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Abstract

Several EEG parameters are potential endophenotypes for different psychiatric disorders. The 

present study consists of a comprehensive behavioral- and molecular-genetic analysis of such 

parameters in a large community sample (N = 4,026) of adolescent twins and their parents, 

genotyped for 527,829 single nucleotide polymorphisms (SNPs). Biometric heritability estimates 

ranged from .49 to .85, with a median of .78. The additive effect of all SNPs (SNP heritability) 

varied across electrodes. Although individual SNPs were not significantly associated with EEG 

parameters, several genes were associated with delta power. We also obtained an association 

between the GABRA2 gene and beta power (p < .014), consistent with findings reported by others, 

although this did not survive Bonferroni correction. If EEG parameters conform to a largely 

polygenic model of inheritance, larger sample sizes will be required to detect individual variants 

reliably.
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Since Berger (1929) first documented the alpha brain rhythm, the electroencephalogram 

(EEG) has been widely used in a variety of clinical and research contexts. Distinct 

parameters of the EEG signal have proven diagnostic of certain neurological disorders such 

as epilepsy, or states of arousal such as sleep or response to anesthesia. EEG activity is often 

measured in terms of the amplitude of oscillations at differing frequencies, which have 

typically been grouped into different bands, most commonly delta (0.1 – 4 Hz), theta (4 – 8 

Hz), alpha (8 – 13 Hz), and beta (13 – 30 Hz). Changes in the amplitude of activity within 

specific bands are robustly found to be associated with variations in overall arousal level as 

well as with different cognitive or perceptual processes. EEG characteristics of 

neuropsychiatric disorders are subtle, typically consisting primarily of quantitative changes 

in the amplitude of activity occurring at particular frequencies or over specific scalp 

locations corresponding to differing areas of cortex. Nevertheless, EEG recording is 

attractive for use in psychiatry (McLoughlin, Makeig, & Tsuang, 2013), particularly as a 
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means of identifying neurobiological indicators that link psychiatric disorders to genetic risk 

factors (i.e. endophenotypes; Iacono & Malone, 2011).

The present study is an investigation of the heritable and molecular-genetic basis of several 

parameters of EEG activity in a large, population-based sample, motivated in part by notions 

that EEG measures may serve as endophenotypes for different psychiatric disorders. We 

begin by reviewing evidence that EEG parameters satisfy the criteria for an endophenotype 

that we have recently articulated (Iacono & Malone, 2011). Because an endophenotype can 

shed light on the neural and psychological processes implicated in its associated disorder, 

we then briefly summarize the correlates of different parameters of EEG activity. We 

conclude the introduction by summarizing extant genetic research on EEG parameters 

before describing the current study.

EEG parameters as endophenotypes

Endophenotypes are laboratory-based measures of endogenous characteristics of an 

individual that reflect genetic risk for a specific disorder or spectrum of disorders. One 

essential criterion for an endophenotype is strong psychometric properties, such as reliability 

of measurement, and existing research indicates that EEG parameters qualify. Split-half 

reliability estimates have been found uniformly to approach 1 for measures of EEG power in 

different frequency ranges (Kondacs & Szabo, 1999), a measure of the energy in a signal, 

and within-session correlations are relatively robust to the amount of contamination by eye 

movement activity (Gasser, Bacher, & Steinberg, 1985). Test-retest stability estimates are 

typically greater than .80 over two- to four-week (Gudmundsson, Runarsson, Sigurdsson, 

Eiriksdottir, & Johnsen, 2007; Salinsky, Oken, & Morehead, 1991), and have been reported 

to exceed .70, at least for alpha, beta, and theta power, over two to five years (Kondacs & 

Szabo, 1999). Stability estimates for delta power are typically smaller (Gasser et al., 1985; 

Kondacs & Szabo, 1999; Pollock, Schneider, & Lyness, 1991). In addition, individual 

differences in developmental trajectories have been reported that distinguish children with 

autism from normally developing children, and it has been proposed that growth curve 

parameters might constitute promising endophenotypes for autism spectrum disorders 

(Tierney, Gabard-Durnam, Vogel-Farley, Tager-Flusberg, & Nelson, 2012). Individual 

differences in EEG activity are highly heritable (Enoch et al., 2008; D. J. Smit, Posthuma, 

Boomsma, & Geus, 2005; Tang et al., 2007; van Beijsterveldt, Molenaar, de Geus, & 

Boomsma, 1996), with published estimates of heritability on the order of .80. Heritable 

individual differences are particularly evident for alpha power and alpha peak frequency, 

becoming somewhat less prominent toward either end of the power spectrum from the alpha 

band.

There is mounting evidence to suggest that EEG characteristics can serve as candidate 

endophenotypes for disorders characterized by disinhibitory psychopathology, such as 

alcohol abuse and dependence as well as other forms of substance abuse, antisocial 

behavior, and disruptive disorders (e.g., conduct disorder and ADHD). The most common 

finding among alcohol-dependent individuals is increased beta power. This has most often 

been found in studies of individuals in treatment or in active withdrawal (Costa & Bauer, 

1997; Herning et al., 1997; Saletu-Zyhlarz et al., 2004). Greater beta power in such 
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individuals has been found to predict whether they continue in treatment or relapse 

following it (Bauer, 2001; Saletu-Zyhlarz et al., 2004; Winterer et al., 1998). At least one 

study has reported elevated beta power in non-treatment seeking individuals (Rangaswamy 

et al., 2002). Other studies conducted with non-treatment samples have reported increases in 

lower-frequency activity in substance abusers (e.g., theta and delta activity). Increased theta 

activity in particular has been observed in individuals with various forms of disinhibitory 

psychopathology: alcohol dependence (Rangaswamy et al., 2003), heavy marijuana use 

(Struve et al., 1999), antisocial behavior (Ehlers, Phillips, Gizer, Gilder, & Wilhelmsen, 

2010), and ADHD (Barry, Clarke, & Johnstone, 2003). Increases in delta power have been 

reported in community volunteers who were methamphetamine (Newton et al., 2004) or 

MDMA users (Herning, Better, Tate, & Cadet, 2005). Reductions in alpha power have also 

been reported among alcohol-dependent individuals, particularly those with comorbid 

anxiety disorders (Enoch et al., 1995; Enoch et al., 1999) and antisocial behavior (Ducci et 

al., 2009).

An additional criterion of an endophenotype is that it should be present in individuals whose 

genetic makeup is similar to those with the manifest disorder even if the disorder is absent. 

Studies of beta power in first-degree relatives of alcohol-dependent individuals have yielded 

mixed results. Increased beta power has been observed in high-risk offspring (Bauer & 

Hesselbrock, 1993; Rangaswamy et al., 2004) as well as other relatives of alcoholics 

(Pollock, Earleywine, & Gabrielli, 1995), although this is sometimes limited to subjects of 

one gender (Propping, Kruger, & Mark, 1981), to subjects with comorbid antisocial 

behavior (Bauer & Hesselbrock, 1993), or to one way of measuring power (Finn & Justus, 

1999). There have also been reports of null findings (Cohen, Porjesz, & Begleiter, 1991; 

Kaplan, Hesselbrock, O’Connor, & DePalma, 1988; Pollock et al., 1983), and reports of 

reduced alpha power rather than increased beta power (Ehlers & Schuckit, 1991; Finn & 

Justus, 1999). Alcohol ingestion has been found to result in greater beta power increases in 

high-risk individuals relative to low-risk individuals (Ehlers & Schuckit, 1990), supporting 

the notion that there is a familial component to increased beta activity, albeit one that may 

interact with exposure to alcohol.

The disorder in the spectrum of disinhibitory psychopathology in relation to which EEG 

activity is most often studied is ADHD. The most robust finding is of increased theta-band 

activity, as indicated above, along with reduced alpha or beta activity (Barry et al., 2003; 

Rommelse, Geurts, Franke, Buitelaar, & Hartman, 2011). These are sometimes combined 

into a theta/beta or theta/alpha ratio to serve as a neurobiological marker of the disorder 

(Snyder & Hall, 2006). Reduced beta power has also been found to correlate with behavior 

problems and hyperactivity in children (Deckel, Hesselbrock, & Bauer, 1996) and with a 

latent externalizing dimension, including substance abuse symptoms, in a community 

sample of adolescents (Gilmore, Malone, & Iacono, 2010). Thus, although the exact nature 

of EEG characteristics in disinhibitory psychopathology remains to be better delineated, 

especially the conditions governing the direction of change in beta activity (increased or 

decreased), these findings in aggregate suggest that beta EEG power has promise as an 

endophenotype for such disorders.
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EEG has been studied in relation to several other disorders. For instance, increases in both 

alpha and beta power have been reported among individuals with depressive disorders 

(Knott, Mahoney, Kennedy, & Evans, 2001; Pollock & Schneider, 1990). Greater alpha 

power in the right hemisphere relative to the left, a measure with high internal consistency 

(Allen, Urry, Hitt, & Coan, 2004), seems to be a robust indicator of depression (Henriques 

& Davidson, 1990, 1991; D. J. Smit, Posthuma, Boomsma, & De Geus, 2007). Indeed, some 

have considered it a candidate endophenotype for the disorder (Stewart, Bismark, Towers, 

Coan, & Allen, 2010). Inter-hemispheric differences in power have also been observed 

among patients with bipolar disorder (Clementz, Sponheim, Iacono, & Beiser, 1994; Koek et 

al., 1999). A combination of increased slow-wave (delta and theta) power and decreased 

alpha power has been found in bipolar patients (Clementz et al., 1994) and even more 

reliably in patients with schizophrenia (Begic et al., 2011; Clementz et al., 1994; Harris, 

Melkonian, Williams, & Gordon, 2006; Sponheim, Clementz, Iacono, & Beiser, 1994, 2000; 

Sponheim, Iacono, Thuras, Nugent, & Beiser, 2003). However, EEG abnormalities are more 

often reported for schizophrenic patients than their unaffected relatives, suggesting that they 

may reflect disease status, illness progression, or long-term medication effects (Ranlund et 

al., 2014; Venables, Bernat, & Sponheim, 2009), rather than endophenotypic properties.

Changes in EEG activity have also been reported in patients with neurodegenerative 

conditions, such as Alzheimer’s disease, which is characterized by a slowing of the 

dominant (alpha) frequency as well as increases in low-frequency power (Petit, Gagnon, 

Fantini, Ferini-Strambi, & Montplaisir, 2004; Stam, 2005). The anomalies in this case 

appear to reflect the disease process rather than a genetically influenced vulnerability. 

However, understanding the molecular-genetic influences on the EEG parameters 

themselves is relevant.

Neurochemical and psychological correlates of EEG parameters

A potentially important benefit of endophenotypes is that they can convey information about 

specific neurobiological and pathophysiological processes involved in the particular disorder 

with which they are associated (Iacono & Malone, 2011). EEG activity is intimately related 

to the organism’s level of arousal and attention, both of which are directly modulated by 

cholinergic pathways in the ascending reticular formation (Steriade, Gloor, Llinas, Lopes de 

Silva, & Mesulam, 1990). For instance, decreased discharge levels of cholinergic projections 

to basal forebrain neurons results in large EEG slow waves, such as those observed during 

sleep. Noradrenergic modulation complements cholinergic activity during waking states 

(Steriade et al., 1990). In general, the specific form of EEG activity, particularly the 

magnitude of activity and the frequency of EEG oscillations, reflects the balance between 

excitatory and inhibitory neuronal interactions, both within and between populations of 

neurons (David & Friston, 2003). Different frequencies of oscillations in turn are 

consistently associated with particular cognitive and perceptual states. The alpha rhythm, for 

example, originates in multiple thalamocortical projections (Lopes da Silva, Vos, 

Mooibroek, & Van Rotterdam, 1980), and it is typically observed during periods when an 

individual is relaxed but alert. It is most prominent when measured over the visual cortex in 

an individual with eyes closed; it thus appears to reflect an intrinsic rhythm that is greatest in 

amplitude in the absence of sensory load and in a state of inactivity (Goldman, Stern, Engel, 
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& Cohen, 2002). It has been proposed that alpha activity (increased synchronization) serves 

a control function, inhibiting activity in particular neural circuits, which facilitates in turn 

the appropriate timing of cortical processes (Klimesch, Sauseng, & Hanslmayr, 2007) as 

well as protecting against intrusion by irrelevant information into selective attention and 

short-term memory (Foxe & Snyder, 2011; Payne, Guillory, & Sekuler, 2013).

Some individuals exhibit very low levels of alpha activity. Recent studies have indicated 

that such low-voltage alpha (LVA) is associated with anxiety, including anxiety comorbid 

with alcoholism (Enoch et al., 1999). There is also indirect evidence of an association 

between LVA and variance common to antisocial behavior and alcoholism (Ducci et al., 

2009). Robust individual differences are observed for the dominant (or peak) frequency of 

the alpha rhythm, which declines with aging (Obrist, 1979) and neurodegenerative diseases 

such as Alzheimer’s (Stam, 2005). Individual differences in alpha peak frequency have been 

reported to be associated with working memory (Clark et al., 2004) and intelligence (Grandy 

et al., 2013), although not in all studies (Posthuma, Neale, Boomsma, & de Geus, 2001). 

Like alpha power, alpha peak frequency is highly heritable, with estimates of 

approximately .80 (Posthuma et al., 2001; C. M. Smit, Wright, Hansell, Geffen, & Martin, 

2006). Although there is a modest (inverse) phenotypic correlation between alpha power and 

peak frequency, bivariate biometric models fit to twin data indicate that they are genetically 

independent (C. M. Smit et al., 2006).

Whereas alpha activity is largely characteristic of the organism at rest, beta activity is 

associated with active mental states related to emotional or cognitive processing and even 

anxious arousal (Ray & Cole, 1985). Early preclinical research found that increased beta 

activity was observed in cats in hunting situations, which was interpreted as reflecting a state 

of expectancy and inhibition of movement (Steriade et al., 1990). More recent research with 

humans has corroborated the role of ‘sensorimotor’ beta activity in motor inhibition by 

demonstrating that initiating movement is robustly accompanied by decreases in beta power 

(Engel & Fries, 2010). Benzodiazepines, which bind specifically to GABA receptors 

(Tallman & Gallager, 1985), produce increases in beta power (Domino, French, Pohorecki, 

Galus, & Pandit, 1989), which has been interpreted as evidence for a role of GABA in the 

production of beta activity. This hypothesis is supported by findings from empirical work 

and computational modeling approaches (Muthukumaraswamy, Edden, Jones, Swettenham, 

& Singh, 2009; Whittington, Traub, Kopell, Ermentrout, & Buhl, 2000).

Theta-band activity dominates the EEG signal recorded from the hippocampus of most non-

human mammals during wakefulness, and intracranial recordings suggest that theta activity 

in humans is modulated by behavior in similar ways (Steriade et al., 1990). Hippocampal 

theta activity, which is thought to reflect an “on-line” state of the hippocampus (Buzsaki, 

2002), appears to be related to long-term potentiation and thus to memory consolidation 

(Steriade et al., 1990). Theta oscillations have also been observed in prefrontal cortex (PFC) 

(Benchenane, Tiesinga, & Battaglia, 2011). In rodents, coherent theta oscillations between 

hippocampus and PFC are critical for spatial working memory and encoding relevant 

information for long-term storage (Benchenane et al., 2010). In humans, theta oscillations in 

the prefrontal cortex have been linked to working memory performance (Tesche & Karhu, 

2000), and theta activity in the resting EEG has been reported to be associated with reward 
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sensitivity and decision-making that is compromised by preference for immediate reward 

(Massar, Kenemans, & Schutter, 2013; Schutter & Van Honk, 2005).

Candidate gene findings

There have been relatively few studies of genetic variants in relation to EEG parameters, and 

only one finding that has been replicated to date. There have been reports of associations 

between variants in the HTR3B gene, which codes for a serotonin receptor, and reduced 

alpha power, as well as alcohol dependence with comorbid antisocial behavior (Ducci et al., 

2009), between the Val158/Met polymorphism of the catechol-O-methyltransferase gene 

(COMT) and low-frequency power (delta and theta) in schizophrenic patients (Venables et 

al., 2009) and slower alpha peak frequency in normal controls (Bodenmann et al., 2009), as 

well as reports of associations between asymmetry in EEG activity and candidate genes 

(Bismark et al., 2010; Bulgin et al., 2008). The ε4 allele of the apolipoprotein E (APOE) 

gene, which confers risk for Alzheimer’s dementia (Elias-Sonnenschein, Viechtbauer, 

Ramakers, Verhey, & Visser, 2011), has been found to be associated with reduced alpha 

power (Ponomareva, Korovaitseva, & Rogaev, 2008). Most importantly, this association has 

been observed in healthy young adults (Lee et al., 2012). A similar association has been 

reported (Ponomareva et al., 2013) between reduced alpha power and a variant of the CLU 

gene (encoding glycoprotein clusterin, or apolipoprotein J), which also confers risk for 

cognitive impairment in later life (Golenkina et al., 2010; Harold et al., 2009; Lambert et al., 

2009). Although it was once thought that LVA was due to a single dominant gene (Anokhin 

et al., 1992; Vogel, 1986), this hypothesis has not been borne out. Recently, associations 

have been reported in women between LVA and the Val158/Met polymorphism in COMT 

(Enoch, Xu, Ferro, Harris, & Goldman, 2003) as well as a polymorphism in the GABAB 

receptor gene, independent of gender (Winterer et al., 2003). Other candidate gene findings 

exist (Loo et al., 2010), although involving a different type of polymorphism than a SNP, 

which is the focus of the present investigation.

Genome-wide studies

Several studies have taken the approach of examining the entire genome, rather than 

focusing on a single candidate gene. Linkage analysis uses markers consisting of 

polymorphisms varying either in sequence or size in samples comprising families. If a 

marker is coinherited with a trait, the two are said to be linked, and the gene that influences 

the trait is thought to be located near the marker. However, such markers tend to be widely 

spaced, and linkage analysis can only identify a chromosomal region, or “hot spot,” and not 

individual variants. An early analysis found linkage between beta power and a region of 

chromosome 4 (Porjesz et al., 2002). Subsequent analysis of individual SNPs to determine 

the source of this signal obtained significant associations between beta activity and SNPs in 

the gene that encodes the GABA α2 receptor subunit (GABRA2) (Edenberg et al., 2004). A 

recent case-control study of alcohol dependence obtained significant associations between 

beta activity and several GABRA2 SNPs (Lydall et al., 2011). Although characterizing 

EEGs as dominated by beta or not, rather than evaluating quantitative measures of power, 

this study broadly corroborated the beta power-GABRA2 association. Another genome-wide 

linkage scan reported an area of linkage between alpha and beta power and a region of 
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chromosome 5. Follow-up association analysis focused on the gene coding for corticotropin 

releasing hormone binding protein (CRHBP) obtained a significant association with alpha 

EEG power as well as alcoholism and anxiety (Enoch et al., 2008).

GWAS represents a potentially powerful genome-wide approach. Because it is atheoretical, 

it is immune to any claims of cherry picking that can be made about candidate gene studies. 

The genotyping arrays contain many more variants than can be examined in linkage 

analysis, facilitating the identification of specific causal variants, and judicious selection of 

markers that “tag” others makes it possible to obtain much more comprehensive coverage of 

the genome. Moreover, EEG rhythms appear to reflect common characteristics of the 

mammalian brain, which suggests that a “common disease [phenotype]–common variant” 

model of inheritance is particularly appropriate. Genotyping arrays used in GWAS are 

designed to assess such common genetic variants. However, only one GWAS of resting 

EEG parameters has been conducted to date, which did not demonstrate significant 

associations with variants in any of the genes reviewed above that have been reported to be 

associated with EEG parameters. It demonstrated instead an association between theta 

power and several SNPs in the SGIP1 gene, involved in neurotransmission through synaptic 

vesicle formation (Hodgkinson et al., 2010). This finding was replicated in the same study 

and related to alcoholism as well. However, a subsequent study failed to replicate either 

finding (Derringer et al., 2011). Thus, our understanding of the molecular-genetic basis of 

EEG parameters remains extremely limited.

The current study

The present investigation consisted of an analysis of EEG parameters in a large population-

based sample of adolescent and adult participants from three independent cohorts of the 

Minnesota Center for Twin and Family Research (MCTFR) who had been genotyped for 

527,829 SNPs. The analysis plan for the GWASs in this special issue is described in depth 

in Iacono, Malone, Vaidyanathan, and Vrieze (2014). In brief, we examined the power of the 

EEG signal in four frequency ranges as well as the peak frequency of the alpha rhythm using 

a four-pronged approach: estimate the heritability of each EEG parameter using twin and 

twin-family biometric models; estimate the total genetic variance in each parameter 

accounted for by all SNPs in aggregate by means of genome-wide complex trait analysis 

(GCTA; Yang, Lee, Goddard, & Visscher, 2011); assess associations between each 

individual SNP and EEG parameters in a GWAS; and assess associations between 

individual genes and EEG parameters by aggregating the effect of all SNPs in a gene using 

VEGAS, a versatile gene-based test for association studies (Liu et al., 2010). Analyses of 

individual SNPs and genes comprised both purely atheoretical analyses of the whole 

genome as well as more targeted analyses of candidate genetic variants.

Method

Participants

As described in Iacono et al. (2014), the sample is a subset of the larger sample in a recent 

family-based GWAS of substance abuse and related psychopathology conducted at the 

Minnesota Center for Twin and Family Research (MCTFR) (McGue et al., 2013; Miller et 
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al., 2012). Participants for the present investigation are from the older and younger cohorts 

and enrichment samples of the Minnesota Twin Family Study (MTFS; Iacono, Carlson, 

Taylor, Elkins, & McGue, 1999; Keyes et al., 2009; McGue et al., 2013). The sample for 

this investigation comprised all twins who completed their age-17 laboratory assessment of 

twins and all parents who had completed an identical laboratory assessment. (See Iacono et 

al., 2014 for further details.) Participants in MCTFR studies gave written informed consent 

or assent, if under the age of 18, to participate in the initial study as well as to allow data 

used in GWASs to be placed in a public repository to be shared with other researchers.

The sample is broadly representative ethnically of the state of Minnesota during the relevant 

birth years; it is thus predominantly Caucasian (96%). To avoid population stratification of 

allele frequencies, which confounds genetic analyses, we limited this investigation to 

Caucasian subjects, based on self-reported ethnicity corroborated by principal component 

analysis (PCA) of genotype data (Iacono et al., 2014; Miller et al., 2012).

EEG recording

Participants sat in a comfortable chair with neck support in a darkened room and were 

instructed to close their eyes and relax as completely as possible. EEG data were collected 

continuously for 5 min. Data were collected over the course of more than 20 years using two 

different systems. For participants in the MTFS older and younger cohorts (71% of the 

sample), EEG was recorded via Grass Neurodata 12 systems (128-Hz sampling rate, 

passband from 1 to 30 Hz with a rolloff of 6 dB). Hardware constraints limited the number 

of signals recorded. EEG was recorded from the bipolar derivations O1–P7 and O2–P8 and 

from Cz referenced to linked earlobes. Eye blinks and other eye movements were recorded 

by means of a transverse electrode arrangement, with one superior to the eye and one on the 

outer canthus. For participants in the ES sample (with the exception of 14 subjects), a 

Biosemi ActiveTwo system was used to collect continuously recorded EEG data with a 

sampling rate of 1024 Hz. ActiveTwo amplifiers are DC-coupled, and signals were lowpass-

filtered using a digital 5th-order Bessel anti-aliasing sinc filter with a cutoff frequency (3-dB 

attenuation) of 205 Hz. ActiveTwo signals are monopolar.

EEG processing

Data processing was conducted in MATLAB® (2009a, The Mathworks, Natick, MA) using 

identical methods for both systems, based on functions in the Psychophysiology Toolbox 

(http://sourceforge.net/projects/psychophys/) and custom scripts. Biosemi data were 

transformed to be comparable to the original data. Data were downsampled using the Matlab 

resample function. The signal from Cz was referenced to an algebraic average of the two 

ears, whereas the signals from O1 and O2 were referenced to P7 and P8, respectively. All 

signals were filtered with finite impulse response (FIR) filters and a Kaiser window as 

implemented in the firfilt plugin to EEGLAB (Delorme & Makeig, 2004): a highpass filter 

with a half-amplitude cutoff frequency of 1 Hz (1-Hz transition band, filter order of 1286, 

ripple of .0001) and subsequently a lowpass FIR filter with a half-amplitude cutoff 

frequency of 30 Hz (transition band of 20 Hz, filter order of 24, ripple of .0001). A 

transverse EOG lead was created from the appropriate pair of monopolar electrodes.
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Notes recorded when the data were originally collected guided us in visually identifying 

problematic data that might need to be excluded. In addition, segments containing transient 

artifacts and excessively small or large voltage deflections were tagged for exclusion by 

computer algorithm. We used a robust version of Mahalanobis distance from the robustbase 

package (Rousseeuw et al., 2011) in the R statistical programming environment (R 

Development Core Team, 2010) to identify multivariate outliers with respect to all three 

leads and EEG power in all bands as well as total power. Data for which the robust 

Mahalanobis distance fell in the upper 10th percentile of the cumulative chi-square 

distribution were flagged for review and excluded if visual inspection of the raw data 

indicated that the data were contaminated by noise (e.g., high-frequency noise) or artifacts 

(e.g., electrocardiogram) or if the EEG showed clear signs of drowsiness or sleep (e.g., 

approximately 6-Hz theta bursts, sharp vertex waves). Individual recording sites were 

excluded from analyses if fewer than 45 artifact-free sweeps were available.

We excluded 68 subjects for use of alcohol, marijuana or other illicit drug the day of the 

assessment; a history of serious head injury; neurological disorders; medication likely to 

affect psychophysiological responses; not refraining from taking medication for ADHD, 

such as methylphenidate, the day of their assessment, as was requested of all adolescent 

participants. An additional 110 subjects were excluded for recording problems that made the 

data unusable.

In addition, we compared all subjects who reported sleeping or were noted to have fallen 

asleep by the experimenter (n = 252) to the remaining subjects with respect to different 

measures of EEG power in a series of univariate analyses using lme4 in R to conduct a 

linear mixed model (LMM) with a random intercept at the family level to accommodate the 

dependency of EEG measures within families. Age, gender, age cohort, and recording 

system were included as covariates (see below). Eleven of the 12 LMMs yielded significant 

effects, with a clear trend: subjects observed to fall asleep had greater low frequency power 

(theta and delta, t-statistics ranging from 2.64 to 9.28 across electrodes and the two bands) 

and less high frequency power (alpha and beta, t-statistics ranging from −0.90 to −5.08 

across electrodes and bands). Only beta power at Cz did not show a significant effect, 

although the direction of effect was the same as the direction in the occipital-parietal 

locations. In addition, peak alpha frequency at the occipital sites (described below) was 

slower among those reported to sleep (t-statistics of −2.62 and −2.99). As a result, these 

subjects were excluded. The final sample consisted of 4,026 individuals, 2,383 adolescents 

(1,153 males) and 1,643 adults (903 males) from 1,613 families. The majority of families 

were MZ twin families (1038, or 64%). The mean age was 17.7 (range, 16.6–20.0) for 

adolescent participants and 45.1 (range, 29.6–65.3) for the parents.

Continuous EEG data were divided into 2-s half-overlapping segments (i.e., Welch’s 

method). For each 2-s segment, the mean voltage was subtracted from the data and the 

resulting mean-centered data were tapered with a 50% Hanning window. The Fast Fourier 

Transform, as implemented in Matlab, was used to obtain spectral power estimates, which 

were averaged across all segments. Mean power estimates were calculated for each of four 

frequency bands: delta (0.5 to 3.5 Hz), theta (4 to 7.5 Hz), alpha (8 to 12.5 Hz), and beta (13 

to 30 Hz). The natural logarithm of mean power in each band was used in analyses (cf. Pivik 
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et al., 1993; Pizzagalli, 2007). In addition, we examined the peak (dominant) frequency in 

the alpha band. For this purpose we padded the (tapered) data with 0s to a series length of 

1024, which yielded a frequency resolution of 0.125 Hz, rather than the 0.5-Hz resolution of 

the original data. We used “gravity frequency” (see Klimesch, 1999 for a discussion), which 

involves weighting power estimates at each spectral frequency within the alpha band by its 

corresponding frequency, represented in the formula Σ(a(f) × f)/Σ a(f) where a(f) represents 

power at a given frequency, f. This weighted frequency measure is particularly 

advantageous when the power spectrum consists of multiple peaks in the alpha band 

(Klimesch, 1999). We calculated peak frequency between 7 and 14 Hz.

Molecular-genetic data

As is common, we used PCA as implemented in EIGENSTRAT (Price et al., 2006) to 

identify the major dimensions of genetic variation in our sample of Caucasian subjects, and 

the 10 components (PCs) accounting for the most variance were included as covariates in 

our GWAS to control for any remaining population stratification (cf. Price et al., 2006). 

Genomic inflation statistics from genome-wide analyses were subsequently examined for 

evidence of meaningful residual population stratification.

Phenotypes

We analyzed log-transformed power in each of the four frequency bands as well as total 

power at Cz. Bipolar leads act as a spatial high pass filter and minimize contributions from 

far sources, which makes our two bipolar leads particularly useful for measuring alpha 

activity arising from occipital-parietal areas. Log-transformed alpha power estimates and 

peak alpha frequency estimates from the bipolar leads were highly correlated (r = .94 for 

both). We therefore averaged them into a single measure of alpha power and alpha peak 

frequency, respectively. There were 3,966 subjects with occipital-parietal data and 3,948 

with data from Cz. We used as covariates in all analyses generation (parent or adolescent 

twin), gender, and chronological age. We also included a dummy variable representing 

recording system (Biosemi or Grass) and the 10 PCs from EIGENSTRAT as covariates (cf. 

Iacono et al., 2014).

Statistical analyses

Biometric heritability—The amount of heritable variance in each measure was estimated 

using standard biometric approaches to modeling twin-family data (Neale, Boker, Xie, & 

Maes, 2003). All measures were adjusted for the effects of covariates (chronological age, 

gender, generation cohort, recording system, and the 10 EIGENSTRAT PCs), and biometric 

models fit to the residuals. In typical biometric models three latent variables account for the 

variance in each phenotype: additive genes (A), common or shared environment (C), and 

unique or unshared environment (E). The correlations among family members with respect 

to the three latent variables determine the within-family phenotypic correlations. For 

instance, the family environment is shared equally by all family members, so the correlation 

for C is 1, whereas DZ twins and parents and offspring share half their genes, so the genetic 

correlation is 0.5 in these pairs but 1 in MZ twins. E is by definition unique to each 

individual. Models were fit to data from four-member families as well as based only on 
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twins, the latter to facilitate comparisons between the present results and published data, 

which is predominantly based on twin data. Additional detail concerning our model-fitting 

approach is provided in Iacono et al. (Iacono et al., 2014). As noted in that paper, we also 

evaluated possible dominance (D) effects, and fit and report the results of ADE model fitting 

in the twin sample where appropriate. Because variances tended to differ between males and 

females as well as between adolescents and adults (see Table 2 in Iacono et al., 2014, this 

issue), dummy variables representing these two characteristics were included as (scalar) 

moderators of phenotype variance in our biometric models.

SNP heritability—In addition, we estimated the proportion of variance in each EEG 

parameter accounted for by the combined additive effect of all Illumina markers (and those 

in linkage disequilibrium, or LD, with them) using GCTA (Yang et al., 2011). GCTA 

estimates the degree of phenotypic similarity among genetically unrelated individuals, which 

is then assumed due to the specific genetic variants they share. Genotypic similarity is 

represented in the form of a genetic relatedness matrix (GRM), which resembles a 

correlation matrix representing pairwise genetic similarity. In samples consisting of closely 

related individuals, Yang and colleagues (Yang, Lee, Goddard, & Visscher, 2013) have 

recommended filtering the sample by means of several thresholds of genetic relatedness in 

order to look for consistency across the resulting estimates. We used thresholds of .025, .05, 

and .10, which remove all but distant relatives. The same covariates were used as in all other 

analyses (age, gender, generation, recording system, and the 10 PCs from EIGENSTRAT). 

Because LD can bias SNP heritability estimates upward (Speed, Hemani, Johnson, & 

Balding, 2012), we repeated the three analyses after weighting SNPs by local LD patterns. It 

has been recommended more recently when the sample consists of closely related 

individuals to estimate the total genetic variance while modeling the environmental 

influences family members share (the C latent variable in biometric models) (Yang et al., 

2013). This produces an estimate of genetic influence unconfounded by shared 

environmental influence. In addition to this, we conducted the same analysis without 

modeling shared environmental influences (i.e., without any threshold of genetic 

relatedness). These two analyses, one that models C and one that does not, allowed us to 

assess the influence of shared environmental effects by comparing the two estimates.

SNP effects: Genome-wide scan—Our sample consists of individuals nested within 

families, which creates a correlation that violates the assumption of independent residuals in 

regression analyses. We used Rapid Feasible Generalized Least Squares (RFGLS; Li, Basu, 

Miller, Iacono, & McGue, 2011), a computationally efficient form of generalized least 

squares, to account for this source of dependency. Correlations are estimated separately for 

MZ and DZ twin families; the 65 stepparents in the present sample (61 of them male) were 

treated as independent observations. Additive SNP effects were modeled, with each SNP 

represented as a count of the number of minor alleles. The conventional threshold for 

genome-wide significance of 5 × 10−8 was used to evaluate the significance of each SNP.

SNP effects: Candidate SNPs—Subsequent to this genome-wide scan, we examined 

associations with two targeted sets of candidate SNPs: those implicated in previous genetic 

studies of EEG (18 EEG-specific candidate SNPs) and those implicated in recent meta-
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analyses of disorders and traits that are themselves associated with the endophenotypes 

examined in this special issue (1,180 endophenotype-general candidate SNPs). The papers 

we consulted for SNPs were identified through MEDLINE and are listed in the 

Supplementary Material. SNPs not on the Illumina array were imputed using minimac 

(Howie, Fuchsberger, Stephens, Marchini, & Abecasis, 2012) with reference CEU 

haplotypes from 1000 Genomes (2/2012) after having been prephased with BEAGLE 

(Browning & Browning, 2009). Imputation produces an allele dosage for each SNP, which 

is a weighted sum of the minor allele frequency (0, 1, or 2) and the posterior probability that 

the imputed SNP belongs to each of these frequency categories. The sum of minor allele 

dosages constituted the independent variable in these analyses.

Gene effects: Genome-wide scan—We used VEGAS (Liu et al., 2010) to conduct 

gene-based tests of all 17,601 genes identified by VEGAS, to parallel our genome-wide scan 

of individual SNPs. VEGAS aggregates the effects of all SNPs within a gene by converting 

the p-values for each SNP into a chi-squared statistic and summing these into a single score, 

which is adjusted for LD between the SNPs (see Iacono et al., 2014). In order to capture 

regulatory SNPs and those in LD with SNPs in the gene proper, VEGAS includes all SNPs 

within 50 kilobases of each end of the gene. Because the p-values were produced by 

RFGLS, they accurately reflect the clustered nature of our sample. The null distribution of 

the test statistic in the presence of LD is determined using Monte Carlo methods and the LD 

structure of a reference sample from HapMap, for which purpose we used the CEU sample 

of Caucasians. A Bonferroni-corrected threshold of 2.84 × 10−6 was used to determine 

statistical significance.

Gene effects: Candidate genes—We evaluated three sets of candidate genes. The first 

comprised a small number of candidate genes (n = 16) previously reported to be associated 

specifically with EEG measures (EEG-specific candidate genes). (One of the 14 genes in 

this set has been reported to be associated with three different EEG parameters. We treated 

each as independent associations.) One of the candidate genes was APOE. Because the 

APOE ε4 risk allele is defined by two SNPs, we did not use VEGAS, which aggregates over 

SNPs within a gene and flanking it, to evaluate its role. Although not on the Illumina array, 

these two SNPs could be imputed relatively accurately with reference to haplotypes in the 

1000 Genomes reference panel, with imputation r2 values of .875 and .911. We created a 

dummy variable coding for risk, consisting of either the ε3/ε4 or ε4/ε4 haplotypes, and 

examined its effect on both measures of alpha power in RFGLS analyses using the same 

covariates as in all other analyses.

The second candidate set consisted of 204 candidate genes that are likely relevant to 

understanding genetic influences on all of the endophenotypes examined in this special issue 

because they are part of the major neurotransmitter and neuromodulator systems systems 

(dopamine, noradrenaline, acetylcholine, GABA, glutamate, and serotonin), they are 

involved in metabolizing nicotine and alcohol, or they are part of the endogenous 

cannabinoid and opioid systems. We consulted the NeuroSNP database to identify relevant 

genes {Saccone, 2009 #558}. The third set of candidate genes comprised autosomal 92 
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genes found to be associated with one or more endophenotypes for schizophrenia by the 

Consortium on the Genetics of Schizophrenia (Greenwood et al., 2011).

Results

Table 2 in Iacono et al. (2014) in this issue presents descriptive statistics for all measures. 

The distribution of each measure, after it had been adjusted for all model covariates, is 

characterized graphically in Figures S1 to S7. These indicate that the assumption of 

normality required by regression models is reasonably well met. Correlations among the 

measures are provided in Table S3 of the supplement to Vrieze et al. (2014) in this issue and 

are illustrated graphically in the form of a heatmap in Figure 2 in Iacono et al. (2014).

Heritability from biometric models

Family correlations from RFGLS, which have been adjusted for effects on mean levels of 

the various model covariates, are presented in Table 1. The median correlation was .80 for 

MZ twin pairs, .39 for DZ pairs, and .27 for parents and offspring. The mother-father 

correlation was essentially 0. Overall, the pattern of correlations is consistent with 

substantial additive genetic influence and negligible shared environmental influence (Iacono 

et al., 2014). Table 2 presents estimates of the proportion of genetic and environmental 

variance in each EEG measure from ACE models, along with confidence intervals. These 

are estimated from data from all four family members as well as from MZ and DZ twins 

only. Heritability estimates were uniformly large, ranging from .49, for delta power, to .85, 

for beta power, with a median of .78. Estimates were very similar for family-based models 

and those based only on twins, especially for the higher frequencies and total power. The 

remaining variance was due to unique environmental influence; point estimates of common 

environmental influence were 0 with two exceptions: alpha power for both the occipital 

measure and Cz in the twin model. The upper limit of 95% confidence intervals around C 

was not greater than .02 for estimates from family data, although it ranged as high as .20 for 

estimates from twin data.

SNP heritability

SNP heritability estimates are presented in Table 3. Values are provided for each threshold 

of genetic relatedness used to create subsamples of unrelated individuals, and are based on 

unweighted SNPs as well as SNPs that had been weighted SNPs by local LD patterns to 

attenuate the effects on SNP heritability estimates of high levels of LD with causal SNPs. 

Because estimates are based on unrelated individuals, standard errors are quite large. Our 

interest is in patterns in the point estimates. As expected, the weighted estimates tend to 

have smaller point estimates and larger SEs, both of which are arguably appropriate (Speed 

et al., 2012). The occipital-parietal measures of alpha power and peak frequency produced 

median point estimates of .45 and .48, respectively, across the two methods and three 

thresholds of genetic relatedness, which were consistently larger than the Cz estimates, 

including the estimate for alpha power at Cz. SNP heritability estimates for alpha and beta 

power at Cz were relatively modest, with median values of approximately .20. Estimates for 

the other parameters tended to be quite small, although those for delta varied somewhat 

across thresholds and methods.
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Finally, we include estimates based on the entire sample, whether by not imposing a 

threshold of genetic relatedness or by modeling shared environmental influences. These 

were virtually identical, suggesting that shared environmental influences were unimportant 

overall (an inference confirmed by GCTA estimates of shared environmental influence). 

Estimates also closely approximated the biometric heritability estimates.

SNP effects: Genome-wide scan

Figures 1–7 consist of Q-Q plots for each of the EEG measures of observed p-values against 

expected p-values under the null distribution, using the additive inverse of log10(p) to 

emphasize small p-values. There is no evidence in these plots of inflation that might be due 

to population stratification in allele frequencies unrelated to outcome measure. Genomic 

inflation factors associated with each analysis are close to 1, ranging from .97 to .99, 

confirming that the observed values conform to our expectation. In addition, however, none 

of the p-values approaches the significance threshold of 5 × 10−8. Figures 8–14 give the 

corresponding Manhattan plots, which order values of −log10(p) by the location of the SNP 

associated with it on each chromosome. These are unremarkable and do not reveal any 

obvious local signal. Results for all SNPs associated with p-values less than 10−4 are 

documented in Tables S1–S7.

SNP effects: Candidate SNPs

We specifically examined 18 SNPs identified by Hodgkinson and colleagues (2010); none 

of these EEG-specific candidate SNPs was significant (all p-values > .40) (Table S8). 

Regression coefficients and p-values for SNPs in our set of endophenotype-general 

candidate SNPs, selected because they are associated with relevant phenotypes, are 

presented in Tables S9–S15. None of the 1,180 SNPs in this set was associated with a p-

value that survives Bonferroni correction (α = .05/1180 = 4.24 × 10−5). The smallest p-value 

for each EEG measure ranged from 1.71 × 10−3 to 6.94 × 10−4.

Gene effects: Genome-wide scan

Our gene-based test of 17,601 genes on autosomal chromosomes yielded two genes 

associated with delta power that survive Bonferroni correction (α = 2.84 × 10−6): DEFA4 

and DEFA6 on chromosome 8 (both p-values < 1 × 10−6). Both encode defensins, a family 

of peptides thought to be involved in host defense. DEFA4 encodes a protein expressed in 

neutrophils (leukocytes) (i.e., in the blood) that inhibits corticotropin stimulated 

corticosterone production, and DEFA6 encodes a protein that is highly expressed in the 

bowel. These two genes are located in close proximity to each other. We followed up this 

finding by using RFGLS to analyze SNPs imputed with reference to 1000 Genomes to 

provide denser coverage of this region than the Illumina array provided. Results are plotted 

in Figure S8 in the supplement to this article. None of the imputed SNPs yielded a genome-

wide significant p-value. The smallest p-values largely fall between the two genes and 

appear to represent a single signal.
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Gene effects: candidate genes

RFGLS analyses of APOE ε4 risk status indicated that although risk was associated with 

reduced alpha power at both occipital-parietal and vertex sites, neither association was close 

to significant (both p-values greater than .45). VEGAS results for the remaining 15 genes 

(gene–EEG parameter associations) in our set of EEG-specific candidate genes are provided 

in Table 4. None survived correction for the number of tests (α = 3.12 × 10−3). Two 

associations were nominally significant (p < .05): between GABRA2 and beta power, and 

between CRH-BP and alpha power at Cz (although this was not observed for occipital-

parietal alpha power). As in Derringer et al. (2011), we did not obtain a significant 

association between SGIP1 and theta power.

The association between beta power and the GABRA2 gene produced the smallest p-value. 

Because there is stronger prior evidence for this association than the other candidate genes 

(other than possibly APOE ε4), we elected to follow it up. In order to compare the present 

results to published findings, it was necessary to impute SNPs in the gene with reference to 

1000 Genomes because these SNPs were not on the Illumina genotyping array. This also 

provided finer coverage of the gene. Results are plotted in the top panel of Figure 15, which 

indicates that a large segment at the 3′ untranslated region (UTR) and the region 

immediately flanking it yielded somewhat elevated and relatively homogeneous –log10(p), 

although none was genome-wide significant. Table 5 shows p-values from the two previous 

studies of this gene (Edenberg et al., 2004; Lydall et al., 2011) and the present study. 

Although all SNPs were imputed in our data, with a single exception imputation r2 values 

uniformly approached 1. Ten SNPs with nominally significant associations (p < .05) in 

previous studies and the present one are highlighted. In all, 18 SNPs in our data were 

associated with beta power at this level of significance. Substantial pairwise LD 

characterizes this region of the chromosome. Table 5 therefore includes the median LD 

statistic (r2) for each SNP in relation to all others. These values tend to be quite close to 1 

for the majority of SNPs, suggesting a high level of dependency among them, and therefore 

that the nominally significant p-values represent a single signal.

GABRA2 contains two large haplotype blocks, and a synonymous SNP in the exon of the 

GABRA2 gene, rs279858, tags a haplotype that is correlated with severity of alcoholism and 

is itself associated with heavy drinking (Enoch, 2008). This SNP was not on the Illumina 

array but could be imputed successfully (with an r2 of .960), and the risk allele, G, was 

associated with reduced beta power in our sample, t = −2.46, p = .014. To assess the degree 

to which there might be an additional signal in GABRA2, we repeated our analysis of 

imputed SNPs, this time including each individual’s dosage for rs279858 as a covariate. 

Adjusting for this SNP substantially reduced the magnitude of associations between the 

other SNPs in the gene and beta power, presented graphically in the bottom panel of Figure 

15. rs511310, which previously had yielded the smallest p-value and which is not in strong 

LD with the other SNPs (median across all SNPs in the gene, 0.09) remained the SNP with 

the strongest effect.

Analyses of the 204 genes in our set of endophenotype-general candidate genes produced 

one association that survived Bonferroni correction (α = 2.45 × 10−4): GABRA1, which 
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encodes the α1 receptor for GABA, was associated with delta power, p = 2.33 × 10−4. 

GABRA1 has been associated with several drinking-related behaviors and consequences in 

the COGA sample (Dick, Plunkett, et al., 2006). Association results for all EEG measures 

are presented in Tables S16 to S22. Analyses of 92 genes in our set of schizophrenia 

endophenotype candidate genes are presented in Tables S23 to S28. None of the genes was 

associated with any EEG endophenotype at a level that survived Bonferroni correction (α = 

5.43 × 10−4).

Discussion

Biometric and SNP heritability of EEG parameters

Biometric model-fitting analyses indicated that a substantial proportion of the variation in 

the different EEG measures examined in this study reflects heritable individual differences, 

with a median heritability estimate of .78. Measures of alpha and beta power as well as 

alpha peak frequency were particularly heritable, with estimates of additive genetic 

influence ranging from .79 to .85. These results, derived from fitting biometric models to 

both family and twin data, are consistent with the substantial heritability estimates obtained 

in previous research (Enoch et al., 2008; D. J. Smit et al., 2005; Tang et al., 2007; van 

Beijsterveldt et al., 1996), particularly for the higher frequencies.

GCTA analyses indicated that, although point estimates varied somewhat across 

endophenotypes, all SNPs on the Illumina array in aggregate (as well as those in LD with 

the Illumina markers) accounted for a substantial proportion of the variance only in 

occipital-parietal measures (alpha power and alpha peak frequency). SNP heritability 

estimates were smaller on the whole for power measures from Cz, especially in the lower 

frequencies. The large standard errors associated with these estimates make definitive 

inferences impossible. However, the heritability estimates provide a rough idea of the degree 

to which common variants influence each endophenotype. In general, they seem to influence 

alpha power and peak frequency at occipital-parietal sites to a greater degree than the 

measures from the vertex. Of the measures from Cz, common variants may influence alpha 

and beta power somewhat more than measures of power in the lowest frequencies, 

especially the theta band. This difference between higher and lower frequencies may reflect 

the fact that activity in higher frequencies predominate in the resting EEG, whereas lower-

frequency activity is more vulnerable to artifacts and can reflect drowsiness, which may 

have escaped our data-cleaning procedure. In general, the SNP heritability estimates from 

measures derived from the Cz electrode fell short of the biometric estimates, thus indicating 

that genetic effects other than those captured by the common SNPs on the Illumina chip 

contribute to the observed biometric heritability.

Analysis of individual variants

Despite the findings that the various measures are likely substantially influenced by additive 

genetic effects, analyses of individual SNPs did not yield any evidence of genome-wide 

significant associations. Gene-based tests of all autosomal genes, which aggregate over all 

SNPs in a gene rather than examining each SNP by itself, did, yielding evidence of 

association between delta power and two genes. However, they are most highly expressed 
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outside the brain, and the proximity of the two genes to each other suggests that this 

represents one signal, which is likely to be a false positive. Our analysis of 204 candidate 

genes selected because they are likely relevant to understanding EEG measures or related 

phenotypes also yielded an association between delta power and GABRA1, a gene that 

encodes the α1 subunit of the GABA receptor. GABRA1 has been associated with measures 

of alcohol consumption (Dick, Plunkett, et al., 2006). However, evidence of GABA system 

involvement in EEG is limited to high frequencies (Whittington et al., 2000). In addition, 

given the number of tests across different EEG measures, this one finding must be treated 

cautiously.

Our analyses of EEG-specific candidate genes corroborated Derringer et al. (2011) in failing 

to replicate the finding of an association between SGIP1 and theta power (Hodgkinson et al., 

2010). Perhaps our most compelling gene-related finding was an association between beta 

power and the GABRA2 gene, which has been reported previously by two independent 

groups (Edenberg et al., 2004; Lydall et al., 2011; Rangaswamy et al., 2002). We 

specifically found an association between the G allele of rs279858, a synonymous exonic 

variant in GABRA2, and reduced beta power. This allele tags a haplotype that confers risk 

for heavy drinking and an early onset of alcohol dependence (Enoch, 2008). Our finding is 

thus consistent with evidence that beta power is reduced in alcohol dependence and related 

disinhibitory psychopathology. As others have indicated, GABRA2 is a plausible candidate 

for association with beta power in particular. GABRA2 encodes the α2 subunit of the 

GABAA receptor, and inhibitory GABAergic interneurons are centrally involved in 

producing high frequency oscillations, particularly those in the beta and gamma range. The 

specific frequency of oscillations in neuronal networks is dependent on the magnitude and 

kinetics of inhibitory synaptic potentials between interneurons mediated specifically by 

GABAA receptors (Whittington et al., 2000). Of course, this is not the only source of beta 

activity; coherent oscillations of excitatory neurons represent another important mechanism 

(Whittington et al., 2000). Nevertheless, GABAergic activity is clearly particularly 

important for “inhibition-based” high-frequency rhythms. In addition, a number of studies 

have reported associations between the GABRA2 gene and externalizing spectrum disorders, 

such as heavy drinking or alcohol or drug dependence (Agrawal et al., 2006; Bauer et al., 

2007; Covault, Gelernter, Hesselbrock, Nellissery, & Kranzler, 2004; Drgon, D’Addario, & 

Uhl, 2006; Edenberg et al., 2004; Enoch, Schwartz, Albaugh, Virkkunen, & Goldman, 2006; 

Fehr et al., 2006; Soyka et al., 2008), perhaps with anxiety (Enoch et al., 2006), and 

antisocial personality (Dick, Agrawal, et al., 2006; Dick, Bierut, et al., 2006), or related 

personality traits (Villafuerte, Strumba, Stoltenberg, Zucker, & Burmeister, 2013). GABRA2 

has been implicated in schizophrenia as well (Volk et al., 2002). These disorders are 

typically characterized by altered magnitude of EEG beta activity. However, associations 

between GABA system genes and alcohol use and abuse have not been replicated in the 

MCTFR data (Irons et al., 2014).

Limitations

The most obvious limitation of the present study is that only a few EEG electrodes were 

included, providing sparse coverage of the scalp. In particular, we did not have electrodes 

over frontal brain regions, which may have led us to fail to detect some associations, 
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including our failure to replicate the finding of an association between SGIP1 and theta 

activity obtained in the only other GWAS of EEG parameters (Hodgkinson et al., 2010). Our 

sample also comprised two different age cohorts: individuals in late adolescence and adults, 

who ranged considerably in age but were primarily middle-aged. This was required in order 

to have as large a sample as possible. Although our analyses accounted for differences 

between age cohorts in mean levels of EEG parameters, it may be that the genetic influences 

expressed during these different developmental periods are different. Even with the 

combined age cohorts, our sample was small by current standards (although not by the 

standards in place when we began this investigation). In addition, to the degree that 

dominance effects influence these EEG parameters, we will have overestimated the 

magnitude of additive genetic influence in our biometric model-fitting analyses (i.e., the 

narrow sense heritability of each endophenotype). However, the evidence for such effects in 

ADE twin models was extremely weak.

Conclusions

Null findings are now the norm in individual GWASs, and they are often taken as an 

indication of polygenic inheritance; common phenotypes are due to a large number of genes, 

each with very small effect, such that individual GWASs are underpowered to detect them. 

Thus, individual GWASs may not be well suited for discovery. Larger samples obtained 

through meta-analysis are likely required, as demonstrated recently for volume of the 

hippocampus (Stein et al., 2012). An implication of this is that one promise of 

endophenotypes — that they might help identify genes for psychiatric disorders — cannot 

yet be meaningfully assessed, and it may never be meaningfully assessed. In the present 

investigation we obtained several findings that were significant even with Bonferroni 

correction of (endophenotype-wide) Type I error rate. By contrast, a GWAS of behavioral 

phenotypes in a sample that is essentially a superset of the sample used here and that is 

approximately twice as large, did not obtain any genome-wide significant findings (McGue 

et al., 2013). Does this imply that the EEG endophenotypes we examined are better situated 

to detect individual variants? This is impossible to know without replication and meta-

analysis, as well as a better understanding of the variants we did identify. However, the cost 

of collecting most psychophysiological measures may prohibit the kinds of sample sizes 

required, including for replication studies (de Geus, 2010)

At the same time, GCTA results indicate that common variants account for varying degrees 

of the variance in these EEG endophenotypes. For some endophenotypes, SNP heritability 

estimates were greater than half the heritability estimate. Thus, there appears to be 

substantial additive genetic variance related to EEG measures, which is consonant with our 

phenotypic heritability estimates. However, identifying specific genetic variants or genes 

remains a challenge. More sophisticated analytic methods might be useful.

Such methods may have to reflect a somewhat different conceptual model as well. Two 

things are typically absent in GWA studies: the environment and development. The 

development of ocular dominance columns and normal vision depends critically on the 

experience of patterned light (Wiesel & Hubel, 1965). Although it would of course be 

extremely unlikely for an infant not to have this form of experience, it is nevertheless 
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necessary. It is a truism that genes are expressed in particular environments over the course 

of development, yet this is not reflected in the GWAS design. Progress in understanding the 

genetic influences on complex traits may require analytic approaches that account for this 

interplay.

A strength of this investigation, and the others in this special issue, is that our sample 

comprises families, which allowed us to estimate the heritability of EEG parameters by 

means of biometric models and test for specific genetic variants in the same sample. 

Heritability estimates were substantial, and SNP heritability estimates indicated that as much 

as half the heritable variance in EEG endophenotypes is likely accounted for by the common 

variants on our genotyping array. However, we identified few specific variants, whether 

SNPs or genes. If EEG parameters are in fact a result of the additive effects of many genes 

each with very small influence, understanding the genetics of such traits is likely to continue 

to present interesting challenges, both methodologically and conceptually.
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Figure 1. 
Q-Q plot for SNP associations with alpha power at occipital-parietal leads. The 45° line 

gives the expected value under the null distribution. The area shaded in gray corresponds to 

the 95% acceptance region. Median and mean genomic control values are given in the inset 

in the upper left. N refers to the number of SNPs, which is 8 fewer than the number of SNPs 

on the array because there was no variation for 8 SNPs in this sample. Q-Q plots in GWAS 

give the observed p-values against the expected p-values under the null distribution of no 

association, although the additive inverse of the common log of p-values (−log10[p]) is used 

in order to emphasize small p-values. Because the vast majority of SNPs are not expected to 

be associated with a given phenotype, observed p-values should conform closely to their 

expected values, falling on or very close to the 45° line. The gray region in each plot depicts 

the 95% confidence region (null acceptance region).
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Figure 2. 
Q-Q plot for SNP associations with alpha power at Cz. The 45° line gives the expected value 

under the null distribution. The area shaded in gray corresponds to the 95% acceptance 

region. Median and mean genomic control values are given in the inset in the upper left. N 

refers to the number of SNPs, which is 8 fewer than the number of SNPs on the array 

because there was no variation for 8 SNPs in this sample. Q-Q plots in GWAS give the 

observed p-values against the expected p-values under the null distribution of no association, 

although the additive inverse of the common log of p-values (−log10[p]) is used in order to 

emphasize small p-values. Because the vast majority of SNPs are not expected to be 

associated with a given phenotype, observed p-values should conform closely to their 

expected values, falling on or very close to the 45° line. The gray region in each plot depicts 

the 95% confidence region (null acceptance region).
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Figure 3. 
Q-Q plot for SNP associations with beta power at Cz. The 45° line gives the expected value 

under the null distribution. The area shaded in gray corresponds to the 95% acceptance 

region. Median and mean genomic control values are given in the inset in the upper left. N 

refers to the number of SNPs, which is 8 fewer than the number of SNPs on the array 

because there was no variation for 8 SNPs in this sample. Q-Q plots in GWAS give the 

observed p-values against the expected p-values under the null distribution of no association, 

although the additive inverse of the common log of p-values (−log10[p]) is used in order to 

emphasize small p-values. Because the vast majority of SNPs are not expected to be 

associated with a given phenotype, observed p-values should conform closely to their 

expected values, falling on or very close to the 45° line. The gray region in each plot depicts 

the 95% confidence region (null acceptance region).
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Figure 4. 
Q-Q plot for SNP associations with theta power at Cz. The 45° line gives the expected value 

under the null distribution. The area shaded in gray corresponds to the 95% acceptance 

region. Median and mean genomic control values are given in the inset in the upper left. N 

refers to the number of SNPs, which is 8 fewer than the number of SNPs on the array 

because there was no variation for 8 SNPs in this sample. Q-Q plots in GWAS give the 

observed p-values against the expected p-values under the null distribution of no association, 

although the additive inverse of the common log of p-values (−log10[p]) is used in order to 

emphasize small p-values. Because the vast majority of SNPs are not expected to be 

associated with a given phenotype, observed p-values should conform closely to their 

expected values, falling on or very close to the 45° line. The gray region in each plot depicts 

the 95% confidence region (null acceptance region).
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Figure 5. 
Q-Q plot for SNP associations with delta power at Cz. The 45° line gives the expected value 

under the null distribution. The area shaded in gray corresponds to the 95% acceptance 

region. Median and mean genomic control values are given in the inset in the upper left. N 

refers to the number of SNPs, which is 8 fewer than the number of SNPs on the array 

because there was no variation for 8 SNPs in this sample. Q-Q plots in GWAS give the 

observed p-values against the expected p-values under the null distribution of no association, 

although the additive inverse of the common log of p-values (−log10[p]) is used in order to 

emphasize small p-values. Because the vast majority of SNPs are not expected to be 

associated with a given phenotype, observed p-values should conform closely to their 

expected values, falling on or very close to the 45° line. The gray region in each plot depicts 

the 95% confidence region (null acceptance region).
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Figure 6. 
Q-Q plot for SNP associations with total power at Cz. The 45° line gives the expected value 

under the null distribution. The area shaded in gray corresponds to the 95% acceptance 

region. Median and mean genomic control values are given in the inset in the upper left. N 

refers to the number of SNPs, which is 8 fewer than the number of SNPs on the array 

because there was no variation for 8 SNPs in this sample. Q-Q plots in GWAS give the 

observed p-values against the expected p-values under the null distribution of no association, 

although the additive inverse of the common log of p-values (−log10[p]) is used in order to 

emphasize small p-values. Because the vast majority of SNPs are not expected to be 

associated with a given phenotype, observed p-values should conform closely to their 

expected values, falling on or very close to the 45° line. The gray region in each plot depicts 

the 95% confidence region (null acceptance region).
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Figure 7. 
Q-Q plot for SNP associations with alpha peak frequency at occipital-parietal leads. The 45° 

line gives the expected value under the null distribution. The area shaded in gray 

corresponds to the 95% acceptance region. Median and mean genomic control values are 

given in the inset in the upper left. N refers to the number of SNPs, which is 8 fewer than the 

number of SNPs on the array because there was no variation for 8 SNPs in this sample. Q-Q 

plots in GWAS give the observed p-values against the expected p-values under the null 

distribution of no association, although the additive inverse of the common log of p-values 

(−log10[p]) is used in order to emphasize small p-values. Because the vast majority of SNPs 

are not expected to be associated with a given phenotype, observed p-values should conform 
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closely to their expected values, falling on or very close to the 45° line. The gray region in 

each plot depicts the 95% confidence region (null acceptance region).
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Figure 8. 
Manhattan plot of individual SNP associations with alpha power at occipital-parietal leads. 

Manhattan plots also depict the distribution of −log10(p) but are ordered by SNP location on 

a chromosome, which provides information about the location of any SNPs associated with 

small p-values. The horizontal line at 7.3 indicates the genome-wide significance level 

(5E-08). The horizontal line at 5 indicates E-05, which is sometimes used to indicate 

“suggestive” significance.
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Figure 9. 
Manhattan plot of individual SNP associations with alpha power at Cz. Manhattan plots also 

depict the distribution of −log10(p) but are ordered by SNP location on a chromosome, 

which provides information about the location of any SNPs associated with small p-values. 

The horizontal line at 7.3 indicates the genome-wide significance level (5E-08). The 

horizontal line at 5 indicates E-05, which is sometimes used to indicate “suggestive” 

significance.
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Figure 10. 
Manhattan plot of individual SNP associations with beta power at Cz. Manhattan plots also 

depict the distribution of −log10(p) but are ordered by SNP location on a chromosome, 

which provides information about the location of any SNPs associated with small p-values. 

The horizontal line at 7.3 indicates the genome-wide significance level (5E-08). The 

horizontal line at 5 indicates E-05, which is sometimes used to indicate “suggestive” 

significance.
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Figure 11. 
Manhattan plot of individual SNP associations with theta power at Cz. Manhattan plots also 

depict the distribution of −log10(p) but are ordered by SNP location on a chromosome, 

which provides information about the location of any SNPs associated with small p-values. 

The horizontal line at 7.3 indicates the genome-wide significance level (5E-08). The 

horizontal line at 5 indicates E-05, which is sometimes used to indicate “suggestive” 

significance.
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Figure 12. 
Manhattan plot of individual SNP associations with delta power at Cz. Manhattan plots also 

depict the distribution of −log10(p) but are ordered by SNP location on a chromosome, 

which provides information about the location of any SNPs associated with small p-values. 

The horizontal line at 7.3 indicates the genome-wide significance level (5E-08). The 

horizontal line at 5 indicates E-05, which is sometimes used to indicate “suggestive” 

significance.
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Figure 13. 
Manhattan plot of individual SNP associations with total power at Cz. Manhattan plots also 

depict the distribution of −log10(p) but are ordered by SNP location on a chromosome, 

which provides information about the location of any SNPs associated with small p-values. 

The horizontal line at 7.3 indicates the genome-wide significance level (5E-08). The 

horizontal line at 5 indicates E-05, which is sometimes used to indicate “suggestive” 

significance.
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Figure 14. 
Manhattan plot of individual SNP associations with alpha peak frequency at occipital-

parietal leads. Manhattan plots also depict the distribution of −log10(p) but are ordered by 

SNP location on a chromosome, which provides information about the location of any SNPs 

associated with small p-values. The horizontal line at 7.3 indicates the genome-wide 

significance level (5E-08). The horizontal line at 5 indicates E-05, which is sometimes used 

to indicate “suggestive” significance.
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Figure 15. 
Associations between individual SNPs within or near GABRA2 and beta power. SNPs were 

imputed with reference to 1000 Genomes haplotypes (see text for additional detail). p-values 

produced by RFGLS analyses of the dosages for these imputed SNPs are expressed as 

−log10(p). SNP positions are from GRCh37 build 37 (hg19). Raw p-values are plotted in the 

upper panel. rs279858, which tags a haplotype associated with problematic alcohol use 

(Enoch, 2008), is indicated in black. The lower panel gives results are from a follow-up 

analysis that adjusts for effects of this SNP as an additional covariate, to determine to what 

extent the elevated p-values in the upper panel likely represent a single signal.
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