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Abstract

In this paper we use a simple model of presynaptic neuromodulation of GABA signalling to 

decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at 

CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean 

analysis is employed to normalize the data, which is then used to estimate parameters in the 

mathematical model. Various parameterizations and hidden parameter dependencies are 

investigated using Monte Carlo Markov Chain (MCMC) parameter estimation techniques. This 

analysis reveals that frequency dependence of cholinergic modulation requires both calcium-

dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. 

A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the 

frequency-dependent effects of mAChR activation.

1 Introduction

Neural computation requires the temporal integration of synaptic events [1]. Postsynaptic 

excitatory synaptic events that are active within a short time window summate to produce a 

suprathreshold action potential. However, synaptic integration also occurs within synaptic 

terminals themselves, in which the probability of neurotransmitter release is tightly 

regulated by the history of use [68]. This type of synaptic integration, termed short-term 

synaptic plasticity (STP), occurs on a millisecond to second time scale. At high release 

probability synapses vesicles are readily released upon repetitive stimulation. If the overall 

available pool of vesicles at all the synapses is depleted faster than the rate that the vesicles 
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are replenished, the size of the postsynaptic response can decrease, termed synaptic 

depression [41, 9]. At the opposite extreme, at some types of synapses the release 

probability is initially low and becomes transiently elevated upon repetitive stimulation, 

resulting in an increase in the postsynaptic response, termed short-term synaptic facilitation. 

Facilitation and depression do not appear to be mutually exclusive, and can occur at 

different time scales within the same synaptic terminal, resulting in complex temporal 

synaptic dynamics [19].

Mathematical models have been developed to describe STP, specifically of depression, 

beginning in the 1950s before the discovery of microscopic synaptic vesicles [41]. Later 

models also included facilitation, but were still largely phenomenological [45, 58, 60]. More 

recently models have been constructed that are grounded on plausible molecular 

mechanisms [42, 18]. One important determinant of STP is intracellular calcium [68], 

because the probability of release is thought to bear directly on calcium dynamics within the 

presynaptic terminal. Facilitation involves the binding of calcium to presynaptic proteins, 

causing elevated release probability. A larger postsynaptic response occurs if the synapse is 

stimulated before calcium has unbound from these presynaptic proteins. At excitatory 

synapses [18, 53, 23, 32, 66, 49, 64], recovery from synaptic depression is also thought to be 

accelerated by the presence of calcium. Recent work has identified proteins in the 

presynaptic terminal that control recovery from synaptic depression [10]. Thus, calcium 

signaling in the presynaptic terminal plays multiple roles in regulating neurotransmitter 

release [46]. For a current review of these models see Hennig [31].

Through examination of many types of central synapses, principles of STP have emerged at 

both excitatory [57, 5] and inhibitory [44, 36, 22, 48] synapses. Repetitive activation of 

inhibitory synapses often results in synaptic depression [47, 65, 3, 24] in which repetitive 

activity causes the amplitude of subsequent inhibitory postsynaptic currents (IPSCs) to 

diminish relative to the initial amplitude. In particular, this feature is prominent at inhibitory 

synapses that contain the calcium binding protein parvalbumin (PV) [8, 21]. Although 

synaptic depression appears to have a presynaptic origin, it is not clear whether synaptic 

depression at PV synapses can be accounted for by vesicular depletion alone [37].

The importance of PV interneurons in network dynamics [48, 33] and the potential for 

network models to provide insight into network dynamics, make it relevant to 

mathematically describe the operation and modulation of STP at hippocampal PV synapses. 

Here, using paired recordings between CA1 PV basket cells and pyramidal cells [39] and a 

mathematical model unifying synaptic depression and facilitation developed by Dittman [18, 

19] and expanded upon by Lee [40], we examine underlying mechanisms of STP at 

hippocampal CA1 PV basket cell synapses across a broad range of physiologically relevant 

firing frequencies [59, 35]. Activity-dependent synaptic depression in the data is shown to 

be completely accounted for by vesicular depletion, with minimal contribution of synaptic 

facilitation due to the rapid decay of presynaptic calcium concentration. Moreover, our 

model reveals that calcium-dependent recovery from depression (CDR) is necessary to 

capture the dynamics at all frequencies, and hence is not a mechanism restricted only to 

excitatory synapses.
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Mathematically we have simplified the existing model in [40], reducing it to a two 

dimensional discrete dynamical system in the non-dimensionalized variables representing 

calcium concentration and the fractional size of the readily releasable pool of 

neurotransmitter vesicles, similar to the work of Dittman and Regehr [18]. We have used 

Bayesian parameter estimation techniques, sometimes dubbed “MCMC”, for Monte Carlo 

Markov Chain (with state-of-the-art software, [28]) to determine not only a set of parameters 

that fit the data, but the hidden dependencies in those parameters. This information 

(provided graphically) guided our reduction of the model to one with fewer free parameters, 

but more importantly showed us what aspects of the model are essential for capturing the the 

dynamics of the data. This has important physiological implications, as mentioned above. 

Recently, Costa et al. 2013 [15] used MCMC techniques to investigate the utility of the 

methods in synapse identification via clustering of parameter posterior distributions, and 

developing experimental protocols that best identify model parameters. Our focus here is on 

model reduction and the development of insight into physiological mechanisms through 

parameter estimation. The careful synthesis of modeling, experiments and Bayesian 

parameter estimation is a mostly unexplored avenue of mathematical neuroscience, bridging 

the gap between between abstractions that cannot be directly related to experiments, and 

models of such size and complexity that the estimation of parameters from existing data is 

simply not possible, rendering their ability to elucidate underlying mechanisms 

questionable.

Finally, PV interneurons are important targets for neuromodulation, [25, 29, 56, 11, 67], 

which can control the magnitude of neuronal oscillations [13, 4]. Our model accurately 

predicts that reduced intracellular calcium is the mechanism underlying presynaptic 

neuromodulatory effects of muscarinic receptor activation [26]. Given that many network 

models include PV synapses but lack STP [61, 16, 17], a mathematical description of STP at 

PV synapses will increase the physiological relevance of computational models of learning 

and memory.

The paper is organized as follows. In the Methods section we describe the experiments and 

the methods used in the pre-processing of the data, as well the Bayesian parameter 

estimation technique. The physiological processes and the mathematical model used are then 

described, for the mathematical readers who may be unfamiliar with the biological 

background and model assumptions used by Dittmann and Regehr, and Lee et al. [18], [40]. 

We also perform mathematical simplifications unique to this paper in this section, and 

illustrate the underlying premise of a competition between the time scales of the stimulation, 

recovery of the signaling mechanism between stimulations, and probability of release. The 

next section contains analysis of the discrete dynamical system and its dependence upon 

parameters, followed by a section that presents results from both a nonlinear least squares fit 

of the parameters to the experimental data, and a Bayesian estimation of the distributions of 

the parameters that drives a reduction of parameters in the model. The last section is a 

discussion of these results and their physiological implications.
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2 Methods

2.1 Experiments

In the experiments that we model in this paper, whole-cell recordings are performed from 

synaptically connected pairs of neurons in mouse hippocampal slices from GFP-positive PV 

mice [39]. The presynaptic neuron was a PV basket cell (BC) and the postsynaptic neuron 

was a CA1 pyramidal cell (PC). Using short, 1-2 ms duration suprathreshold current steps to 

evoke action potentials in the PV BC from a resting potential of -60 mV, trains of 25 action 

potentials are evoked at 5, 50, and 100 Hz from the presynaptic PV BC. The consequence in 

the postsynaptic PC is the activation of GABA-A receptor-mediated inhibitory postsynaptic 

currents (IPSCs). Upon repetitive stimulation, the amplitude of the synaptically evoked 

IPSC declines to a steady-state level, which is referred to as multiple-pulse depression 

(MPD). An illustration of data from this experiment at 50 Hz under control conditions figure 

1 a). In figure 1 b) we average over seven cells in both control and muscarine conditions, 

with the baseline subtracted for each pulse, so that measurement is of the change of response 

upon stimulation. The error bars measure one unit of standard error. These experiments were 

conducted with 5, 50 and 100 Hz stimulation pulse trains, in order to test for frequency 

dependent STP effects. These frequencies span the physiological range. Indeed, network 

oscillations associated with learning and memory feature PV BCs firing in the gamma range 

(20-50 Hz) [7].

Bath application of muscarine activates presynaptic muscarinic acetylcholine receptors 

(mAChRs) which cause a reduction in response overall, and subsequently the amount of 

steady state depression in the train. The frequency dependence of this effect at this synapse 

is the focus of our investigation. For instance, is there any reason to suspect that there is a 

reduction in depression in the gamma frequency range for either control or mAChR 

activated trains? If this is so, it could have implications in the study of network behavior, 

and hence the effect of neuromodulation on learning and memory pathways.

2.2 Variance Mean Analysis

The strength of a synaptic connection will determine the size of the response, and that 

depends upon the average amplitude of the postsynaptic response to a released vesicle of 

neurotransmitter, call it Q, measured in units pA. The number of independent release sites 

that make up the synaptic contact, N, and the probability of transmitter release for this pool 

of release sites, Pr, will also play a role. The average size of the peak response is thus the 

product of all three: NPrQ.

The experimental response could then be normalized to represent probability of release (and 

therefore range between 0 and 1 if it is divided by NQ. To find N and Q in these experiments 

we employ a technique known as Multiple Probability Fluctuation Analysis [51], though we 

use the simplest version of these techniques, which in this context is called Variance Mean 

Analysis [12]. The primary assumption is that the probability of release of a vesicle of 

neurotransmitter follows a Binomial distribution, with a mean proportional to PrQ. The 

variance of a Binomial distribution can be written as a function of the mean, and it is a 

quadratic with coefficients that depend on the exact model used for the transmitter release. If 
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the mean of the synaptic amplitude is μ = PrQ, then the variance of the synaptic amplitude 

can be derived from binomial theory to be σ2 = μQ(1 − Pr). If the synaptic response is 

assumed to vary from vesicle to vesicle, then Q must represent the average response, with a 

corresponding variance, CV. This alters the expression for the variance to σ2 = μQ(1 + CV2 

− Pr) [50]. It becomes a quadratic in the mean upon substitution of Pr = μ/Q, resulting in

(1)

This is a parabola with a maximum at (1 + CV2)Q, and an initial slope of Q(1 + CV2). If 

measurements of the mean and variance of the synaptic response can be made for varying 

probability of release, this dependency can be used to compute Pr and Q. We use this 

method to find the constants needed to normalize the response trains to have units of 

“probability of release”.

To achieve differing release probabilities we alter the frequency of synaptic stimulation by 

pulse trains ([51, 34]). By evoking IPSCs from PV BC synapses at 3 different frequencies 

(5, 50, and 100 Hz), with 25 pulses in each train, we obtain a wide range of release 

probability conditions during a stable recording period. The mean and variance of 7 

individual IPSCs from each condition were computed. To avoid over-sampling of low 

release probability conditions, raw variance-mean conditions were binned in 10-25 pA 

increments of mean. We fit the variance-mean relationship with the quadratic function 

(Variance-Mean Analysis Programs, AxographX, Sydney, Australia):

(2)

where σ is the variance, I is the mean response amplitude, q is the average quantal 

amplitude, N is the number of independent functional release sites, and CV1 is the intrasite 

quantal coefficient of variation. In muscarine conditions, the fit was often linear, which 

enabled only q to be determined. To reduce the number of free parameters, we assumed that 

N did not vary with frequency, the release probability was uniform, the neurotransmitter 

concentration (and hence quantal amplitude) was stable, GABAA receptors were not 

saturated, and conduction failures did not occur. We reduced the number of free parameters 

further by setting CV1 = 0.3 [12]. Although this has not been tested explicitly at PV BC 

synapses in the CA1 hippocampus, we felt that these assumptions were reasonably justified 

given the properties of PV synapses described in the dentate gyrus [37] and cortex [14, 55]. 

Frequency-dependent changes in average release probability Pn were obtained by the 

equation

(3)

where In is the average IPSC amplitude for each stimulus number n of a 25 stimulus train of 

action potentials. N and q were obtained from the parabolic fit, and were determined to be N 

= 12.6 ±3.4 (active release sites) and q = 33.8 ± 4.8 pA (per active release site) [39].
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The experimental response trains can then be normalized by Nq to change from units of pA 

to that of release probability, varying between 0 and 1. See figure 1 c), in which the 

amplitude of the peak (negative) values of the response have been rescaled by Nq. We also 

evaluate the maximum release probability from the equation

(4)

where Imax is the mean EPSC amplitude in the highest release condition. Pmax was 

determined to be 0.87 for this synapse in these experiments.

2.3 MCMC Methodology

As data contains measurement errors, the unknowns estimated from the data are necessarily 

more or less uncertain. A natural question then arises: if measurement noise corrupting the 

data follows some statistical distribution, what is the distribution of ‘all’ the possible 

solutions to the parameter estimation procedure? Classical formulas for variances and 

covariances are available for linear models. The situation is quite different for nonlinear 

models, analytical formulas for the distributions are no longer available. The only way to 

proceed is to use computational methods to create samples from the distributions and 

estimate the distributions as histograms of the samples. As data contains randomness or 

noise, we might have equally well obtained somewhat different data points, and thus 

different parameter estimates. There are two main options available. We can perturb the 

measured data and refit the parameters. Or we may perturb parameters, accept parameter 

values that give good enough fits to data, rejecting others. In the first option, we directly 

produce different data values. This leads to variants of Bootstrap methods. In the second 

approach data is not changed, but the uncertainty of data is taken into account by accepting, 

roughly speaking, parameters that produce model predictions that fit the data within the 

noise level of measurements. This approach is the background idea of several Markov chain 

Monte Carlo, or MCMC methods, for example, see [27]. They allow us to perform the 

seemingly impossible task of correctly sampling from an unknown distribution. The most 

common of them is the Metropolis algorithm. The core idea is to employ a user-defined 

proposal distribution from which candidate samples are drawn, and then either accept or 

reject the sample, depending on how well the model fits the data. The proposal distribution 

may be rather arbitrary in principle, but the crucial practical question is how to select it to be 

efficient for numerical calculations. Several adaptive MCMC sampling methods have been 

developed for this purpose. Here we use the Delayed-Rejection Adaptive Metropolis ([28]) 

method to study how well our measurements are able to identify the model parameters.

Bayesian inference and MCMC methods are becoming increasingly popular. See [15] and 

the references therein for recent related works in neuroscience, and for more discussion on 

the benefits of MCMC sampling approaches as compared to point estimates of parameters 

obtained by standard least squares fitting algorithms. We note that the model considered 

here is different from that discussed in [15]. Also, we show here how the results provided by 

the MCMC chains can be employed for model reductions: we will first study the 

identifiability of the original model, then analyze the high-dimensional correlations that 
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remain between the model parameters. Finally, we use this information to derive a reduced 

model, run the MCMC chains again and arrive at well identified parameters.

3 Model Development

3.1 Physiological Process

STP at dentate gyrus PV BC synapses has been determined to be of presynaptic origin [29, 

2, 37]. Similarly, coefficient of variation and failures analysis indicated that at CA1 PV BC 

synapses, STP was of presynaptic origin [39]. When an action potential arrives at the BC 

presynaptic terminal, P/Q-type calcium channels open [30], and an influx of calcium induces 

exocytosis of vesicles into the synaptic cleft. Presynaptic facilitation occurs if repeated 

stimulation results in an increase in the amplitude of the postsynaptic response. This a result 

of an increase in probability of release, which in turn is thought to depend on a build-up in 

calcium concentration at the presynaptic terminals. If we assume that the calcium 

concentration in the terminals decays exponentially, the rate of calcium decay relative to the 

frequency of the stimuli will determine the extent of the accumulation. We illustrate several 

decay rates for a fixed stimulation frequency and an initial pulse of calcium concentration of 

the amount δ, in Figure 2. Experimental and modeling work at PV BC synapses has shown 

tight coupling between presynaptic calcium channels and the exocytosis machinery sensors, 

whereby a brief (1-2 ms) influx of calcium occurs in the immediate vicinity (10-20 nm) of 

the exocytosis release machinery [6]. As calcium diffuses outside of the active zone, 

parvalbumin itself and/or other calcium binding proteins involved in CDR [18, 53, 23, 32, 

66, 49, 64] may bind to calcium, thereby influencing the shape of the calcium transient.

We define the probability of release (Pr) to be the fraction of a pool of synapses that release 

vesicles upon the arrival of an action potential at the terminal. Following the work of Lee et 

al. [40], we postulate that the Pr increases monotonically as function of calcium 

concentration, in a sigmoidal fashion, to asymptote at some Pmax. The kinetics of the 

synaptotagmin-2 receptors [33, 52] that bind the incoming calcium suggest a Hill equation 

with coefficient 4 for this function [20], see figure 2 b) top, for an illustration. The half-

height concentration value, K, and Pmax are parameters to be determined from the data.

After releasing vesicles upon stimulation, some fraction of the pool of synapses will not be 

able to release vesicles again if stimulated within some time interval, e.g. they are in a 

refractory state. This causes “depression”, a monotonic decay of the amplitude of the 

response upon repeated stimulation. The synapses do recover, however, and it is thought that 

the rate of recovery of the synapses from the refractory state depends on the calcium 

concentration in the presynaptic terminal [18]. Indeed, parameter sensitivity analysis 

indicates that our data cannot be fit by a constant rate of recovery from depression; therefore 

another time scale must be introduced. There is also physiological evidence that the rate of 

recovery is increased by increased calcium concentration at the terminal [18, 53, 23, 32, 66, 

49, 64]. In our model we again follow Lee et al., [40], and assume a simple monotonic 

dependence of rate of recovery on calcium concentration, a Hill equation with coefficient of 

1, starting at some kmin, increasing to kmax asymptotically as the concentration increases, 

with a half height of Krecov. See figure 2b), bottom. Muscarine, binding to presynaptic 

muscarinic acetylcholine receptors (mAChRs) [29, 56], is thought to cause inhibition of 
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calcium channels, thereby decreasing the amount of calcium that enters the terminal when 

an action potential arrives [26].

The interplay between the presynaptic probability of release and the rate of the recovery 

from depression creates a filter for the incoming stimulus train. The synapses can act as a 

low pass or high pass filter depending on the exact values of the parameters, and indeed, in 

some instances can display resonance [40]. We will illustrate this in the Analysis section. 

Neuromodulation by mAChR activation modifies the properties of this filter.

3.2 Model Equations

We simulate the effects of short term plasticity upon IPSC amplitudes in the pulse trains 

with a model in which both depression due to depletion of vesicles and facilitation from an 

increase in presynaptic calcium concentration are included, similar to the models of [45] and 

[58]. In addition, the rate of recovery from depression is also dependent on the presynaptic 

calcium concentration, which was first introduced by Dittman and Regehr [18], and is 

further expanded upon by Lee et al. [40]. What follows is an review of this model, with 

illustrations.

It is assumed that the calcium concentration, [Ca], follows first order decay kinetics to a 

base concentration, [Ca]base. We have further assumed that [Ca]base = 0, since locally (near 

the calcium sensors) the concentration of calcium will be quite low in the absence of an 

action potential. We note here that both these assumptions, as well as the dependence of the 

release mechanism and recovery mechanism on the same concentration of calcium, are most 

likely gross oversimplifications of the actual mechanisms that take place in the presynaptic 

terminal. That said, the experiments are not such that any finer resolution of the calcium 

dependence of the processes or time scales are resolvable. Our purpose is to develop a 

minimal model that describes the observable processes. With this caveat we continue, and 

the evolution equation for [Ca] is simply

(5)

where τCa is the calcium decay time constant, measured in msec−1. Upon pulse stimulation, 

presynaptic voltage-gated calcium channels open, and the concentration of calcium at the 

terminal increases rapidly by an amount δ (measured in μM): [Ca] → [Ca] + δ at the time of 

the pulse. A sample time course of [Ca] over multiple pulses is shown in fig. 2. Note that 

calcium build-up is possible over a train of pulses if the decay time is long enough relative 

to the inter-pulse interval.

The solution to the equation for calcium concentration can be simplified by defining a new 

time scale, τ = t/τCa. We also non-dimensionalize the calcium concentration by rescaling it 

by the value of δ in the control case, δc, and defining C = [CA]/δc. After a stimulus occurring 

at a time t = 0, which results in an increase in C by an amount Δ = δ/δc, the concentration of 

calcium is
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(6)

In the control case this further simplifies to

(7)

The peak of the postsynaptic IPSC is presumed to be proportional to the total number of 

release sites that receive stimulation Ntot, which are also ready to release (Rrel), e.g. NtotRrel, 

multiplied by the probability of release Prel. That is, peak IPSC ∼ NtotRrelPrel. Prel and Rrel 

are both fractions of the total, and thus range between 0 and 1. Without loss of generality, 

we consider peak IPSC proportional to RrelPrel, and study the interplay of stimulation 

frequency and rates of calcium decay and recovery from depression, the rate of the return of 

the variable Rrel to unity.

Both the probability of release and recovery from depression depend on the presynaptic 

calcium concentration, illustrated in Figure 2. As mentioned above, the mechanism of 

vesicle binding and release depends upon calcium binding synaptotagmin-2, which obeys a 

Hill equation with coefficient 4, thus Prel does so accordingly:

(8)

At this point we can make our first contact with the experimental data. The mean-variance 

analysis allowed us to make a calculation of Pmax, the maximum probability of release for a 

set of responses.

For this synapse, it was calculated to be 0.87, which occurs (on average) for the first IPSC in 

the train, at maximal recovery from depression when the coefficient of variation was lowest 

[39].

The rate of recovery of the release sites is krecov

(9)

The variable Rrel is governed by the ordinary differential equation

(10)

which can be solved exactly for Rrel(t).
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(11)

Prel is also a function of time as it follows the concentration of calcium after a stimulus.

We are interested in capturing the peak value of the IPSC only, so we can construct a 

discrete dynamical system (or “map”) that describes PrelRrel upon repetitive stimulation. 

Given an inter-spike interval of T, the calcium concentration after a stimulus is C(T) + Δ, 

and the peak IPSC is proportional to Prel(T)Rrel(T), which depend upon C. After the release 

Rrel is reduced by the fraction of sites that released vesicles, e.g. Rrel → Rrel − PrelRrel = 

Rrel(1 − Prel). This value is used as the initial condition in the solution to the ODE for 

Rrel(t). In this way a two dimensional map (in C and R) from one peak value to the next can 

be constructed. To simplify the formulas we let P = Prel and R = Rrel. The map is

(12)

(13)

(14)

The peak value upon the nth stimulus is RnPn, where Rn is the value of the reserve pool 

before the release reduces it by the fraction (1 − Pn). The time course of the variables in 

between stimuli can be followed by graphing the functions C(t), P(t), Rrel(t) vs. t for 

multiple stimuli. See figure 3. The initial conditions in this figure are C(0) = 0; R(0) = 1, and 

the stimulation frequency is 50 Hz. Parameters for the model are summarized in Table I.

4 Analysis

We can solve for the fixed point, or equilibrium, of the map directly, which represents the 

peak IPSC response over long time. The result is:

(15)

(16)

(17)
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where

(18)

We can now compute the dependency of the fixed point  on T (inter-spike interval), and 

the physiological parameters. From the graphs and the expressions for the fixed point, it is 

evident that there are two distinct ranges of dependence on T, namely e−T and e−kminT. To 

expose these dependencies we examine the limits of the expression for the fixed point as T 

approaches zero and infinity.

As T limits on infinity, C̄ approaches Δ, and P̄ = PmaxΔ4/(Δ4+K4) = Pmax/(1+K4/Δ4) which 

we will call P∞. For long inter-spike intervals relative to τCa, the pool of available synapses 

will be completely replenished, hence R̄ approaches 1, which is clear from the limit of the 

expression for R̄. Hence the fixed point will asymptote on . The peak response of 

the cell is determined by Pmax and the relative values of Δ and K. If Pmax is determined from 

the variance-mean analysis, then in this limit the fixed point determines the increase in 

calcium (Δ) relative to K. As T approaches zero, C̄ → ∞, so P̄ → Pmax, but R̄ approaches 

zero, so the fixed point will also be zero. These facts explain the y intercept and horizontal 

asymptote of the graphs in figure 4. To more fully understand the dependence of the 

equilibrium on inter-pulse interval, which clearly has two distinct profiles, further 

approximations must be made.

If the concentration of calcium decays to zero fast compared to the inter-spike interval (e.g. 

T large), the initial rapid increase in the rate of recovery from depression is very short-lived. 

For most of the interval the rate of recovery will be kmin. Hence we approximate the 

behavior of R by the solution to the ODE

(19)

or R(t) = 1 − (1 − R0)e−kmint. The map for R is then

(20)

and the fixed point is found to be

(21)

As T grows large, P̄ → P∞, so an approximation for the fixed point in this limit is
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(22)

Note that it now contains only one rate of recovery from depression, namely kmin. In figure 5 

a) we compare the full expression with this approximation, and see that the limit is 

approached at the same rate. The decay rate for large T is thus kmin.

For small T, the fixed point decreases to zero, and equals zero for T = 0. In the limit as T → 

0 we make the approximation that the rate of recovery is constant at kmax = kmin + Δk, 

because C̄ → ∞, which will force krecov(C̄) to kmax. Similarly, P̄ → Pmax. Using these 

values in P̄R̄ wearrive at:

(23)

In figure 5 b) we compare this with the full expression over the range T = [0, 10] with the 

control parameter set. There is reasonable agreement for T < 2.0, establishing the simpler 

expression as useful in both limits, T → 0 and T → ∞.

In figure 6 a) we compare the control and muscarine parameter sets, plotting the fixed point 

vs. the frequency instead of inter-pulse interval. The reduction in the size of the equilibrium 

upon the addition of muscarine is expected, and for high frequencies, the fixed point tends to 

zero (data not shown) as it must. Also as expected, the fixed point decays quickly over the 

first 50 HZ or so, and then proceeds to decay more slowly toward zero for larger 

frequencies. Thus, not surprisingly, the presynaptic mechanism acts as a low pass filter.

It is possible to have “resonance” phenomena with this map, that is, a certain frequency 

value will produce a larger fixed point than others nearby, but the time scale of calcium 

decay must be very large. This enables an interplay between calcium enhanced rate of 

recovery and probability of release. Accordingly, as the time scale is increased, a local 

maximum in the fixed point vs. frequency graph appears, see figure 6 b). In this figure fixed 

point vs. frequency is plotted for τCa varying from 1.0 to 20.0 milliseconds. For a decay 

time greater than about 10 milliseconds, a maximum appears near what could be considered 

a gamma frequency, around 60-70 Hz. The peak in frequency requires a significant build-up 

of calcium concentration in the terminal over a pulse train to occur at these frequencies. 

Because the model of the terminal is very simplified, it is best to interpret this more 

generally as the need for a mechanism that causes the probability of release, not just the rate 

of recovery, to depend upon frequency.

We can also compute the eigenvalues of the map, which govern the rate at which the 

response will decay to the fixed point starting near by. To so so we express the map in a 

more general fashion:

(24)
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(25)

where f(C) = Ce−T + Δ and . The 

Jacobianof the map is

which simplifies to

The matrix being lower triangular, the eigenvalues for the map are the diagonal entries, 

evaluated at the fixed point, (C̄, R̄). The first eigenvalue is , and the 

associated eigenvector is (1, 1). This part of the map represents rapid decay of the calcium to 

zero, giving an initial quick collapse of the calcium, followed by a slower decay to the fixed 

point in R along the eigen-direction of the second eigenvalue, namely (0, 1). This eigenvalue 

is found by evaluating  at the fixed point, with the result:

(26)

Recall that , and P(C̄) < 1. Hence 0 < λ2 ≤ 1 and λ1 ≪ λ2 as 

e−T≪ e−kminT for the values of kmin that we are considering. We note also that for small 

values of Δk, λ2 ≅ e−kminT, making the two different time scales obvious. The fixed point C̄, 

R̄ is thus an attracting node with two distinct decay rates, T and kminT.

We can use these calculations to draw some conclusions about the effect of muscarine on 

paired pulse and multiple pulse depression in this data set. The fixed point is a measure of 

multiple pulse depression (MPD) and the observed eigenvalue, λ2, determines how fast the 

peaks drop to the equilibrium value. We plot fixed point for the control and muscarine case 

vs. interpulse interval in figure 7, top. Both muscarine and control cases show an increase of 

fixed point with increasing interpulse interval. The steepest growth (making it the most 

sensitive range for frequency changes) happens between 0 and 10 millisecond, or greater 

than 100 Hz, well beyond the gamma frequency range. Muscarine decreases the fixed point 

almost uniformly compared to the control, supporting the hypothesis that MPD is increased 

by the activation of muscarinic receptors.
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An expression for the ratio between the second and first peak (paired pulse ratio, PPR) can 

be derived using the eigenvalue and the equation for the fixed point. It is:

(27)

where p1 = Δ4Pmax/(Δ4 + K4). The PPR determines the amount of PPD, a smaller PPR 

meaning more PPD. The dependence of PPR on interpulse interva1, T and Δ is shown in 

figure 7 (bottom) for the control and muscarine values of Δ (1.0 and 0.172 respectively). It is 

clear that muscarine increases PPR from control across the range shown, which implies a 

smaller PPD. Similar to the fixed point vs. T plot, there is a sharp boundary layer at zero 

through about 5 or 10 milliseconds, beyond which the dependence on T is approximately 

linear. The presence of the boundary layer indicates an asymptotic approximation could be 

constructed for these quantities as well, but as this is outside the range physiologically 

plausible frequencies, it is left for another investigation.

We may thus conclude that while activating muscarinic receptors further depresses the 

response of these synapses in MPD, it reduces the rate of decay in the initial part of the train, 

increasing the paired pulse ratio, which means PPD is reduced. The analysis of the model 

mechanism explains the experimental findings for both long and short train responses.

5 Parameter Estimation

5.1 Simple fitting with initial guesses guided by physiology

The rescaled data were fitted to the map using the Matlab package lsqnonlin, which 

performs a constrained optimization, allowing us to restrict the parameter ranges to be non-

negative. See figure 8 for the result. The value of Pmax = 0.87 was determined by Variance-

Mean analysis. The common fitted parameter values for both data sets are as follows:

parameter fitted value

K 0.2

kmin 0.0017 1/msec

kmax 0.0517 1/msec

Kr 0.1

τCa 1.5 msec

The control data set was assigned Δ = 1, which can be done without loss of generality, and 

the muscarine data set has the fitted value of Δ = 0.17. From this result it is clear that the 

size of the spike in calcium during a stimulation event must be much reduced to fit the data 

from the muscarine experiments. This is in accordance with the idea that mAChR activation 

reduces calcium ion influx at the terminal.

We also quickly discovered that despite non-dimensionalizing, this was not a unique set of 

parameters. Many variations could be found that fit the data with equal accuracy. For 

instance, changing the decay rate of calcium could be balanced by varying kmin or the profile 

of the calcium dependence of the recovery rate. This calls into question the validity of 

Stone et al. Page 14

Math Biosci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



conclusions we make about the physical system based on the model. We explore these 

dependencies in the next section.

5.2 Results of MCMC parameter estimation

The aim of this section is to critically evaluate the extent to which experimental data is able 

to determine the model parameters. The combination of a nonlinear model, a multitude of 

parameters, and noisy data, creates the danger of over-fitting. A least squares fit might be 

able to produce a good fit to data, but other, quite different parameter combinations might do 

so as well. Indeed, we will see that a reduction of parameters is needed for the present model 

with this data set.

We first summarize the model, data and parameters to be estimated. The data used for 

parameters estimates consists of 6 measurement sets, as given by 3 different stimulation 

frequencies 5 Hz, 50Hz and 100Hz, both for the control and the muscarine cases. In terms of 

our model, the data are the normalized size of the pulse, which is given by the product of the 

release probability P at that time and the available fraction of the synapse pool R. The 

calcium concentration we call C, and each pulse creates a discontinuous ‘jump’ for C and R, 

after which we compute the continuous decrease and increase of C and R. The respective 

values at the end of the pulse interval are then added to the discontinuous increments to get 

the new initial values after the next pulse. Only the initial values of the product PR are used 

for parameter estimation. Since each train consists of 25 pulses, the model is given by a loop 

over n = 1,2, ¨,24 of the map equations given in Section 3.2 above.

The data points themselves are mean values from several repeated experiments, so we may 

reasonably well assume that the measurement noise is independent and normally distributed. 

The standard deviation for the measurement noise was estimated from the time variation in 

the equilibrium value of the data (see figure 1), as we may assume them to represent 

repetitions from the same source.

We study the same parameters as those above, θ = (K, kmin, Δk, Kr,τ, Δ). Recall that Δ is the 

ratio of the the influx of calcium under muscarine conditions and control conditions, and as 

such is set to 1 for the control condition data fits. We start the sampling at the minimum 

LSQ point found above, and initially use a Gaussian proposal distribution with a diagonal 

covariance matrix. During the sampling the proposal covariance is then automatically tuned 

by the adaptive MCMC algorithm.

We employed no prior distributions for the parameters, except positivity and certain large 

upper bounds. The results of an MCMC chain with 100000 samples are presented below. 

The histograms in figure 9 exhibit the one-dimensional marginal samples of the individual 

parameters. We can see that the distributions of some of the parameters are well defined but 

three of them are not.

The 2D and 3D scatter plots in figures 10 a) and 10 b) reveal that there is a strong nonlinear 

correlation between the parameters Δk, Kr and τ: all the accepted samples lie on a thin 

‘surface’ in 3D. In order to arrive at a parametrization that is better identified by the 

measurements, we re-parameterize the model by introducing a new parameter as the ratio α 
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= Δk/Kr. Indeed, the 2D scatter plot 10 a) indicates that only this ratio might be identifiable, 

not the values of Δk and Kr separately. As for the model, this means that the dependency of 

R on the calcium concentration remains linear:

(28)

This, in turn, leads to somewhat simplified equations for the expression of R(t):

(29)

Next, we run a new MCMC sampling employing the model with the reduced parameters θ = 

(K, kmin, α, τ, Δ). The results are given in the figures 11 a), 11 b), and 12. We can see that 

the model fits the data with the same accuracy as before, but the parameters are better 

identified now. The rather strong ‘banana’ style nonlinear correlation between the new 

parameter α and τ remains, however (see figure 13). This might be inevitable as the present 

experimental setting couples the parameters: α gives the linear dependency (28) of the 

recovery rate k on the calcium concentration C, while τ determines the decay rate of C by 

C(t) = C0e−t/τ. So, the larger τ is, the slower C decays, and the equation (28) allows smaller 

values for the coefficient α, respectively. This correlation is also revealed by the formula 

(29). Nevertheless, as separately shown in figure 12, the values of the parameters are 

bounded. Recall that no priors for the parameters were used, other than positivity and large 

upper bounds, as figure 10 a) demonstrates.

The dependency of the recovery rate k on the calcium concentration has been discussed in 

the literature, see [40]. We might still try to reduce the model by assuming calcium 

independent k (i.e., set Δk/Kr = 0 in the above equation). The corresponding fits created by 

MCMC runs are shown in figures 14 a) and 14 b). We can see that the model is not able to 

fit the data in this case. We conclude that our data is able to confirm the dependency, as well 

give reasonable lower and upper bounds for a linear model parameter. However, a strong 

correlation remains with the calcium decay rate. This is hardly surprising, given the 

exponent of kminτ in the expressions.

6 Discussion

In this paper we have developed a model for synaptic depression that is simple enough to 

analyze thoroughly, yet retains the major components of earlier models. We can compute 

analytic expressions requilibrium response values and determine how they depend on the 

parameters in the model for Sufficient conditions for resonance in the frequency response 

are implied by the result that calcium accumulation is necessary to create a local maximum 

in the response vs. frequency function. We determined that a variable rate of recovery, one 

that depends on the stimulation frequency through the decay rate of calcium concentration, 

is necessary to capture the response over successive pulses at the three frequencies 

measured. Exploration of the dynamics of the model indicates it can capture a wide range of 

observed responses of cells to stimulation at varying frequencies.
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It is of physiological interest to compare the reduction in size of the second pulse from the 

first pulse (paired pulse depression or PPD) and the steady state response value (multiple 

pulse depression, or MPD). The expressions for the equilibrium capture the dependence of 

MPD on the parameters in the model, while the eigenvalue in the direction of R determines 

the decay to the equilibrium and can be observed in PPD. Both phenomena are 

mechanistically explained in this single model, rather than the two separate physiological 

mechanisms proposed in [37]. The effect of adding muscarine and activating presynaptic 

mAChRs was similarly explained by the calcium dependent recovery from depression 

mechanism, along with a reduced absolute level of calcium influx upon stimulation, leading 

to a decrease in overall probability of release and reduced size of the response. No additional 

alterations to the model were required to fit the response in muscarine conditions at 5, 50 

and 100 Hz. Additional presynaptic effects of mAChR activation that might explain a 

reduction in release, such as activation of a presynaptic inward rectifier channel or a direct 

effect of mAChRs on the neurotransmitter release machinery, cannot be excluded. However, 

mAChR-induced inhibition of neurotransmitter release through hyperpolarization of the 

presynaptic terminal seems unlikely [43, 38]. These additional potential mechanisms were 

not necessary to account for the synaptic effects observed in the muscarine condition. We 

note here that the model fit also reflects the fact that calcium dependent facilitation occurs 

on a very fast time scale, indeed, the lingering calcium only plays a role in determining the 

rate of recovery from depression. At these stimulation frequencies the amount of calcium 

present at the time of the second pulse is negligible and does not change the probability of 

release, which is solely determined by the amount of calcium that enters the presynaptic 

terminal during a stimulation event. This indicates that the tight coupling of the calcium ion 

channel and the neurotransmitter release machinery found in the GABAergic presynaptic 

terminals of basket cell-granule cell synapses in the dentate gyrus [6] is also found at these 

synapses. For a review, see [33].

The application of MCMC in parameter estimation allows us to make these statements with 

assurance, and also revealed a dependence in the parameters that might otherwise have been 

missed. A further simplification of the model was made, reducing the functional dependence 

of the recovery rate of the synapse on calcium to linear and increasing. We note here that 

our research runs in parallel with the recent work of Costa et al. [15], and we hope in future 

to implement their techniques. In particular, we plan to use their experimental protocols that 

should better identify parameters in our future work.

We can then move forward with confidence in the model, and state that the activation of the 

mAChRs by muscarine causes a reduction in the influx of calcium which then reduces the 

size of the response and the rate of recovery. The model also predicts that response 

facilitation through calcium build-up is not present in these experiments. Nevertheless, we 

have validated that PPD can be reduced even when MPD is left intact. We predict that 

presynaptic neuromodulation at high release probability synapses will filter incoming input 

in a way that optimizes pairs of release events at short intervals, while sustained activity in 

the presence of muscarine weakens synaptic transmission by slowing the rate of calcium 

dependent recovery, creating a smaller equilibrium response. Therefore, the same underlying 
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physiological mechanism can create very different filtering characteristics in synaptic 

transmission.

We recognize that this model is a very coarse approximation of the mechanism of 

presynaptic signalling. In particular, the bundling of calcium dependent probability of 

release and recovery does not reflect the actual vesicle release train of events. We have 

shown, however, that including that level of detail would not yield any addition information 

from the data set. The data can be fit by a model that has a probability of release determined 

only by the initial influx of calcium, and as such cannot experience facilitation, while the 

variable rate of recovery, dependent upon a decaying concentration of calcium, is required to 

capture the frequency dependence of the depression seen in the pulse trains. A more 

complicated model might include two pools of calcium, one for the release mechanism and 

another for the recovery of the vesicles, but no further insight could be gained because the 

additional parameters could not be fitted uniquely. New experiments would have to be 

designed to uncover the values of these parameters.

Thus we conclude by saying this paper demonstrates the utility of our combined 

experimental/dynamical model/Bayesian parameter estimation approach to understanding 

time series from electrophysical experiments. Some of the hidden variables in the processes 

can be recovered, while others cannot. The results can then guide the development of future 

experimentation and modeling.
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Figure 1. 
a) Response to pulse train stimulus from one cell in control conditions, in pA, picoamps. b) 

Comparison of response in control and muscarine conditions, averaged over 7 cells, plotted 

with error bars at one standard deviation of the mean. The baseline for each pulse has been 

subtracted from each peak, to capture the change in the current upon stimulation. c)Absolute 

value of the response in control and muscarine conditions, baseline removed as described in 

b), averaged over 7 cells and normalized by Nq (N number of release sites, q quantal 

amplitude of single synapse) to have units of “probability of release”, Pr.
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Figure 2. 
a) Calcium concentration over a time course of pulses, frequency of 50 Hz. Top: τca = 1 

msec, middle: τca = 10 msec, bottom: τca = 50 msec. b) Model parameters as they depend 

upon presynaptic calcium concentration. Top: dependence of probability of release, Pr, upon 

calcium concentration. Bottom: rate of recovery from depression krecov, as it depends upon 

calcium concentration
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Figure 3. 
a) C(t) vs. time (msec). b) P(t), a function of C(t), plotted vs. time (msec). c) R(t) vs. time 

(msec), d) peak value = P(t)R(t) vs. stimulus numbe.
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Figure 4. 
Fixed point of the map for parameters found by fitting the experimental data (see section 5), 

for varying inter-pulse interval, T. Both control and muscarine values of Δ (1.0 and 0.17 

respectively) are plotted. a) T = [0, 200] msec, b) T = [0,2000] msec.

Stone et al. Page 25

Math Biosci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Fixed point value vs. interpulse interval, T, a) T = [0, 2000] msec, b) T = [0, 10] msec, 

compared with the asymptotic expressions (dotted lines).
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Figure 6. 
Plotting fixed point vs. frequency (Hz) for control and muscarine (reduced calcium influx) 

conditions. a) τCa = 1.5 msec, control compared with muscarine, with physiological 

parameter values. b) Control condition only with τCa ranging from 1.0 to 20 milliseconds.
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Figure 7. 
Comparing effect of muscarine on the fixed point (top) and paired pulse ratio (p2/p1) 

(bottom). Physiological parameter set is used (fit from data, see next section). Interpulse 

interval is varied over the range used in the experiments.
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Figure 8. 
a) Control peaks fitted with model, Δ = 1 compared with data. b) Muscarine peaks fitted 

with model, Δ = 0.17, compared with data.
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Figure 9. 
One dimensional histograms of the parameters K, kmin, δk, Kr, τ, Δ
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Figure 10. 
a) Two dimensional scatter plot of the sampled values of Δk and Kr b) Three dimensional 

scatter plot of the sampled values of Δk, Kr, τ.
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Figure 11. 
a)The sampled fits to control data, using the reduced model. b)The sampled fits to the 

muscarine data, using the reduced model.
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Figure 12. 
One dimensional histograms of the parameters K, kmin, α,τ, Δ.
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Figure 13. 
Two dimensional scatter plot of the parameters α, τ.
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Figure 14. 
a)The sampled fits to control data, using calcium independent recovery rate k b) The 

sampled fits to muscarine data, using calcium independent recovery rate k.
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Table I
Parameter Description

parameter description

Δ increase in the amount of calcium relative to that seen under control conditions

Pmax maximum probability of release

K half calcium concentration value for probability of release function

kmin minimum rate of recovery of synapses

ΔK maximum minus minimum rate of recovery of synapses

Kr half calcium concentration value for rate of recovery function

τCa decay constant for calcium
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