (i.e. most 

TDLUs have been replaced by stroma throughout the breast) or sampling of a non-

representative area.

Improving criteria for visually categorizing TDLU involution and developing image analysis 

tools for quantifying TDLU metrics may increase the utility of this approach for risk 

prediction [99]. It is unclear which metrics of TDLU involution best predict breast cancer 

risk. Given that increased expression of ER in benign epithelium has been associated with 
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elevated breast cancer risk [100], it is hoped that molecular analysis of TDLUs might be 

useful for risk prediction, if valid techniques can be developed.

Conclusion

Developing improved approaches for breast cancer risk assessment offers a potential means 

of targeting interventions to women most likely to benefit, which could lead to reduced 

mortality, lowered costs and more efficient screening. We explore four possible approaches 

for achieving that objective: accounting for etiological heterogeneity; testing for genetic 

susceptibility factors, measurement of MBD and assessment of TDLU involution. These 

topics reflect the overall complexity of breast cancer risk prediction, given the enormous 

diversity among women and the breast cancers that they develop. Future research will reveal 

whether understanding the heterogeneity of this complex disease represents a gateway to 

progress or a challenge to clinical translation.
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Figure 1. 
Digitized mammograms from NCI Polish Breast Cancer Study participants where A and B 

represent breasts of low and high mammographic breast density (MBD), respectively.
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Table 1

Emerging topics in breast cancer risk prediction: Evidence and opportunities

Emerging Topic Sources of Evidence Potential Translation Future Directions

Etiological Heterogeneity

• Differences in risk 
factor associations 
by molecular 
pathology, clinical 
features, behavior 
or pathogenesis of 
breast cancer

• Epidemiological 
case-control and 
cohort studies

• Pooled data from 
consortia

• Identify populations for 
targeted prevention, e.g. 
women at high risk of 
ER+ cancers and 
endocrine agents for 
chemoprevention

• Assess in non-
Caucasian populations

• Identify risk factors for 
rare subtypes such as 
basal-like breast 
cancer

• Identify links between 
risk factors and 
pathways of 
carcinogenesis

Genetic susceptibility

• Genetic markers/
variants 
associated with 
weak and 
moderate 
increases in risk

• Consortia • Integrate with other risk 
factors into prediction 
models

• Implement risk 
stratification to guide 
public health 
guidelines, e.g. 
screening interval

• Identify causal 
variants in genomic 
regions associated 
with risk

• Identify variants 
associated with risk in 
non-Caucasian 
populations

• Conduct exome and 
whole genomic 
sequencing to identify 
rare variants 
associated with risk

Mammographic Breast 
Density (MBD)

• Radiological 
assessment of 
tissue 
composition, 
especially 
percentage or 
amount of non-
fatty tissue

• Epidemiological 
data: cross-
sectional, case-
control, cohort

• Consortia

• Target women with 
high MBD for intensive 
screening

• Monitor change in 
MBD as a “biosensor” 
to assess activity of 
adjuvant or preventive 
agents or effect of other 
interventions

• Understand 
mechanisms mediating 
risk associated with 
high density

• Improve measurement

• Develop methods that 
do not use ionizing 
radiation

• Develop methods for 
measuring changes in 
density over time

Breast Involution

• “Molecular 
histology”: 
evaluate changes 
in normal 
structures as 
markers of risk 
(e.g. Terminal 
Duct Lobular 
Units, TDLUs)

• Epidemiological 
data: cross-
sectional, case-
control, cohort

• Conduct risk 
assessment post-biopsy

• Identify field effects 
surrounding cancers to 
guide local treatment, 
understand 
pathogenesis by tumor 
subtype

• Improve visual criteria

• Develop computer-
assisted image analysis 
tools

• Assess molecular 
markers in histological 
context (e.g. TDLUs)
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