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The human papillomavirus (HPV) vaccines hold great promise for preventing

several cancers caused by HPV infections. Yet little attention has been given to

whether HPV could respond evolutionarily to the new selection pressures

imposed on it by the novel immunity response created by the vaccine. Here,

we present and theoretically validate a mechanism by which the vaccine

alters the transmission–recovery trade-off that constrains HPV’s virulence

such that higher oncogene expression is favoured. With a high oncogene

expression strategy, the virus is able to increase its viral load and infected

cell population before clearance by the vaccine, thus improving its chances

of transmission. This new rapid cell-proliferation strategy is able to circulate

between hosts with medium to high turnover rates of sexual partners. We

also discuss the importance of better quantifying the duration of challenge

infections and the degree to which a vaccinated host can shed virus. The gen-

erality of the models presented here suggests a wider applicability of this

mechanism, and thus highlights the need to investigate viral oncogenicity

from an evolutionary perspective.
1. Introduction
There is considerable excitement surrounding the human papillomavirus (HPV)

vaccines due to their innovative virus-like-particle (VLP) technology and the

very high efficacy rates found in clinical trials [1,2]. The HPV vaccine is hailed

as a very effective preventive measure against the several cancers (cervical,

penile, anal and head-and-neck) that are caused by this very common sexually

transmitted virus. As HPV is a double-stranded DNA (dsDNA) virus, it is often

argued that it is unlikely that escape mutants could evolve to evade the VLP-

induced immunity against the virus’s L1 surface protein, as is common in RNA

virus evolution [2,3]. Lacking in these discussions of potential HPV vaccination

response (vaccine escape or type replacement) is the idea that viruses can respond

to vaccines by increasing their virulence [4,5]. An important example of which to

note is the vaccine-induced evolution of Marek’s disease virus (MDV), which is

also a dsDNA oncovirus. Unexpectedly, MDV has evolved increased virulence

and escape mutants in response to several vaccination campaigns [6,7]. Here,

we heed this cautionary tale and are the first to investigate the potential of HPV

to evolve higher virulence in response to the vaccine immunity.

In many infections, the within-host density of the infectious agent is the appro-

priate measure of virulence. For example, Antia et al. [8] define a lethal quantity of

a parasite as a natural choice for the maximal level of virulence and they show that

within-host dynamics select for a quantity that is just below lethal. However, HPV

is mostly avirulent and asymptomatic, and is carried at low within-host densities.

Only after several years of persistence do HPV infections become deadly by the

transformation of host cells that have become malignant after the infection has

stopped being productive for the virus [9,10]. Thus, the classic definition of viru-

lence as a consequence of high nearly lethal parasite dose as a strategy that benefits

the virus does not readily apply to natural HPV infections.

Defining HPV’s virulence requires understanding the selection pressures that

shape less virulent pathogens and, specifically, oncoviruses. HPV exists as dozens
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Table 1. Within-host parameter estimates. The vaccine parameters vvac

and dvac were set to be 100 times [19] the unvaccinated estimates listed
in this table.

parameter estimate references

c infection rate of

uninfected cells

0.0067 d21 [22]

m death rate of cells 0.048 d21 [23]

k burst size 1000 virions/

cell

[23]

v proliferation rate of CTL 0.001 d21 [24]

a killing rate of CTL 0.01 d21 [25]

d decay rate of free virions 0.05 d21 [26]

r self-division rate of

infected cells

0.1 d21 fixed

N total population of

available cells

10 000 fixed

f half-growth constant 106 fixed
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of different types (i.e. strains) with differing pathologies; the

most clinically relevant being the high-risk (HR) types that

have oncogenes (E5, E6 and E7) that interfere with the cell’s

growth cycle [11]. Despite the cancer-centric name, the main

function of the oncogenes is to stimulate cell cycle re-entry in

the mid-epithelial layers in order to allow genome amplifica-

tion [11]. As a result, the virus cannot replicate without the

oncogenes. There are two main additional beneficial functions

of these genes in HR types. First, the oncogenes interfere

with the innate immune system (e.g. inhibition of interferon

synthesis and receptor signalling [11,12]), thus delaying the

activation of the adaptive immune response [13]. Second,

the oncogenes inactivate the host’s cell cycle regulators (pro-

teins p53 and pPB) in order to stimulate cell proliferation

[14]. This increases the number of infected cells without

having to infect new cells or to increase the intrinsic replication

rate of the virus. Both of these oncogene functions improve the

chances of transmission by increasing the duration of the infec-

tion and by increasing the amount of viruses transmitted per

host-to-susceptible contact. Nevertheless, it has been found

that these oncogenes are not expressed at high levels during

acute infections because the early viral protein E2 suppresses

oncogene expression [10,15]. If the oncogenes are very ben-

eficial, then why are they not expressed in higher quantities?

It is believed that the cost of stimulating the growth of a large

density of infected cells is rapid detection by the immune system.

Indeed, low-risk (LR) types that create genital warts are cleared

faster than HR types [11,16], because most HR lesions are

initially flat and inconspicuous, and only with time does the

extra cell proliferation they induce become notable to immune

agents [11]. Clearance after immune detection, then, appears to

be a major factor affecting HPV’s life history. Therefore, we

and Orlando et al. [16] believe that the main trade-off that affects

this virus is the transmission–recovery trade-off [17,18], and

not the classic transmission–virulence trade-off that constrains

more virulent pathogens [16] (we are unaware of studies that

suggest the contrary). The transmission–recovery trade-off

posits that host recovery is the main limitation on pathogen

replication because if recovery happens before transmission,

then the pathogen’s basic reproduction number R0 is less

than 1 and it cannot persistently circulate. Generally, the

transmission–recovery trade-off is believed to be the main

selection pressure constraining less virulent pathogens [17].

Vaccinated hosts are a new environment in which the vac-

cine-induced immune response will act as a strong, novel

selective pressure. A unique feature of the immunity induced

by the HPV vaccines is that it triggers a large antibody response,

one that is at least two orders of magnitude larger than the natu-

ral response [19]. Also distinct from natural immunity is the

duration of infection. Vaccine efficacy trials have shown that

99% of vaccinated hosts clear challenge infections with targeted

types within six months [20]. We postulate that since the

immune response in vaccinated hosts will always be triggered

by memory cells and will always mount quickly, then the cur-

rent ‘lay low’ strategy that HR vaccine-targeted types use to

stay longer inside a host ceases to be effective. We investigated

whether altering the transmission–recovery trade-off in vacci-

nated hosts could drive vaccine-targeted HR types to increase

their virulence by changing their oncogene production. Using

an evolutionary ecology modelling approach, we find that,

indeed, higher oncogene expression is favoured in vaccinated

hosts, which subsequently increases the chances of transmission

before clearance by the vaccine.
2. Material and methods
We developed a within-host model to represent an HPV infection

in an unvaccinated host, which was then modified to represent a

vaccinated host. These models were then linked to epidemiologi-

cal functions (similar to [8,17,21]) because selection pressures

happen at both the within- and between-host levels. Note that

parameter estimates for both within- and between-host models

were taken from the literature (tables 1 and 2).

(a) Within-host models
The population of free virions, V, come into contact with unin-

fected cells, X, and infect them at a rate c, making infected

cells Y1. See the electronic supplementary material, appendix,

for the reduction that allows us to not explicitly include X in

the model. The first term of Y1 encapsulates the creation of

newly infected cells by the interaction of uninfected cells with

free virions, where N represents the total population of all epi-

thelial cells and f is a half-growth constant. The infected cells

can either continue their life cycle or they can become self-prolif-

erating cells, Y2. These cells have a higher expression of the

oncogenes E6 and E7, which drive the cells to divide more in

the mid-layer of the epithelium before terminating and dying.

Let 1 represent the rate of oncogene expression of the HPV

type once in an infected cell. The rate of oncogene expression

controls the conversion of Y1 cells into becoming self-proliferat-

ing cells Y2. Self-proliferating infected cells grow at a rate r1,

proportional to their own density, and are dependent on onco-

gene expression (i.e. the higher the oncogene expression, the

more cell division). Both types of infected cells contribute to

the overall population of free virions (V) by differing virion pro-

duction rates, ki. As HPV is a non-lytic virus, both kinds of

infected cells die at the same rate m, and their viral production

rates are adjusted by the infected cell death rate, mki. Free virions

are cleared at a rate d and the antibody response is captured

implicitly by this viral clearance rate.

Finally, we assume that the cytotoxic T-cell (CTL) response,

Z, is only initiated by the growth of Y2 and proliferates at a

rate v. The reason for this is twofold. First, HPV infection is

exclusively intraepithelial, which causes no viremia and also

hides antigen [11]; therefore extra cell growth is a signal to the



Table 2. Sexual behaviour groups and between-host parameters from literature.

group
average number of
partners year21 rates (in days) references comments

long partnerships 1 r ¼ 0.0027

s ¼ 0.0004

m ¼ 0.356

[27,28]

[29]

[30,31]

e.g. marriage/common-law, serial monogamy

partnership lasts 6 years

short partnerships 2 – 5 r ¼ 0.0096

s ¼ 0.05

m ¼ 0.43

[28] median

[32]

[33]

e.g. dating

considered dissolution within 20 days to 12 weeks

casual relationships 6 – 8 r ¼ 0.019

s ¼ 0.1

m ¼ 0.43

[34] median

[29]

[33]

e.g. single, dating, hook-ups

dissolution within 10 days

3 per week

superspreader 20þ r ¼ 0.068

s ¼ 0.44

m ¼ 1.44

[27]

[30]

[35]

e.g. sex workers, bathhouse frequenters, etc.

dissolution within 2.3 days

estimate 11 per week for 48 weeks
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immune system that something is wrong [11,16]. Second, the cell-

mediated response needed for clearance is predominantly

against the oncogene E6 [12,13,36]. Note that for simplicity we

assume that the CTL kills both groups of infected cells with

equally efficiency, with the killing rate a. Altogether then the

unvaccinated host model is

dY1

dt
¼ cV

N � Y1

fþ (N � Y1)

� �
� 1Y1 � mY1 � aY1Z

dY2

dt
¼ 1Y1 þ r1Y2 � mY2 � aY2Z

dV
dt
¼ m(k1Y1 þ k2Y2)� dV

dZ
dt
¼ vY2 Z:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(2:1)

It should be noted that we considered a simpler model with only one

infected cell population, and we also considered differential CTL

killing rates (see the electronic supplementary material, appendix).

In order to represent vaccinated hosts, several changes were

made to this model: (i) the vaccine causes a strong antibody

response, therefore, d is increased to dvac; (ii) proliferation of

the CTL is now initiated by the vaccine-created memory

response, not the innate response, so only a very small amount

of virus present (in Y1, Y2 or V ) will trigger the memory response

targeting L1 epitopes to activate the adaptive response to invade,

thus changing the Z equation and Z’s initial conditions; (iii) the

antibodies that flood the infection site help prevent newly pro-

duced free virions from infecting new cells, thus dvac scales

down the infection rate of new cells, c. Together, this gives the

model for a vaccinated host,

dY1

dt
¼ cV

N � Y1

fþ (N � Y1)

� �
� 1Y1 � mY1 � aY1Z

dY2

dt
¼ 1Y1 þ r1Y2 � mY2 � aY2Z

dV
dt
¼ m(k1Y1 þ k2Y2)� dvacV

dZ
dt
¼ vvac Z,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(2:2)

where Z0 is now set to a value that initiates the Z equation once

the infection is started. This is equivalent to having a very low

threshold, such that a very small amount of the virus triggers
the response, which is equivalent to being triggered by the

mere presence of the virus, and not viral growth dependent

as it is in the unvaccinated host (see [37] and references

therein). The CTL in a vaccinated host proliferate at a higher

rate, vvac.

(b) Within-host viral fitness
Viral load is a measure of the virus’s reproductive output inside

a particular host environment. The total amount of virus it is able

to produce during the course of the infection represents the fit-

ness of the virus for that particular within-host environment.

We are interested to see how oncogene production changes

viral output, so we want to determine the optimal oncogene

strategy, 1*, which is defined as the oncogene expression that

maximizes the total viral output of a host. To determine this,

we first find the total viral output Vtotal of a host [38], by finding

the integral of the viral load curve V,

Vtotal(1) ¼
ð1

0

V(1, t) dt ; (2:3)

then, we find the maximum with respect to 1, which gives 1*. We

can then compare the 1* selected for in distinct within-host

environments (vaccinated versus unvaccinated). Note that

because the model cannot be solved analytically, equation (2.3)

was computed numerically, which is also true for the equations

that follow. The maxima were computed numerically using the

function NMaximize in MATHEMATICA.

(c) Transmission and between-host fitness
Next, we consider the effects of transmission. An optimal

strategy at the within-host level might not be optimal for

between-host transmission [39]. We consider, then, linking

these within-host models to a transmission function that rep-

resents the relationship between viral load and transmission

(similar to [8,21]). We considered a linear but scaled down rate

of transmission, where 0 , a , 1:

b(V) ¼ a V: (2:4)

As HPV is for the most part avirulent (virus producing almost

no mortality), we equate the reproduction number R0 to the

number of new infections caused by an infected host before clear-

ing the virions (similar to [38]). To find an expression for R0, we
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consider an equation that represents the number of hosts infected

by the focal infected individual

I(tþ dt) ¼ I(t)þm g(t)b(t)dt, (2:5)

where m is the rate of sexual acts, g(t) is the probability that the

partner is susceptible given a sex act, and b(t) is the probability

of transmission given a sex act with a susceptible partner. From

this equation, we get an expression for the total number of

infected hosts an individual can cause, such that

R0(1) ¼
ð1

0

m � g(t) � b(V(1, t)) dt: (2:6)

We include 1 as we are interested in how oncogene expression

can affect the R0 of the infected host. It is important to consider

g(t) because humans are fairly monogamous, so transmission to

a new host happens only after switching to a new sexual partner,

the chance of which goes up in time. This changes the value of

each contact event putting more weight on later sexual contacts.

Thus, the state of partnership affects transmission of a sexually

transmitted pathogen like HPV. We modelled g(t) explicitly

using a model of three different states that the infected individual

can be in with respect to sexual partnerships,

db
dt
¼ mb(t)g� sb

ds
dt
¼ sgþ sb� rs

dg
dt
¼ rs� sg�mb(t)g,

9>>>>>>>=
>>>>>>>;

(2:7)

where r is the rate of new partner acquisition and s is the rate of

partner break-up. Here, g(t) is the probability the individual is in

a partnership with a susceptible, s(t) is the probability of them

being single and b(t) is the probability that their partner is also

infected. Note that a host can only be in one of these states

and thus at any given time g(t) þ s(t) þ b(t) ¼ 1. The initial con-

ditions were fb,s,gg ¼ f1,0,0g. The focal host, then, begins by

being in a partnership with the host who gave them the infection,

and then we assume that they become single before forming

a new partnership, b! s. We assume that the host does not

form partnerships with hosts that have the same infection. At

rate m b(t)g, the focal host infects their new partner and they,

again, are in a partnership with an infected host, g! b. An

analytic solution for g(t) is not easily found because dg
dt

is

non-autonomous, and so g(t) was calculated numerically.

(d) Host heterogeneity: immune status
HPV vaccine efficacy in immunocompetent patients is very high,

where most vaccinated individuals clear challenge infections

within six months [40]. The effect of the HPV vaccine in immuno-

compromised patients should be diminished, and overall the

strength of the immune response will vary among individuals.

It is believed that immunocompromised patients can build a

vaccine-induced humoral response because the HPV VLPs used

in the vaccine are highly immunogenic [41]. For instance, HIV-

positive men without low CD4þ counts have shown to successfully

seroconvert after vaccination [42], though at lower titres than HIV-

negative patients [43,44]. Immunocompromised individuals with

low CD4þ counts or B-cell deficiencies will have trouble building

the adaptive response needed to clear the HPV infection, and so,

at the very least, vaccinated immunocompromised patients

should clear a challenge HPV infection slower than vaccinated

immunocompetent patients. Unfortunately, HPV vaccine efficacy

and immunological studies in immunocompromised patients are

few [43]. Here, we considered how impairment to the adaptive

response affects the results by investigating results when CTL

proliferation rates v and the initial densities of CTL were one

order of magnitude lower than the parameter estimate and initial

conditions of the natural case considered.
(e) Host heterogeneity: sexual behaviour
Sexual behaviour varies between hosts and with age. The host’s

sexual partnership switching behaviour is important to the trans-

mission of the virus. Hosts that are celibate or do not change

sexual partners within the duration of the infection are ‘dead

ends’ for the virus, signifying that the R0 of that individual is

less than 1, and thus only the formation of a new partnership

can lead to transmission [45]. We classified sexual behaviours

into four groups (table 1): ‘long partnerships’ represent individ-

uals who are in long-term serial monogamous relationships;

‘short partnerships’ have on average two to five partners per

year; ‘casual relationships’ have even higher partner turnover;

and ‘superspreaders’, such as sex workers, have 20þ partners

per year. Partner acquisition, break-up and sex act rates were

obtained from the literature for these groups, and all these

rates increase with increased partnership turnover (table 1).

Also note that the per-partnership transmission probability is

0.6 for HPV [46], and its R0 is 2, though higher for core-group

individuals (e.g. superspreaders) [47].
3. Results
(a) Unvaccinated host results
The viral immunity dynamics were represented using a within-

host model. For various values of oncogene expression, the

unvaccinated model shows that CTL invasion is triggered if

the virus drives many infected cells to divide quickly, thus

shortening the duration of the infection (figure 1). The

model, then, captures the recovery constraint that we expect.

The amount of oncogene expression that is favoured under

this constraint is the one that generates the maximal viral

output within the duration of the infection (maximum of

Vtotal, equation (2.3)). For an infection of 1.5 years (HPV-16 is

cleared between 0.5 and 4.9 years [48] and on average before

2 years) we find that the optimal oncogene expression, 1*, is

below 0.2 (figure 3a). This model thus depicts the HR HPV

type strategy of producing few extra self-dividing infected

cells in order to have lesions that are fairly flat on the surface

during acute infections [16].

After calibrating the free parameter a to be 6 � 1026 such

that the short partnership group had an R0 of 2 [47], we then

estimated the R0 of the other sexual behaviour groups. The R0

was 2.9 for the casual group, less than 1 for the long partner-

ship group and 9.3 for superspreaders (figure 3b), which is

realistic though a bit low considering the high partnership

turnover rates of superspreaders.

(b) Vaccinated host results
Unlike the unvaccinated host, the vaccinated within-host

environment does not select for low oncogene expression.

Instead, oncogene expression can be very high since the total

viral load, Vtotal, grows monotonically with higher 1 values

(figure 3c), suggesting that the cost of growth via cell division

is removed in vaccinated hosts. For strains with low oncogene

expression strategies, the total viral output is sufficiently low

that the vaccine is able to clear them effectively (see figure 2,

where Y1, Y2 and V decay to zero for 1 values below 0.7),

suggesting that a high antibody response is an effective

method to decrease viral replication. However, for higher 1

this no longer holds, and the exponential growth of Vtotal

(1 . 0.7; figure 3c) can be explained by figure 2, where the

Y1, Y2 and V curves grow before clearance. Therefore, higher
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1-driven growth allows the virus to produce a high viral load

before the inevitable clearance by the vaccine. Note also that

vaccinated immunodeficient hosts with high 1 (1 . 0.5) pro-

duce higher viral loads than vaccinated immunocompetent
hosts with the same 1 (figure 3c). As another measure of viru-

lence, comparing the populations of Y2 cells shows that

vaccinated hosts have fewer Y2 cells than the unvaccinated

host for 1 , 0.9; however, for 1 . 0.9 the Y2 populations in
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vaccinated hosts reach a higher peak (compare Y2 curves in

figures 1 and 2).

We determined the between-host fitness of the higher 1

strategies by checking that the viral loads are high enough

for transmission within a population (equation (2.6)). As

there is no longer a maximum in the vaccinated host

that defines the optimal oncogene expression, we instead

determine where R0 ¼ 1 and define 1�vac as the oncogene

expression necessary for a strain to persist in a population

(figure 3d ). We find that the R0(1) curve of the long partner-

ship group does not reach R0 ¼ 1 within any reasonable

1-value, implying that even with very high viral loads,

there is not enough partner-switching to allow for trans-

mission within the infection window. The other three

groups (short, casual and superspreaders) do reach R0 ¼ 1

when 1 ¼ 3.3, 1.6 and 1.3, respectively (figure 3d ). We find

that the shape of the vaccinated R0(1) curve rose for higher

values of 1, which is not possible in unvaccinated hosts

because of the transmission–recovery trade-off (compare

figure 3b and 3d ). This implies that removing the ability of

the virus to delay effector cell invasion allows types with

higher oncogene expression to have R0 values higher than

1, and thus can spread in the population. Consequently, the

vaccine lifts the constraint that is most likely keeping HPV
virulence low. Finally, comparing figure 3a and 3c, this

shows that in vaccinated immunocompetent superspreaders,

this new 1 strategy requires a lower minimum viral load of

less than 10 [7] for persistent transmission.

As the vaccine’s main response is humoral, we considered

how increasing the strength of the antibody response affected

1�vac. In figure 4a, we see that as dvac is increased to 100 times

the natural antibody clearance rate, higher 1�vac is needed for

a strain to persist. Thus, the vaccine response selects for high

oncogene expression. The strains in the shaded regions that

are above all three curves have 1-values above 1�vac and could

out-compete strains with lower 1�vac because they can circulate

in all three kinds of hosts (figure 4a). In figure 4b, we plotted

the derivative at 1�vac for different strengths of the humoral

response (for increasing dvac) as a measure of the strength of

the selection for 1�vac. Selection for 1�vac is faster when the

humoral response is weaker (dvac , 1) and it is also faster in

immunodeficient hosts (figure 4b), suggesting that immunode-

ficient patients provide a better environment for the emergence

of more virulent strains.

Note that the long partnership group is not included in

the analysis in figure 4 because this group does not reach

R0 ¼ 1 (as explained above). This implies that hosts engaged

in longer partnerships and who have contracted a challenge
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Figure 4. Effect of vaccine humoral response on optimal epsilon. Sexual be-
haviour groups: superspreaders (yellow), casual ( purple) and short (red).
(a) The oncogene expression needed for persistent circulation, 1�vac, with respect
to the strength of the antibody response, dvac. Generally, 1�vac increases with a
stronger humoral response. Note that above each line are 1 values that can also
circulate (with R0 values more than 1). (b) The derivative at 1�vac for various dvac.
The strength of selection for higher epsilon is stronger in immunodeficient hosts
(dashed lines) in both casual and superspreader groups. Higher dvac implies
slower selection towards 1�vac. (c) The effect of vaccine-induced clearance
time on optimal epsilon. Each line represents the oncogene expression
needed for persistent circulation, 1�vac, in a particular sex group, thus the
shaded region above represents 1 values that have R0 values higher than
1. The oncogene expression needed for 1�vac in the vaccinated host depends
on how quickly vaccine-induced clearance happens. At Z0 ¼ 1024, the vacci-
nated host sheds virus for about 150 days, and at Z0 ¼ 1 the vaccinated host
shed the virus for 50 days. For all three sexual behaviour groups, if the challenge
infection is cleared quickly (high Z0) then a higher 1�vac is favoured, but if the
infection is cleared in under 50 days then even high oncogene expression cannot
help the virus from escaping the vaccine.
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infection lasting up to 150 days have R0 , 1. These hosts,

then, do not contribute to the persistent circulation of strains

with higher oncogene expression.

Finally, figure 4c shows how the duration of infection in a

vaccinated host affects the 1�vac. High initial Z-values, Z0,

equate to faster invasion by the adaptive response. As the

duration of the infection shrinks due to the faster clearance

by CTL, a higher 1�vac is needed for persistence. Note, how-

ever, that if the CTL invasion happens within 50 days

(Z0 . 1), then the vaccine is able to clear all infections in all

groups, regardless of the level of oncogene expression.
Proc.R.Soc.B
282:20141069
4. Discussion
The evolutionary responses of viruses to vaccines are of serious

concern, and they may appear several years after the intro-

duction of such control measures [49]. In a review, Read &

Mackinnon contrast successful vaccines that stimulate natural

immunity with novel vaccines that stimulate new responses

that differ considerably from natural immunity. They warn

that imposing new effector mechanisms can create very

different selection pressures, with potentially unwanted conse-

quences [5]. Our findings appear to coincide with this scenario,

in that the novel vaccine immunity favours increased virulence

in order to allow for transmission during the short window of

time before vaccine-induced clearance.

The HPV vaccines change the within-host ecology encoun-

tered by the virus in three main ways. First, the vaccine-targeted

types experience a strong antibody response that is unnaturally

high [44], and which we find drives the oncogene expression

necessary for persistent circulation up further. Second, the vac-

cine-induced effector cells invade faster, and invasion can no

longer be delayed through strategies using slow viral replica-

tion and signalling interference. We show that this effect

changes the transmission–recovery trade-off such that low

oncogene expression strategies are no longer favoured.

Finally, the vaccine adaptive response now exclusively

targets epitopes of the capsid protein L1 [44], which is dis-

tinct from natural responses that target the early proteins,

E2, E6 and E7, for clearance [13,36]. As the L1 is a late gene

whose epitopes are expressed in the upper layers of

epithelium or are exposed on the capsids [11], the vaccine-

induced effectors will mainly target free virions and these

terminating cells. However, infected cells of the mid- and

lower levels of the epithelium express the early proteins,

and so should be targeted less readily by the vaccine

response. Though this detail is not present in our models,

we expect that it could augment the effect we found by

selecting against the re-infection strategy and favouring the

self-proliferation strategy. In this new environment, variants

of the vaccine-targeted types exhibiting higher than average

cell proliferation would have an advantage.

Discussions of HPV evolutionary responses have been

scant and have focused on the potential of L1 neutralization

escape [50]. We believe that we are the first to suggest this

kind of evolutionary response in HPV types targeted by (or

cross-reactive with) the vaccine. The main form of vaccine

‘leakiness’ that has been addressed in the HPV literature is

that of type specificity and whether it can result in type repla-

cement [51,52]. A ‘leak’ that has not been considered, and

what we find here to be important, is what happens when

the vaccine does not block infection and viral shedding.
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Given that challenge infections by vaccine-targeted types

were detectable in vaccinated women [40] during HPV vac-

cine trials, we argue that the vaccine does not always fully

block viral shedding. Indeed, a humoral response may not

always provide perfect protection from viral challenge [53].

As HPV is transmitted mechanically through the shedding

of both free virions and dead infected keratinocytes from

the epithelial surface [54], it is possible that even if the

antibody response lowers the free virion population signifi-

cantly, a vaccinated host could still transmit the virus by

shedding infected keratinocytes. For comparison, consider

once again the oncogenic MDV example in which shedding

of epithelial cells was also involved in transmission. Indeed,

the MDV vaccines are leaky because they do not block infec-

tion and viral shedding (though this leak is more pronounced

compared with the HPV vaccine’s stronger prophylactic

effect), which has played an important role in the subsequent

virulence evolution of MDV [6,7]. In light of this, we strongly

encourage studies of challenge infections in vaccinated hosts,

their frequency, their duration and to what degree they shed

infected cells. Cross-sectional epidemiological studies or

longitudinal time-points separated six months apart will

often lack the resolution to address these questions, especially

if the challenges are short-lived.

Our model assumes that the high antibody response is

instantaneous (dvac is a constant), and thus it captures the pro-

phylactic effect of high neutralizing antibody titres the vaccine

is intended to create. Locally, however, there should be lower

levels of neutralizing antibodies (e.g. in cervicovaginal

secretions) [13] and there should be a lag from the time of first

challenge until the memory B cells induce antibodies and the

subsequent cellular response invades at full force. We have

not seen empirical estimates of how many days this takes,

though their timing could have considerable consequences on

the evolution of the virus and its transmission.

To demonstrate the essential ingredients of the phenom-

enon, our conceptual model had to idealize the viral

replication process by neglecting many of its known details.

So, although we demonstrate that virulence evolution is poss-

ible, we cannot determine with this study whether it is

probable. It has been argued that accelerated carcinogenesis is

not adaptive because cells in higher-grade lesions do not

produce fully assembled virions [2]. However, given that

animal models can be infected with DNA plasmids to produce

robust, productive infections [55,56], how infectious are kerati-

nocytes containing HPV DNA? Even if cancer cells themselves

are not infectious, how infectious are the cells in the lesions

leading up to cancer? Experiments are needed to assess to

what degree oncogene expression can rise while maintaining

viable viral production, infectiousness and transmission.
Furthermore, following several challenges to the prevailing

view of slow dsDNA virus evolution (where mechanisms

such as recombination are possible [57–61]), there is a need

for more direct investigations into the evolutionary potential

of HPV variants.

In a recent study, Orlando et al. [16] found that HR types are

best suited for transmission in long partnerships (because

HR infections last longer), while shorter partnerships with

higher turnover rates allow for the persistence of LR types

(because LR types are cleared faster). We show here that by arti-

ficially shortening the infection duration, targeted HR types

can more strongly adopt the strategy of cell proliferation

(a strategy that was costly in natural conditions) in order to

increase their chance of transmission, thus adopting a similar

strategy to LR types. Yet oncogenes of HR types have stronger

cell-transforming abilities, and expression at higher levels

should more readily cause cellular genetic instabilities and

lead to faster progression towards cancer.

Our study does not contain a full population model of

interacting hosts, so we cannot investigate the conditions

needed for a host population to maintain an emergent vac-

cine-adapted type. Heterogeneity of hosts plays an important

role in the emergence of strains [62], and indeed we found vari-

ation in the optimal oncogene expression required of the virus

to persist in different sexual activity groups. For instance,

superspreaders required lower viral loads for persistent trans-

mission, and in a highly sexually active core group this could

favour the emergence of a variant with higher oncogene

expression. Emergence happens in stuttering transmission

chains, potentially in small groups of individuals, and certain

host groups are more likely to be carriers and superspreaders

[63–65]. Therefore, future studies should consider how pockets

of core-group individuals (the causal and superspreader

groups in this study) or of immunodeficient individuals may

contribute to the emergence and circulation of new variants.

In conclusion, the uniqueness of the HPV vaccines lies in

that they target a virus that is avirulent for the majority of

hosts but has strong cell transformation properties. Other

oncoviruses have similar features to HPV, making it likely

that this vaccination programme may be emulated in the

future. Given that virulence is not a fixed trait in any patho-

gen, it is in our best interest to understand how we are

changing the ecological landscape and the selection pressures

acting on the virus, in order to more confidently declare a

vaccine’s evolutionary robustness.
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