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Calibration is the rate-determining step in every molecular clock analysis and,

hence, considerable effort has been expended in the development of approaches

to distinguish good from bad calibrations. These can be categorized into a priori
evaluation of the intrinsic fossil evidence, and a posteriori evaluation of congru-

ence through cross-validation. We contrasted these competing approaches and

explored the impact of different interpretations of the fossil evidence upon

Bayesian divergence time estimation. The results demonstrate that a posteriori
approaches can lead to the selection of erroneous calibrations. Bayesian pos-

terior estimates are also shown to be extremely sensitive to the probabilistic

interpretation of temporal constraints. Furthermore, the effective time priors

implemented within an analysis differ for individual calibrations when

employed alone and in differing combination with others. This compromises

the implicit assumption of all calibration consistency methods, that the

impact of an individual calibration is the same when used alone or in unison

with others. Thus, the most effective means of establishing the quality of

fossil-based calibrations is through a priori evaluation of the intrinsic palaeonto-

logical, stratigraphic, geochronological and phylogenetic data. However, effort

expended in establishing calibrations will not be rewarded unless they are

implemented faithfully in divergence time analyses.
1. Introduction
The molecular clock uniquely combines evidence from both molecular

sequences and palaeontological and geological temporal constraints on

sequence divergence, to establish evolutionary timescales. However, the pre-

cision of divergence time estimates is often so broad that they do not provide

for effective tests of evolutionary hypotheses. It has been demonstrated that

there is a modest limit on the gains in precision that can be obtained with

increasing sequence data, beyond which increased precision can be obtained

only by increasing the precision of fossil calibrations [1–3]. Unfortunately, iden-

tifying calibrations that are merely accurate is difficult enough. Two principal

(but not necessarily mutually exclusive) approaches have emerged: (i) the a
priori assessment of the empirical fossil anatomical, phylogenetic, stratigraphic

and geochronological evidence, versus (ii) the a posteriori evaluation of the

consistency of calibrations within a set.

A priori best practice requires that fossil calibrations comprise a conservative

minimum constraint on a clade’s age, minimizing phylogenetic uncertainty. In

converting this into a calibration, the approach most widely adopted is to assign
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a non-uniform probability density (e.g. lognormal, exponen-

tial), fixed on the minimum constraint, that expresses a

generalized view of the degree to which minima approxi-

mate divergence dates [3–12], invariably established without

justification [13]. Alternatively, qualitatively justified ‘soft

maxima’ have been established on palaeontological and

geological grounds, based on the absence of evidence for a

lineage antedating its oldest fossil record, qualified by the pres-

ence of taphonomic controls provided by sister lineages [6]

(cf. [14–16]), and known gaps and facies biases in the rock

record [15,17]. Effectively, the a priori establishment of mini-

mum and maximum constraints based on fossil evidence

removes them from equivocation. However, in practice, this

approach is necessarily conservative in the identification of

fossil taxa suitable for use in calibration, and in interpreting

their age, such that calibrations established in this way are

often a poor, or imprecise, approximation of divergence dates.

Alternatively, a posteriori methods have been developed to

assess the relative quality of calibrations through the consist-

ency with which each calibration, within a set, estimates the

others when used in isolation. The underlying assumption

is that calibrations should be consistent and inconsistent cali-

brations should be rejected. This approach has also been used

to consider competing phylogenetic positions for critical

fossils [18–23]. In attempting to address phylogenetic and

stratigraphic uncertainty, Marshall [24] established, and

Dornburg et al. [25] extended, a method for selecting the

fossil calibration(s) among a set that provide the best

approximation of the antiquity of the respective lineage(s).

A posteriori methods keep fossil data at arm’s length, assessing

internal consistency or its veracity measured with respect

to branch length.

We set out to evaluate the performance a posteriori versus a
priori approaches for assessing calibration quality. Our ana-

lyses are based on the now classic empirical dataset that

encompasses extant turtle phylogeny used to first demonstrate

a number of a posteriori methods of evaluating calibration qual-

ity (e.g. [24–26]) and in debate about the importance of

establishing calibration quality a priori [27–29]. We also

employ a completely revised set of calibrations for this phylo-

geny, constructed following the principles of best practice [30].

These exemplify the impact of the a priori evaluation of fossil

calibrations and, as such, they can be considered accurate,

if not precise. Since debate over calibration quality has not

considered seriously the impact of different approaches for

establishing maximum constraints, we first explore the

impact of different approaches to constraining node ages. We

simulated the approach of assigning a non-uniform probability

density to fossil-based minimum constraints, and contrast

these results to those of analyses in which a uniform density

is employed. We employed the cross-validation method of

Near et al. [26,31] to measure consistency among calibrations

based on minimum constraints, and adopted a novel cross-

validation approach considering the entire timespan between

minimum and maximum constraints [32].

Crucially, our results demonstrate that: (i) a posteriori
methods have led to the recurrent selection of erroneous con-

straints, and (ii) the effective time priors implemented in an

analysis differ for individual calibrations when employed

alone or in variable combinations with additional con-

straints—this means that estimates of calibration quality based

on consistency do not provide a faithful indication of how a

given calibration will impact the analysis in combination with
others. A posteriori approaches to assessing calibration quality

cannot therefore substitute for the a priori evaluation of fossil

evidence in establishing accurate constraints. However, the

accuracy of any calibration may be compromised by the way

in which the calibrations are effectively implemented in the

Bayesian estimation of divergence times.
2. Material and methods
(a) Modelling non-uniform and uniform priors using

fossils
Bayesian molecular clock analyses were performed using the

approximate likelihood approach implemented in MCMCTREE

[2,3,33], because it is computationally efficient [34] and uses a

more predictable procedure in the construction of the joint time

prior, in comparison to BEAST [3,35]. However, we reproduced

our analyses in BEAST 1.6.1 [8,36] using uniform priors, to explore

differences in the construction of the joint time prior. Fossil-based

minimum and maximum constraints were established for this

dataset following best practice [27,30].

Non-uniform priors express approximations of divergence

timing relative to a minimum constraint, however, such calibra-

tions are rarely evidence-based [13]. Although there are

objective approaches to informing non-uniform prior densities

(e.g. [37]), the turtle fossil record has not yet been documented

in a manner that would allow time priors to be established in

this way. By contrast, uniform priors allow the user to accommo-

date a view that nothing is known about the time of divergence

relative to the constraints. We present this as a null hypothesis—

that given the absence of evidence to the contrary, there is an

equal prior probability of the timing of the divergence event,

per unit time, spanning the minimum and maximum bounds;

this is not an uninformative prior. We implemented hard

minima, such that the probability that a divergence time

postdates the minimum constraint approximates zero. Where

applicable, we implemented soft maxima, allowing 2.5% of the

probability to exceed maximum constraints [3].

We explored the use of non-uniform calibration priors, per-

muting the truncated Cauchy distribution, to reflect variable

non-uniform probabilities of divergence timing relative to the

minimum constraints [12]. A maximum bound must be specified

at the root of the tree and so we retained a uniform distribution at

the root, corresponding to the fossil-based calibration available

for the age of crown turtles [27]. All molecular clock analyses

were performed without sequence data to examine the effective

priors, compared to the specified priors.

(b) A posteriori evaluation of calibration quality
We implemented the original cross-validation method described

in [26] to compare the consistency between our calibrations. Con-

sistency was assessed: (i) relative to minimum constraints only,

and (ii) relative to minimum and maximum constraints [32].

For each individual calibration, during each round of cross-vali-

dation, the tree was calibrated using a single uniform calibration

prior, with a hard minimum and soft maximum constraint based

on fossil evidence [27]. A soft maximum age constraint was

applied at the root using the fossil-based maximum for the age

of this node.

Finally, we compared three a posteriori approaches to evaluating

calibrations [24–26] to the a priori evaluation of fossil evidence. To

assess the quality of calibrations selected using a posteriori methods,

we contrasted the selection of calibrations based on assessments of

calibration quality among the Testudines dataset used in the semi-

nal application of the cross-validation method (and its derivatives)

[24–26]. This was compared to the a priori assessment of calibration
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quality based on the intrinsic palaeontological evidence used to

establish these constraints, which formed the basis of an indepen-

dent study [27]. Further details of all materials and methods are

provided in the electronic supplementary material.
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Figure 1. The posterior mean estimates obtained when the truncated Cauchy
distribution was used to approximate the time of divergence relative to fossil-
based minima in MCMCTREE. Results are shown for two values of the location
parameter p (0.1, 0.5) and four values of the scale parameter c (0.1, 0.5, 1, 2)
and results are contrasted to those obtained when a uniform distribution is
used to constrain node ages between the fossil-based minima and maxima.
The branching order (and corresponding node labels) is the same as those
shown in figure 3. The branch lengths represent the posterior means of the
node ages. Four nodes are connected across the analyses to facilitate compari-
son. The 95% higher posterior density is indicated at the root of the tree. Ages
are presented in millions of years before present. (Online version in colour.)
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3. Results
(a) The impact of non-uniform and uniform calibration

priors
Increasing the uncertainty in the timing of divergence relative to

fossil minima, based on a non-uniform prior, led to an increase in

both prior and posterior age estimates across all nodes (figure 1;

electronic supplementary material, table S1). Increasing uncer-

tainty also generated more diffuse credibility intervals, except

at the root (node 1: Testudines). The mean root age increased

from 215 to 246 Ma, but the 95% intervals were attenuated

with increasing uncertainty at the internal nodes. The results

appear to be influenced strongly by the limit on the root: the pos-

terior estimates appear to become only as ancient as the soft

maximum at the base of the tree will allow (figure 1); note that

MCMCTREE requires the user to specify a soft maximum con-

straint at the root of the tree. In BEAST, if the upper (soft)

constraint is not specified, then this limit will be specified

indirectly by other parameters. The results obtained using uni-

form priors are different to those obtained using non-uniform

priors, including the proposed temporal sequence of non-hier-

archically dependent divergence events (figure 1; electronic

supplementary material, table S1). For example, the posterior

confidence intervals obtained using uniform priors suggest

that of the two major groups of turtles, Cryptodira (node 8) ori-

ginated before Pleurodira (node 2). By contrast, there is

substantial overlap between the estimates obtained using non-

uniform priors for the age of these nodes and, consequently, a

coincident time of origin cannot be rejected.

(b) A posteriori evaluation of calibration quality
The results of the cross-validation analysis showed that the

most consistent calibrations based on fossil minima are the

most inconsistent calibrations based on minima and

maxima; these are the nodes that tend to produce the youngest

average estimates (figure 2a–d). Conversely, the most incon-

sistent calibrations based on fossil minima tend to produce

the oldest average estimates; these nodes are the most fre-

quently underestimated and tend to overestimate the age at

other nodes. The results of the cross-validation analysis,

which considered the minimum constraints only, are pre-

sented in figure 2a,c. The �Dx and the SS values for each

calibration reflect the average differences between the mean

molecular estimates and the minimum constraints of all

other nodes. All �Dx values are positive and range from 14.29

to 46.24 Myr, indicating that most posterior estimates of

divergence times do not postdate fossil minima.

The results of the cross-validation analysis, in which both

minimum and maximum age constraints are considered, are pre-

sented in figure 2b,d. The �Dx and the sum of squared differences

(SS) values for each calibration reflect the average differences

between the mean estimates and the minimum or maximum con-

straints of all other nodes. Most �Dx values are slightly negative

and range from 3.60 to 2.63 Myr. SS values are two orders of

magnitude smaller than those based on minimum constraints

alone (figure 2c,d). This reflects the use of conservative maximum
age constraints and the informative maximum limit placed at the

root (251.4 Ma), which precludes estimates from becoming

unjustifiably ancient. Few molecular estimates are likely to

exceed their respective maxima. Regardless of the direction or

magnitude of inconsistency, cross-validation analyses demon-

strate that independent calibrations produce appreciably

different divergence estimates. However, the removal of any cali-

brations did not significantly reduce the variance among

calibrations and molecular estimates (figure 2e–g).

A comparison between three a posteriori approaches to

assessing calibration quality shows that different numerical

methods of defining calibration quality identify variable suites

of constraints as either accurate or inaccurate (table 1). The cali-

brations selected for rejection using alternative a posteriori
methods are neither supported by each other, nor by the avail-

able fossil evidence on which the constraints are based. The

a priori evaluation of palaeontological evidence led to a ubiqui-

tous, and in some cases substantial (up to 89%), revision of

the minimum (and maximum) age constraints for all nodes.

Although a posteriori approaches correctly discriminate some

of the constraints that were necessarily revised based on fossil

evidence, they also eliminated a number of accurate constraints,

while retaining a number of inaccurate constraints (table 1). This

means that a posteriori methods can lead to the selection of

calibrations that are not supported by available fossil evidence.
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(c) Effective versus user-specified calibration priors
Analysis without sequence data demonstrates that the speci-

fied calibration priors are not faithfully implemented in the

joint estimation of divergence times. This occurs in associ-

ation with both non-uniform and uniform probability

distributions. In the case of non-uniform time priors, increas-

ing the uncertainty associated with the calibrations produced

more imprecise specified time priors, but the effective mar-

ginal densities still do not match the specified time prior.

This change, between the specified and the effective priors,

is particularly significant at the root where the uniform

specified prior is transformed into a distinctly non-uniform

effective prior. This had a large impact on the prior credibility

intervals for the root. The upper (maximum) 95% prior

interval at the root always exceeded the specified soft maxi-

mum (251.5 Ma) by up to 5 Myr, but the lower (minimum)

95% prior interval became older (up to 55 Myr) than the

specified minimum (155.6 Ma) (electronic supplementary

material, table S1).

We compared the specified uniform age priors in

MCMCTREE to: (i) the effective priors for each node during inde-

pendent rounds of cross-validation, and (ii) the effective priors

observed at each node when all calibrations are combined in a

single analysis (figure 3). Even during cross-validation, when

a single uniform calibration is employed, the marginal cali-

bration densities do not always match the specified uniform

densities. The largest discrepancies between the specified and

effective priors are associated with nodes that have the broadest

calibration spans and, hence, overlap most with the specified

constraints on ancestral nodes (e.g. node 4: Pelomedusidae).
(d) Comparison between BEAST and MCMCTREE
BEAST and MCMCTREE derived similar prior and posterior

estimates of divergence times (figure 4), though MCMCTREE

produced slightly older mean estimates and wider credibility

intervals. The largest difference was observed in estimates of

root age. When all calibrations are combined in a single

analysis, the effective prior densities obtained using BEAST

and MCMCTREE are similar and exhibit the same direction

of skew and modality—with the main exception of the root

(node 1: Testudines; figure 2h). The effective root age prior

implemented in MCMCTREE indicates that an older time of

divergence is more likely. Conversely, in BEAST, the effective

root age prior suggests that younger divergence times are

more likely.
4. Discussion
(a) The impact of non-uniform and uniform calibration

priors
In the absence of fossil-based maximum constraints, the speci-

fied uncertainty associated with constraints may be made

subjectively large (or small). Estimates of divergence times

are evidently sensitive to the parameters used to specify the

prior density. In figure 1, we contrast the posteriors obtained

using non-uniform priors, to those obtained using uniform

fossil-based minima and soft maxima where each node is

constrained using a uniform prior. The comparison shows

that these analyses yield very different results, including
differences in the relative temporal sequence, not merely absol-

ute timing, of speciation events.

These results corroborate the findings of previous studies

[12,13,32], demonstrating that subtle changes in the parameters

that describe the priors have an adverse impact upon the pos-

terior divergence time estimates. Since there is frequently no

material basis for selecting among the parameters, or the distri-

butions that they control, in the majority of studies the time

priors are, quite literally, unjustified [13]. Note that if no alter-

nate evidence exists, relying on the default settings for the

calibration priors in BEAST or MCMCTREE is equivalent to

accepting them and their implicit assumptions about the

time of divergence relative to the constraints. For instance, if

a soft maximum is not defined explicitly, this constraint will

be specified indirectly by other parameters. Alternative

approaches to informing calibration priors—for example,

those based on stratigraphic occurrence data (e.g. [37,39])—

represent an exciting area of development. However, these

methods require large, well-curated fossil databases that are

rarely available and, therefore, implemented.

(b) The impact of specified and effective calibration
priors

In all contemporary Bayesian molecular clock programs, the

initial specified calibration priors will not be the same as the

effective calibration priors actually implemented in the esti-

mation of divergence times [12,13,30,32,35]. This is because

the specified calibrations are truncated in the construction of

the joint prior on times, to satisfy the expectation that ancestral

nodes are older than descendent nodes [3,40]. Truncation is

particularly obvious, given multiple overlapping constraints

(e.g. [13]). However, even if there is no temporal or topological

overlap between a pair of calibrations, their interaction with

the tree prior can still result in differences in the effective

priors (figure 3).

BEAST and MCMCTREE differ in the way they construct

the joint prior on times. Effectively, the same palaeontological

constraints are implemented as different time priors by these

two principal software packages. In BEAST, the specified

and effective priors can be very different, even when only a

single calibration is employed. This is because BEAST uses a

multiplicative construction, by multiplying the calibration

densities by the tree prior, which is necessary for the esti-

mation of topology [35]. This can sometimes cause the

effective calibration priors to violate the palaeontological con-

straints, and it is difficult to predict the impact of including

multiple constraints [35].

Differences between the models that underlie BEAST and

MCMCTREE manifest themselves in both the prior and pos-

terior estimates of divergence times. In particular, we have

demonstrated that the same fossil constraints will lead to

different effective time priors. The largest difference between

BEAST and MCMCTREE posterior estimates was observed at

the root and is probably a direct consequence of differences

in modality observed in the specification of the root age

prior (figure 2h). Since the posteriors are sensitive to different

time priors, as evidenced by the impact of variable non-uni-

form and uniform priors, this has material consequences for

posterior molecular clock estimates. It is clear is that the

effort expended in establishing accurate palaeontological

time priors will not be repaid unless they are reflected in

the effective time priors. The specified priors should be
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permuted experimentally until the primary palaeontological

constraints are reflected in the effective time prior.

(c) A posteriori versus a priori approaches to assessing
calibration quality

Time priors have a substantial impact upon the outcome of

divergence time analyses, and so it is necessary to discriminate

between ‘good’ and ‘bad’ calibrations. Hence, there has been
a great deal of effort expended in establishing criteria on

which fossil calibrations should be based [5–7,13,30,32,41,42],

and in developing methodological approaches to discriminat-

ing misleading fossil calibrations [18–26,31,38,43,44]. The

a posteriori original cross-validation approach [26,31] and its

subsequent developments [22,24,25,38] emphasize calibration

consistency as the most desirable quality in a set of calibrations.

The underlying assumptions of the cross-validation approach

to assessing calibration quality have been criticized previously
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[5,24]. The results of our analyses identify two additional and

ultimately fatal problems with the cross-validation approach:

(i) cross-validation methods demonstrably result in the selec-

tion of calibrations that are not supported by the available

fossil evidence (table 1), and (ii) this approach is compromised

within the Bayesian framework because the effective priors for

a given calibration vary depending on the presence or the

absence of other constraints (figure 3). This final point is par-

ticularly problematic since it demonstrates violation of the

basic implicit assumption of cross-validation methods, that

individual calibrations perform in the same manner regardless

of whether they are employed individually or in combination

with other calibrations.

Our comparison of a posteriori assessments of calibration

quality to the a priori evaluation of calibration quality based

on the intrinsic fossil evidence (table 1) demonstrates that

cross-validation methods do not identify accurate calibrations

consistently—that is, calibrations supported on the basis of

independent (palaeontological, phylogenetic and geological)

evidence. In addition, the evaluation of the available fossil

evidence a priori using best practices [30] led to a substantial

revision of the age constraints for many nodes.

The advantage of implementing the cross-validation

approach within the Bayesian framework is that it can

account for the expected probability that the age of a node

may be considerably older than its first appearance in the

fossil record (or any specified minimum age constraint).

None of the revised calibrations [27] were identified as stat-

istically inconsistent through the cross-validation methods

[26,32] implemented in this study. This may reflect the fact

that we considered the mean estimates relative to minima,

or minimum–maximum divergence time priors. It is much

easier for divergence time estimates to be compatible with

broad constraints than with precise node ages. If consistency

is a desirable quality in a suite of calibrations, it could be

argued that the penalty for achieving this quality is a loss
of precision over the age of component nodes since the cali-

brations are ultimately more accurate but less precise.

Though expert evaluation of palaeontological evidence may

be best practice, perhaps a less conservative approach to eval-

uating fossil evidence might result in more precise calibration

constraints. Hence, a posteriori approaches, including the

cross-validation family of methods, may be an appealing

alternative to wrestling with the complexities of deriving a

temporal calibration from fossil, phylogenetic, stratigraphic

and geochronological data. This appeal is demonstrated

by the continued development (e.g. [18,20,25,32]) and

application (e.g. [45–47]) of a posteriori methods.

Regardless, our analyses highlight the fact that the effective

calibrations employed in divergence time estimation invariably

differ from those specified by the user (figure 3). Consequently,

different combinations of calibrations, in combination with the

tree prior, will produce different joint time prior constructs—

this occurs regardless of the (non-uniform or uniform) prior

probability densities employed, or the approach used (directly

or indirectly) to specify the (soft) maximum constraints. Thus,

the manner in which a given calibration is implemented in the

estimation of divergence times is not equivalent if it is

employed alone or in combination with others. Furthermore,

because different calibration priors have a material impact on

the posteriors, consistency among either the effective priors

or posteriors is not a reliable means of evaluating the relative

accuracy of calibrations.

Cross-validation methods share the same implicit expec-

tation that the influence of a single calibration on a molecular

clock analysis is the same regardless of whether it is employed

alone or in combination with a suite of other calibrations. Our

results demonstrate that this expectation is not met since the

effective time prior for any one node is not the same as the

user-specified calibration, and the effective time prior differs

depending upon its precise temporal and topological relation-

ship to other calibrations. This observation calls into question
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the entire approach of the cross-validation family of methods

for evaluating calibration through consistency, regardless of

whether consistency is perceived to be an appropriate quality

of a set of calibrations. Thus, cross-validation approaches to

assessing the quality of calibrations based on consistency

cannot be considered a reliable means of establishing accuracy,

not merely because they are biologically questionable [48], but

because they are flawed, both logically and methodologically.

Evaluating calibrations a priori places emphasis on

palaeontological accuracy. At the very least, fossil minima

should postdate divergence events and fossil maxima predate

divergence events. Our results show that there should be no

alternative to the careful evaluation of fossil evidence, in

terms of comparative anatomy, phylogenetic affinity, strati-

graphic occurrence and its geochronological interpretation.

There can be no justification for using calibrations that are con-

tradicted by this independent body of evidence. However, we

also show that the best efforts of field palaeontologists, com-

parative anatomists, phylogeneticists, biostratigraphers and

geochronologists may be of moot significance if carefully

researched calibrations are not implemented (rather than

merely specified) in molecular clock analyses. At the very

least, it should be a basic requirement of every molecular

clock analysis that the effective time priors are evaluated in

comparison to the specified time priors by first running the

analysis without sequence data [13,35]. Ultimately, it is impor-

tant only that the effective time priors reflect accurately the

palaeontological constraints on divergence time estimation.
5. Conclusion
Bayesian posterior estimates of divergence times are extremely

sensitive to the time priors. We have demonstrated that slight

changes in the specification of the prior probabilities have an

adverse impact on posterior time estimates. In addition, we

have shown that a posteriori approaches of assessing calibration

quality can be used to explore qualitatively the relationship

between minimum and maximum constraints and the putative

time of divergence, but do not provide justification for the

removal of any calibrations. However, we have also demon-

strated that a posteriori methods which rely on cross-

validation are incoherent since they rely on the implicit

assumption that the performance of each calibration is the

same regardless of whether it is employed alone or in combi-

nation with others. This assumption is violated within the

Bayesian framework because the effective calibrations

employed in the joint estimation of divergence times are

never the same as the user-specified calibrations when more

than one calibration is employed. The effective time priors
always depend on the temporal and topological relationship

among all calibrations included in the analysis. Although a
priori justification generates calibrations that are based on all

available evidence, which are consequently superior in terms

of accuracy, they are not immune to the effects of establishing

the joint time prior. Every molecular clock study should con-

sider carefully the disparity between the specified and

effective priors. This phenomenon has broad implications for

any study that relies on the accurate estimation of evolutionary

rates and times. Our results also underscore the need to con-

sider simultaneously the multifaceted issues associated with

calibration, such as the nature of the diverse data on which

the calibrations are based and the ability of existing molecular

clock methods to effectively represent these constraints.

Finally, best practice a priori protocols for establishing

calibrations should not remain static. Recent methodological

developments in approaches to calibration require additional

types of palaeontological data, such as tip calibration using

fossils as terminal taxa [49], or probabilistic approaches to

constraining divergence times based on the distribution of

stratigraphic occurrences [37,39]. These methods hold great

promise for the development of increasingly accurate and

precise evolutionary timescales for groups with a good

fossil records and maybe even for entirely extinct lineages

(e.g. [50]). However, for lineages with little or no fossil

record—those groups for which the molecular clock was

established—these novel calibration methods cannot be

applied. Consequently, node-based calibrations will continue

to play an important role in molecular dating. As we have

demonstrated, establishing accurate constraints should not

rely on a posteriori methods, and so node-based calibrations

established using a priori methods will remain especially sig-

nificant for groups for whom the molecular clock is the only

means of establishing a reliable timescale.
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18. Andújar C, Soria-Carrasco V, Serrano J, Gómez-Zurita
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