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Abstract

The human brain processes information via multiple distributed networks. An accurate model of 

the brain's functional connectome is critical for understanding both normal brain function as well 

as the dysfunction present in neuropsychiatric illnesses. Current methodologies that attempt to 

discover the organization of the functional connectome typically assume spatial or temporal 

separation of the underlying networks. This assumption deviates from an intuitive understanding 

of brain function, which is that of multiple, inter-dependent spatially overlapping brain networks 

that efficiently integrate information pertinent to diverse brain functions. It is now increasingly 

evident that neural systems use parsimonious formations and functional representations to 

efficiently process information while minimizing redundancy. Hence we exploit recent advances 

in the mathematics of sparse modeling to develop a methodological framework aiming to 

understand complex resting-state fMRI connectivity data. By favoring networks that explain the 

data via a relatively small number of participating brain regions, we obtain a parsimonious 

representation of brain function in terms of multiple “Sparse Connectivity Patterns” (SCPs), such 

that differential presence of these SCPs explains inter-subject variability. In this manner the 

sparsity-based framework can effectively capture the heterogeneity of functional activity patterns 

across individuals while potentially highlighting multiple sub-populations within the data that 

display similar patterns. Our results from simulated as well as real resting state fMRI data show 

that SCPs are accurate and reproducible between sub-samples as well as across datasets. These 

findings substantiate existing knowledge of intrinsic functional connectivity and provide novel 

insights into the functional organization of the human brain.
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1. Introduction

The human brain is a complex system that consists of functionally specialized units working 

in unison to generate responses to internal and external stimuli. Resting-state fMRI (rs-

fMRI) is a powerful tool for understanding the large-scale functional neuroanatomy of the 

brain through connectivity that is present independent of task performance. Functional 

connectivity is defined as correlations between the spontaneous fluctuations in the fMRI 

time-series among different regions. Prior research has shown that despite the absence of 

task performance, rs-fMRI connectivity can be used to delineate major functional brain 

systems as networks (Biswal et al., 1995; Fox et al., 2006; Vincent et al., 2008), often based 

on prior knowledge of a “seed” region of interest, and has demonstrated that network 

organization is altered in neuropsychiatric and neurological illnesses such as schizophrenia 

(Venkataraman et al., 2012) and Alzheimer's (Greicius et al., 2004). Thus, an accurate 

description of the brain's functional connectome is a critical prerequisite for understanding 

both normal brain function and its aberrations in disease.

Identifying these networks in a data-driven manner is a particularly challenging task due to 

the spatio-temporal complexity of rsfMRI. Robust identification requires the specification of 

the underlying common property that binds regions together to form a network. For 

example, graph partitioning approaches, such as InfoMap (Rosvall and Bergstrom, 2008) 

assume that any region of the brain can belong to only one brain network. This approach 

was applied to rsfMRI in Power et al. (2011). Retaining only high positive correlation 

values, the authors identified multiple spatially separated networks, or “sub-graphs”, whose 

regions consistently co-activate across subjects, and resemble functional systems discovered 

in task fMRI. However, up to date knowledge of the brain's functional organization seems to 

suggest that brain regions can participate in multiple functional networks. Graph partitioning 

approaches such as InfoMap do not allow for spatial overlap, and hence cannot identify such 

networks. Another disadvantage of such an approach is that it limits its analysis to strong 

positive correlations, while removing negative and weak edges from the graph that could be 

informative, especially if considered collectively as a part of a distributed network (Fox et 

al., 2005; Keller et al., 2013).

Alternative approaches addressing some of these issues have been proposed in other fields. 

The hierarchical clustering algorithm proposed in Newman (2004) finds nested communities 

but does not allow for overlaps at each level in the hierarchy. The notion of “link 

communities” introduced in Ahn et al. (2010) is elegantly able to handle overlaps by 

assigning unique membership to edges rather than nodes, naturally resulting in multiple 

assignments per node. Approaches like correlation clustering (Bansal et al., 2004) and the 

Potts model based approach proposed in Traag and Bruggeman (2009) are partitioning 

approaches which allow negative values. Since most of these methods are used to analyze 

social networks, they interpret negative edge links as repulsion, and hence attempt to assign 

negatively connected groups to different communities. While this may be appropriate for 

social networks, in resting state fMRI, highly negative edges imply strong anti-correlation - 

meaning that despite opposing phase information, these nodes express the same information, 

since they are strongly statistically dependent. Allocating anti-correlated regions to the same 

network can provide interesting new insights into the functional organization of the brain. 
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This leads to the formation of networks where topologically distinct partitions with similarly 

high values of modularity can be formed in a network. Most graph-theoretic approaches are 

ill-equipped to handle this scenario (Rubinov and Sporns, 2011).

Alternately, continuous matrix factorization approaches like Principal Component Analysis 

(PCA), Independent Component Analysis (ICA) or Non-negative Matrix Factorization 

(NMF) are applied directly to the time-series to obtain a set of basis, where each vector is a 

set of weights, one for each node. In some cases, matrix factorization can be interpreted as 

soft-clustering, or a continuous relaxation of the discrete clustering problem. For example, it 

has been shown that components obtained using Principal Component Analysis (PCA) are a 

continuous relaxation to the discrete clusters obtained using K-means (Ding and He, 2004). 

The symmetric non-negative matrix factorization (NMF) model is considered to be the 

continuous equivalent to kernel K-means and spectral clustering approaches (Ding et al., 

2005). While PCA also exploits the second-order moment (correlations) to perform 

clustering, ICA incorporates higher-order moments to reveal sub-networks that are 

maximally independent. Such continuous approaches do not suffer from issues of non-

overlap and negative values, but their main drawback is the lack of interpretability of the 

resulting components. The resulting basis vectors are dense, i.e, the weight of every node is 

typically non-zero, making clustering inference difficult. Approaches such as Independent 

Component Analysis (ICA) (Hyvarinen, 1999) are driven by the assumption of maximal 

spatial or temporal independence between networks. Spatial ICA is widely applied to 

rsfMRI data to obtain spatially independent components, commonly referred to as “Intrinsic 

Connectivity Networks (ICNs)” (Calhoun et al., 2003). In practice, ICNs found using spatial 

ICA are usually non-overlapping. To address this issue of non-overlap, the study by Smith et 

al. (2012) applied temporal ICA to rsfMRI data and found multiple functional brain 

networks, or “Temporal Functional Modes (TFMs)”. Although this is a significant 

advancement, these networks have been identified on the basis of independent temporal 

behavior, i.e., lacking between-network interactions, which is contrary to the notion that 

brain systems often act in concert during complex cognitive functioning, for instance, for 

executive functioning (Dosenbach et al., 2006).

A major disadvantage of connectivity based approaches is their inability to directly quantify 

inter-subject variability in functional connectivity, requiring additional post-processing and 

analysis. An important source of variation across subjects is the average strength of 

networks. In this scenario, we assume that the inter-subject variability is introduced due the 

variation in the strength of each network across subjects. This could possibly be due to the 

extent to which (how much and for how long) that functional unit is recruited in each 

subject, or as an indicator of functional development or abnormality. There are studies that 

have found strong relationships between the clinical variable of interest and the strength of 

such intrinsic rsfMRI networks (von dem Hagen et al., 2012; Mayer et al., 2011; He et al., 

2007; Satterthwaite et al., 2010). Another scenario that introduces inter-subject variability is 

in the membership of nodes to networks; this was modeled in Ng et al. (2012). In these prior 

clinical studies, inter-subject variability did not play a role in network identification; rather, 

average functional connectivity (strength) was computed after network identification. Hence 
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quantifying inter-subject variability in connectivity in an automated, data-driven manner is 

crucial.

In this paper we propose a method that addresses these limitations. Motivated by models of 

neuronal activity (Vinje and Gallant, 2000), we propose the use of spatial sparsity to drive 

network identification. In a neuronal sparse coding system, information is encoded by a 

small number of synchronous neurons that are selective to a particular property of the 

stimulus (e.g. edges of a particular orientation within a visual stimulus). Multiple such 

spatial patterns of neurons constitute a sparse neural basis which acts in concert in response 

to the stimulus. A nearly infinite number of stimuli can be parsimoniously encoded by 

varying the proportion in which these patterns are combined.

Extending this idea to rs-fMRI, we assume that the observed spontaneous activity arises 

from the concerted activity of multiple “Sparse Connectivity Patterns (SCPs)” that encode 

system-level function, similar to sparse codes that are present at the level of neurons. Each 

SCP consists of a small set of spatially distributed, functionally synchronous brain regions, 

forming a basic pattern of co-activation. These SCPs capture the range of resting functional 

connectivity patterns in the brain, although they do not necessarily need to be present in 

each individual or subsets of individuals. Using spatial sparsity as a constraint, we learn the 

identity of these SCPs and the strength of their presence in each individual, revealing the 

heterogeneity in the population. Sparsity-based approaches bridge the gap between discrete 

clustering techniques and continuous dimensionality reduction approaches. The proposed 

method is not limited by problems related to negative correlations, overlapping sub-

networks or modular degeneracy. The proposed approach is motivated by methods proposed 

for computer vision and machine learning applications in Sra and Cherian (2011) and 

Sivalingam et al. (2011). A preliminary version of this method was used in Eavani et al. 

(2013, 2014) but for different objectives, which was to find networks that characterize 

temporal variations and two-group differences in connectivity respectively. In this paper, the 

proposed method focuses on finding common networks that characterize average whole-

brain functional connectivity in a group of subjects, while capturing inter-subject variations. 

The performance of the method is evaluated using simulated data and multiple resting-state 

fMRI datasets.

In the following sections, we describe the SCPs obtained in a rsfMRI dataset of young 

healthy adults, and how they compare to existing knowledge of functional organization of 

the brain. We investigate the accuracy and reproducibility of SCPs vis-a-vis sub-graphs, 

ICNs and TFMs using simulated data as well as real rsfMRI data. Furthermore, we provide 

evidence of inter-subject variability in the presence of SCPs, which is a valuable 

measurement that can facilitate inter-group comparisons in clinical studies.

2. Identification of Sparse Connectivity Patterns

The objective of our method is to find SCPs consisting of functionally synchronous regions, 

and are smaller than the whole-brain network. The information content within any one of 

these SCPs is also relatively low, since all the nodes within an SCP are correlated, and 

express the same information. Hence, if a correlation matrix were constructed for each of 
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these SCPs, it would show two properties - (1) large number of edges with zero weights, or 

sparsity and (2) low information content - or rank deficiency. Our method takes as input 

correlation matrices and finds SCPs that satisfy both properties. We assume that if a set of 

ROIs act as a functional system, then, in a set of normal subjects, inter subject variability is 

introduced by the extent to which each system is recruited in a subject. Thus, nodes are 

assigned to an SCP if the strength of the edges between them co-vary across subjects. In the 

following section we describe the mathematical formulation of our method.

2.1. Model Formulation

A schematic diagram illustrating our method is shown in Figure 1. The input to our method 

is size P × P correlation matrices Σn ⪰ 0, one for each subject n, n = 1, 2, . . . , N. We would 

like to find smaller SCPs common to all the subjects, such that a non-negative combination 

of these SCPs generates the full-correlation matrix Σn, for each subject n. Each of these K 

SCPs can be represented by a vector of node-weights bk, where –1 ⪯ bk ⪯ 1, bk ∈ RP. Each 

vector bk reflects the membership of the nodes to the sub-network k. If |bk(i)| > 0, node i 

belongs to the sub-network k, and if bk(i) = 0 it does not. If two nodes in bk have the same 

sign, then they are positively correlated and opposing sign reflects anti-correlation. Thus, the 

rank-one matrix  reflects the correlation behavior of SCP k. In addition, we constrain 

these SCPs to be much smaller than the whole-brain network by restricting the l1-norm of bk 

to not exceed a constant value λ.

We would like to approximate each matrix  by a non-negative combination of 

SCPs B = [b1, b2, . . . , bK]. Thus, we want

(1)

where diag(cn) denotes a diagonal matrix with values  along the diagonal. Thus, 

each subject n is associated with a vector of K subject-specific measures cn which are non-

negative and reflect the relative contribution of each SCP to the whole-brain functional 

network in the n-th subject.

We quantify the approximation between Σn and  using the frobenius norm. Note that there 

is an ambiguity in amplitude between the two factors - if bk and cn(k) is a solution, αbk and 

cn(k)/α2 is also a solution for any positive scalar α. To prevent this, we fix the maximum 

value in each SCP to unity; i.e., maxi |bk(i)| = 1. (Note that this is not a convex constraint. It 

is not included in projected gradient descent minimization approach, described in the next 

section.)

Bringing the objective and the constraints together, we have the following optimization 

problem w.r.t the unknowns B and C = [c1, c2, . . . , cn]:
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subject to

(2)

2.2. Optimization strategy

The objective function in the proposed model is non-convex w.r.t both unknown variables B 
and C. We use the method of alternating minimization to solve for B and C. At each 

iteration a local minimum is obtained using projected gradient descent (Batmanghelich et 

al., 2012). Such a procedure converges to a local minimum. The variables B and B are 

initialized to randomly chosen values.

2.3. Model Selection

The free parameters of the model are the number of SCPs K and the sparsity level of each 

SCP λ. As values of K and λ are increased, the approximation error is reduced; however 

beyond a certain value of K it is likely that the model is over-fit to the data; i.e., the SCPs 

computed by the algorithm are possibly used to explain noisy (unwanted) variations in 

individual subjects. Hence we resort to cross-validation in order to avoid over-fitting. Using 

a grid search, for each value of the parameters K and λ repeated twofold cross-validation is 

performed, and the value at which there is no gain in generalizability (drop in error) is 

chosen to be the operating point. This provides us with SCPs that might generalize better 

across data. The cross-validation measure is the error computed on the test dataset relative to 

the variance in the test data, defined as follows:

(3)

where  is the subject-averaged correlation matrix of the test dataset.

2.4. SCP Visualization

For visualization purposes, the resulting SCPs B are projected on to surface space using 

dual-regression, similar to the procedure described in (Smith et al., 2012). To briefly 

describe the procedure, the time-series for each SCP in each subject Xn ∈ RK×T is first 

estimated using regression against the nodal time-series of that subject Yn ∈ RP×T . These 

time-courses are regressed against the 4D volumetric voxel wise time-series data in order to 

extrapolate the estimated SCPs in the voxel space. This results in one spatial map per SCP 

for each subject, which is then averaged across subjects and thresholded at a p-value of 0.05 
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(corrected for multiple comparisons, using False Discovery Rate (FDR)) based on a one-

sided t-test. The resulting p-value maps are then projected onto the cortical surface using 

Caret Visualization software (Van Essen et al., 2001).

3. Experiments on simulated data

3.1. Generation of simulated data

In order to illustrate the behavior of our method, we generated a synthetic dataset with forty 

instances (or subjects). Our network design is illustrated in Figure 2. Each subject is 

associated with a fixed underlying network configuration consisting of fifty nodes, as shown 

in Figure 2a. The “ground truth” SCP basis Btrue is shown in Figure 2b. The network is 

designed in such a way that it has eight SCPs, with SCP size varying between three-ten 

nodes. Some of these SCPs are overlapping, with overlap size varying between one-three 

nodes. The strength of each SCP varies across subjects in a binary fashion, i.e, in each 

subject, networks are either “active/on” or “inactive/o ”, as shown by the subject-specific 

coeffcients in Figure 2e. In other words, an SCP is inactive in a subject when all the edges/

correlation strengths of that SCP are zero for that particular subject. Furthermore, subjects 

are categorized into three groups, simulating heterogeneity in subject space. This is shown in 

Figure 2f, showing the projection of the eight-dimensional coeffcients in 2-D, computed 

using multi-dimensional scaling (Kruskal, 1964).

We input this network design into the simulation software NetSim (Smith et al., 2011), 

which simulates BOLD time-series at each node. Each time-series has 120 time-points and a 

TR value of 3 seconds (making each dataset 6 minutes long). In addition to inter-subject 

variability introduced by differential activation of networks we also include small random 

perturbation of edge strength for all edges. Random external inputs are input to some of the 

nodes. Thermal (white) noise is added to the output time-series at each node.

Correlation matrices are computed from the simulated time-series for all forty subjects, 

which form the input to our method. The subject-average correlation matrix is shown in 

Figure 2c. The matrices shown in Figure 2d correspond to the correlation values computed 

from the time-series for five randomly chosen subjects.

3.2. Evaluation of results for simulated data

In order to quantify the performance of the algorithm on simulated data, we compare the set 

of SCPs output by Sparse Learning B with the ground truth Btrue. Before the comparison we 

first perform a one-to-one matching between the two sets of vectors using the Hungarian 

Algorithm (Munkres, 1957). The sign of some of the vectors in B is reversed, if necessary. 

We use the normalized inner product (cosine of the angle between vectors) to compare these 

paired set of vectors.

We compared the SCPs obtained using Sparse Learning to sub-graphs produced using 

Infomap (Rosvall and Bergstrom, 2008; Power et al., 2011), TFMs generated using 

Temporal ICA (Hyvarinen, 1999; Smith et al., 2012) and Intrinsic Connectivity Networks 

(ICNs) computed using Spatial ICA (Calhoun et al., 2003). The subject-average correlation 

matrix, thresholded to obtain varying levels of edge density was used as input to InfoMap. 
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Absolute values of correlation were used as input to InfoMap. The clustering assignments 

output by InfoMap are converted into a set of binary basis vectors, one for each sub-graph. 

Concatenated time-series data were used as input for Temporal ICA as well as Spatial ICA. 

In case of ICA, dimensionality reduction was performed by running PCA first, as is 

routinely done in fMRI-ICA literature (Smith et al., 2012). As before, we used normalized 

inner product for comparisons with the ground truth.

3.3. Results from simulated data

The output of the cross-validation experiments are shown in the plots in Figures 3, which 

shows the variation of the cross-validated mean square error as the free parameters, K and λ, 

are varied. It is clear that the MSE saturates beyond λ = 0.2. Choice of K is somewhat 

unclear. Using K = 8, λ = 0.2 as the operating point, we computed the basis vectors for the 

simulated data using all four methods. (Note: For the sampling of edge-densities used to 

compute results for InfoMap, we were able to obtain K = 7 communities followed by K = 9. 

As K = 7 has greater accuracy, we display those results.)

The first image in Figure 4 shows the simulated ground-truth as a vector of node-weights. 

The results from the four methods are shown next to the ground-truth. Each column displays 

a basis vector bk. It is easy to see that SCPs computed using Sparse Learning are closest to 

the ground-truth. We quantify these comparisons with the normalized inner-product 

measure. Figure 5 shows the accuracy of SCPs, sub-graphs, ICNs and TFMs for varying K. 

When compared with the ground-truth, SCPs show slightly higher accuracy than the three 

other methods, for all values of K (p< 0.05, compared at K=8, using a two-sided t-test for 

Sparse Learning vs. all other methods). Temporal ICA comes a close second, as it is able to 

capture many of the positive/negative correlations (some false negatives - TFM 5) but 

results in a denser basis (many false positives). Both Spatial ICA and InfoMap produce non-

overlapping ICNs/sub-graphs - and as the value of K is increased, these components get 

smaller/more fragmented, leading to a drop in accuracy, as seen in the graph.

Finally, Figure 6 displays the subject-specific coeffcients estimated by Sparse Learning, 

along with the ground truth. This result shows that Sparse Learning is able to capture the 

heterogeneity in the subject-space, since the clustering of the three groups is retained to a 

large extent in the estimation.

4. Experiments on resting state fMRI data

Having shown that Sparse Learning performs better on synthetic data, we next compared 

performance of the three methods using resting state data from 130 healthy, young adults 

between the ages 19 to 22 years, acquired as a part of the Philadelphia Neuro-developmental 

Cohort (PNC) (Satterthwaite et al., 2014), as detailed below.

4.1. Data

4.1.1. Participants—Resting-state functional connectivity MRI data used here was drawn 

from the Philadelphia Neuro-developmental Cohort (Satterthwaite et al., 2014), a 

collaboration between the Center for Applied Genomics at Children's Hospital of 

Philadelphia (CHOP) and the Brain Behavior Laboratory at the University of Pennsylvania 
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(Penn). Study procedures and design are described elsewhere in detail (Satterthwaite et al., 

2014) . Here, in order to minimize the impact of known developmental changes in functional 

connectivity in this sample (Satterthwaite et al., 2013), we only included subjects greater 

than 18 years old. Additionally, subjects were excluded if they were being treated with 

psychotropic medications, had history of inpatient psychiatric treatment, or had a history of 

medical problems that could potentially impact brain function. We and others have 

previously demonstrated that motion artifact has a marked confounding influence on resting-

state functional connectivity data (Satterthwaite et al., 2013; Power et al., 2011). 

Accordingly, as in our prior work (Satterthwaite et al., 2013), subjects with a mean relative 

displacement > 0.2mm (as estimated by FSL's MCFLIRT routine, see below) were excluded 

from analysis. These inclusion and exclusion criteria resulted in a final sample of 130 

subjects, mean age =20.17 (SD=0.79) years, n=58 male. All procedures were approved by 

the Institutional Review Boards of both Penn and CHOP.

4.1.2. Data acquisition—As described elsewhere in detail (Satterthwaite et al., 2014), all 

data were acquired on the same scanner (Siemens Tim Trio 3 Tesla, Erlangen, Germany; 32 

channel head coil) using the same imaging sequences. Blood oxygen level dependent 

(BOLD) fMRI was acquired using a whole-brain, single-shot, multi-slice, gradient-echo 

(GE) echoplanar (EPI) sequence with the following parameters: 124 volumes, TR=3000 ms, 

TE=32 ms, flip angle=90deg, FOV=192x192 mm, matrix=64X64, slice thickness/

gap=3mm/0mm, effective voxel resolution=3.0 x3.0 x3.0mm. Prior to functional time-series 

acquisition, a magnetization-prepared, rapid acquisition gradient-echo (MPRAGE) T1-

weighted image was acquired to aid spatial normalization to standard atlas space, using the 

following parameters: TR=1810 ms, TE=3.51 ms, FOV=180x240 mm, matrix=256x192, 

160 slices, TI=1100 ms, flip angle=9deg, effective voxel resolution of 0.9 x 0.9 x 1mm. 

During the resting-state scan, a fixation cross was displayed as images were acquired. 

Subjects were instructed to stay awake, keep their eyes open, fixate on the displayed cross-

hair, and remain still.

4.1.3. Node definition—A crucial aspect of functional network estimation is node 

definition. The high spatial dimensionality of fMRI data makes voxel-wise correlation 

matrices computationally infeasible for many approaches, hence most studies resort to 

dimensionality reduction, often through the use of anatomic atlases or through functional 

parcellation schemes. Nodes based on anatomic definitions often cross functional 

boundaries, leading to inaccurate network estimation (Smith et al., 2011). Accordingly, as 

previously (Satterthwaite et al., 2013) we used the 264 nodes defined in Power et al. (2011) 

(“areal graph”) for our experiments. This network includes 34,716 unique edges. These 

nodes were defined exclusively based on fMRI. Of these nodes, 151 were non-overlapping 

10mm diameter spheres identified based on a meta-analysis of task-fMRI based studies 

(Dosenbach et al., 2006). The remaining 193 were cortical patches obtained by functional 

connectivity mapping using resting state fMRI (Cohen et al., 2008). Based on the discrete 

clustering algorithm Infomap (Rosvall and Bergstrom, 2008), each ROI was categorized by 

Power et al. (2011) as belonging to one of thirteen non-overlapping sub-graphs.
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4.1.4. Registration—Subject-level BOLD images were co-registered to the T1 image 

using boundary-based registration (Greve and Fischl, 2009) with integrated distortion 

correction as implemented in FSL 5 (Jenkinson et al., 2012). Whole-head T1 images were 

registered to the Montreal Neurologic Institute 152 1mm template using the diffeomorphic 

SyN registration that is part of ANTS (Avants et al., 2008, 2011; Klein et al., 2009). All 

registrations were inspected manually and also evaluated for accuracy using spatial 

correlations. Nodes were registered to subject space for timeseries extraction by 

concatenating the co-registration, distortion correction, and normalization transformations so 

that only one interpolation was performed in the entire process.

4.1.5. Data processing—A voxel-averaged timeseries was extracted from each of the 

264 nodes for every subject. In order to evaluate the impact of motion, data was 

preprocessed using a validated confound regression procedure that has been optimized to 

reduce the influence of subject motion (Satterthwaite et al., 2012). The first 4 volumes of the 

functional timeseries were removed to allow signal stabilization, leaving 120 volumes for 

subsequent analysis. Functional images were slice-time corrected using slice-timer and re-

aligned using MCFLIRT (Jenkinson et al., 2002). Structural images were skull-stripped 

using BET (Smith, 2002) and segmented using FAST (Zhang et al., 2001); mean white 

matter (WM) and cerebro-spinal fluid (CSF) signals were extracted from the tissue segments 

generated for each subject. Confound regression (Satterth-waite et al., 2012) included these 

6 standard motion parameters, the WM signal, the CSF signal, and the global signal (i.e., 9 

parameters total), as well as the temporal derivative, quadratic term, and temporal derivative 

of the quadratic of each (36 regressors total). Notably, in order to a avoid a mismatch in the 

frequency domain (Hallquist et al., 2013), both the confound matrix and the time-series data 

was simultaneously band-pass filtered to retain signals between 0.01-0.08 Hz using AFNI's 

3dBandpass utility (Cox, 1996). Finally, a symmetric connectivity matrix (264x264) was 

defined for each subject using pairwise Pearson's correlations. This data formed the input to 

subsequent analyses of functional network structure.

4.2. Evaluation of results for rsfMRI data

4.2.1. Reproducibility—We evaluate the performance of our algorithm as well as 

Infomap and ICA based on repeated split-sample reproducibility. Reproducibility was 

evaluated for K = 2, 4, . . . , 30. In the case of InfoMap, the edge-density was varied between 

2% and 40%. This provided sub-graphs varying in number from 4 upto 60, although not 

equally spaced. Similar to our earlier experiments involving simulated data, we quantify the 

comparison between sub-samples using the normalized inner product, averaged across basis 

vectors.

4.2.2. Data fit—In addition to reproducibility, the data fit (approximation error) of all the 

methods to the data was also compared. Given that Sparse Learning and InfoMap use 

correlation values as input, and ICA methods use time-series as input, we evaluated the 

approximation error for both types of input. Let B denote the set of basis vectors output by 

any of the four methods. Let Yn ∈ RP×T and Xn ∈ RK×T be the subject-specific time-series 

and basis-specific time-series respectively. In the case of Sparse Learning and InfoMap, the 

basis-specific time-series Xn can be computed by regressing the basis B against the subject-
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specific time-series Yn. Using these values, the correlation data-fit measure is computed as 

follows:

(4)

where

(5)

Similarly the time-series data fit for all four methods is defined as

(6)

The correlation data-fit measure is the same as the objective function that is optimized in the 

Sparse Learning method. Obviously, Sparse Learning is expected to have the best 

correlation data-fit (lowest error). Similarly, as the ICA methods operate on the time-series 

as input, they are likely to outperform Sparse Learning and InfoMap with respect to time-

series data fit. It is more interesting to note how the correlation methods compare with 

respect to time-series data fit, and vice versa.

4.2.3. Spatial Overlap and Temporal Correlation—Finally, to further understand the 

behavior of the methods under consideration, we computed the degree to which the 

estimated basis vectors are spatially overlapping and temporally correlated. These values are 

computed as follows:

(7)

(8)

where xni denotes the time-series associated with the ith basis in the nth subject.

4.2.4. Reproducibility across datasets—To further evaluate the reproducibility of the 

presented results, we used three publicly available datasets - (1) pilot acquisition dataset 

from the Human Connectome Project (HCP) (Smith et al., 2012), which has 42 scans 

acquired at TR = 0.8s, (2) BrainScape Resting State fMRI Dataset 1 (Fox et al., 2007) from 

the functional Biomedical Informatics Research Network (fBIRN), which has 60 scans 

acquired at TR = 2s, (3) BrainScape Resting State fMRI Dataset 2 (Fox et al., 2005) from 

fBIRN, which has 29 scans acquired at TR = 3s. All the scans (131 in total) were pre-

processed using the same pipeline that was used for the PNC dataset, as detailed above. All 

the algorithms (Proposed, InfoMap and ICA) were also run on this alternate dataset.
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4.3. Results from rsfMRI data

Figure 7 plots the variation of the cross-validated error as K and λ is varied. From these 

figures, it is clear that the MSE saturates around λ = 0.3. However, the “knee” of the graph 

plotting variation with K is unclear.

Sparse Learning was run on the entire sample of 130 subjects with the values K = 10, λ = 

0.3. These ten SCPs are shown in Figures 8, 9, 10 and 11. We describe them in detail below, 

and compare to existing knowledge of the spatial extent and behavior of known task-

processing, attention and control systems.

Dorsal Attention SCP Figure 8 shows the first SCP defined by the anterior middle temporal 

area (aMT), superior parietal lobule (SPL), intra parietal sulcus (IPS) and the frontal eye 

fields (FEF)(shown in red), which are known to be part of the Dorsal Attention (DA) system 

(Corbetta and Shulman, 2002). These regions are anti-correlated with the middle temporal 

gyrus (MTG), inferior parietal lobule (IPL), medial pre-frontal cortex(mPFC), posterior 

cingulate cortex (PCC) and anterior frontal operculum, which are part of the default-mode 

(DM) system (Raichle et al., 2001)(shown in blue).

Executive Control SCPs Figure 9 displays SCPs 2, 3 and 4 which predominantly show 

executive task-control system (red) anti-correlated with different aspects of the DM system 

(blue). SCP 4 shows the Salience system (Seeley et al., 2007) consisting of dorsal anterior 

cingulate cortex (dACC) along with anterior insula and the anterior pre-frontal cortex. The 

anti-correlated DM regions include the IPL, PCC and vmPFC. Regions from the operculum, 

insula, temporal-parietal junction (TPJ), inferior frontal gyrus (IFG) and the dACC dominate 

SCP 5, with anti-correlations to PCC and dmPFC. This SCP consists of the Cingulo-

Opercular (COP) system (Dosen-bach et al., 2007) which is known to de-activate the DM. 

SCP 6 consists of the aPFC, aI, IPL, and MT, which form the Fronto Parietal task-control 

system, anti-correlating with the inferior MTG, IPL, PCC, mPFC and PHC.

Motor SCPs Figure 10 shows SCPs 5 and 6, which exhibit contributions from the sensori-

motor, auditory and visual areas. Both SCPs show the pre central (prCG) and post central 

gyrus (poCG). In SCP 5 the motor areas positively correlate with the superior temporal 

gyrus (STG) and posterior insula. The positive correlations in SCP 6 are more anterior 

within the insula, and a large extent of the cingulum. Anti-correlated regions include the FP 

system (aPFC, IPL, aI, ACC) in SCP 5 and aspects of the DM system in SCP 6.

Visual SCPs SCPs 7, 8, 9 and 10 in Figure 11 show four types of connectivity patterns 

involving the visual areas. SCP 7 covers the entire visual system, including the medial 

visual, lateral visual and higher visual (dorsal attention) areas. SCP 8 shows the higher 

visual areas alone. The visual areas are anti-correlated with the DM system in both the 

SCPs. SCPs 9 and 10 shows contributions from areas in the lower levels of the visual 

hierarchy; the FEF and the prCS are less dominant, while including the lateral visual areas, 

which are involved in higher level visual task-processing. Concomitant with moving down 

along the hierarchy, we observe changes to the anti-correlated regions - the involvement of 

the mPFC is greatly reduced, but the anti-correlation the posterior cingulate is retained.
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Overlap between SCPs The SCPs described above are clearly overlapping, mainly enabling 

the description of multiple relationships between a functional system and other systems. We 

note that the PCC and the IPL contribute to most of the SCPs, which were identified by a 

prior study as one of the central hubs of connectivity in the brain (Buckner et al., 2009).

Inter-subject variability Differential presence of the SCPs explains inter subject variability in 

functional connectivity. Figure 12 shows the strength of presence of each SCP in every 

subject. The Sparse Learning approach exploits this variability; a heterogeneous distribution 

of the samples in this lower-dimensional space allows robust identification of the SCPs.

A simple case illustrating the manner in which Sparse Learning captures inter-subject 

variability is shown Figure 13. We considered four ROIs within the sensori-motor areas 

(shown in Figure 13a). These four ROIs participate in SCP 5 as well as SCP 6, as seen in 

Figure 13b. The corresponding time-series for the four ROIs are shown in Figure 13c, for 

three subjects, which have varying amounts of correlation between them. In the first two 

subjects, the time-series observed at these four ROIs are asynchronous, making their average 

pair-wise correlation low (0.32 and 0.12 respectively). This has two consequences. Firstly, 

this inter-subject variability is reflected in the SCP coeffcients; for the first subject, both c5 

and c6 are low, and for the second subject c5 is zero. Similarly, (almost) perfect 

synchronization among these four time-series is reflected in the higher values assigned to 

both c5 and c6. Secondly, this also affects the SCP time-series that are computed after the 

SCP vectors B are found. Low correlation between the ROIs leads to SCP time-series with 

very low amplitude, as seen in the first subject.

4.3.1. Reproducibility and Approximation error—Recall that in order to test the 

generalizability of our results, we ran repeated split-sample validation, comparing the results 

using normalized inner-product. The reproducibility of the results is shown in Figure 14a, 

computed for values of K ∈ 2, 4, . . . , 30. For K = 10, the reproducibility of our results is 

0.80 ± 0.09, compared to 0.86 ± 0.15 for InfoMap, 0.79 ± 0.07 for Spatial ICA and 0.60 ± 

0.12 for Temporal ICA. InfoMap shows comparable reproducibility with sparse learning (p 

< 0.4, computed using two-group t-test). Spatial ICA components are as reproducible as 

Sparse Learning (p < 0.8), while Temporal ICA performs significantly worse (p < 10−4) in 

terms of reproducibility. Figure 14b and 14c show the correlation data-fit and the time-series 

data-fit of all the methods for varying values of K. InfoMap performs poorly in terms of 

data-fit for both correlation as well as time-series data. As expected, Sparse Learning has the 

best correlation data-fit, while the ICA methods provide the best time-series data fit.

4.3.2. Spatial Overlap and Temporal Correlation—As expected, InfoMap has no 

spatial overlap in its basis. Spatial ICA shows decreasing overlap with increasing K, as 

shown in Figure 15a. Sparse Learning has the highest spatial overlap. Figure 15b shows the 

variation of the average temporal correlation with K. Temporal ICA has no temporal 

correlation while Spatial ICA has the highest temporal correlation. Of the four methods, 

only Sparse Learning has non zero spatial overlap as well as temporal correlation.

4.3.3. Reproducibility across datasets—To further evaluate the reproducibility of the 

presented results, we compared them with SCPs computed from the alternate HCP+fBIRN 
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dataset. We found that the SCPs are reasonably reproduced in the alternate dataset, with an 

average inner-product 0.65 ± 0.07. A side-by-side comparison of four SCPs computed from 

the PNC and alternate datasets is shown in Figure 16.

4.3.4. Comparison with sub-graphs and TFMs—InfoMap assigned major functional 

systems to different sub-graphs. This is consistent with findings reported in Power et al. 

(2011). The task-positive regions are assigned to separate sub-graphs (sub-graphs 4, 5 and 7 

shown in SI Figure 1). All task-negative default-mode regions form a single entity (sub-

graph 2). Sparse Learning also assigns task-positive regions to separate SCPs, but in 

addition also reveals regions belonging to the DM system that are negatively coupled with 

them. The sensory areas are assigned to two separate sub graphs, visual and motor (sub 

graphs 1 and 3), while SCPs 9 and 10 uncover the manner in which they can correlate. The 

behavior of PCC and IPL regions as cortical “hubs” (Buckner et al., 2009), cannot be 

surmised from the sub-graphs found using InfoMap.

On the other hand, TFMs identified using ICA are spatially overlapping and incorporate 

negative values. Of the ten, two SCPs 1 and 8 can also be found using ICA (SI Figure 2). 

The rest are in general quite different from the results seen here. Unlike sub-graphs and 

SCPs, ICA is unable to clearly separate task-positive systems into different components, due 

to possible temporal co-activation of these systems.

5. Discussion

The findings presented in this paper are obtained from a connectivity-based modeling 

approach that identifies SCPs based on important observations - (1) Not all brain regions 

participate in a given SCP; (2) regions that belong to an SCP are functionally coherent, or 

correlated (or anti-correlated); and (3) if a set of regions act as an SCP, then, in a set of 

normal subjects, inter-subject variability is introduced due to the different extent to which 

each SCP is active in a subject. Sparse Learning is able to separate task-positive regions and 

their associated task-negative regions into separate SCPs in a data-driven manner, without 

requiring a-priori knowledge of a “seed” region. Sparse Learning is able to provide 

additional insights by allowing for spatial overlap between SCPs as well as positive and 

negative correlations within the same SCP. These features of the approach make it possible 

to assign overlapping subsets of regions within a functional system to different SCPs, 

facilitating a description of their varied relationships with other regions of the brain.

5.1. Observations based on simulated experiments

Based on the simulated ground truth experiments, compared to Sparse Learning, both 

InfoMap and ICA are also able to capture many of the correlated/anti-correlated 

relationships between regions. However, as the simulation results show, their inherent 

methodological constraints result in networks with lower accuracy (for InfoMap and Spatial 

ICA). InfoMap and Spatial ICA are able to identify strongly correlated sets of nodes, while 

avoiding the points of overlap. The spatial segregation constraint causes a region that 

belongs to multiple networks to get assigned to a single network, possibly the one with 

which it has the strongest correlation. Similarly, Temporal ICA is able to reveal the true 

relationship between nodes to some extent. For example, within basis vectors 2-4 (Figure 4), 
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while it is able to reveal the positive correlation between the nodes, it also requires 

participation from the other nodes, in order to be able to maximally unmix the data into 

independent temporal components (they are temporally dependent by design; there are some 

instances (subjects) where SCP 2 co-activates with the other SCPs, making them 

dependent). If multiple spatially overlapping networks activate together in some subjects, 

resulting in a moderate amount of temporal correlation between them, ICA assigns all these 

networks to the same TFM ( as it tries to maximize independence between TFMs). In 

contrast, if these multiple networks show differential strengths in subjects, even though they 

are spatially and temporally dependent, the Sparse Learning approach can separate them into 

different SCPs.

The results shown in Figure 4 also illustrate a potential limitation of the proposed method; 

when the network sizes are unbalanced, such as in the simulation design used here, using the 

same sparsity level λ is inappropriate. Picking a value of λ less than size of the largest SCP 

leads to those SCP getting truncated, and is sub-optimal. On the other hand, picking a value 

equal to the size of the largest community (= 20% in the simulated case) leads to noisy 

assignments in the smallest community, i.e, SCP 1, as seen in Figure 4. This limitation is 

similar to that of the edge density parameter used in InfoMap, where lower edge density 

leads to smaller communities. In practice, however, these false (noisy) assignments that are 

incorporated in the basis are generally very weak (have low absolute values).

The ability to quantify the strength of presence of an SCP at the level of individual subjects 

provides us with a framework for population studies, as illustrated by the simulated data in 

Figure 6. This advantage cannot be found in seed-based correlation methods or graph-

partitioning approaches. Although we did not perform subject-specific analyses, the sparse 

decomposition framework adopted herein is a powerful tool for exploring such population 

heterogeneities in the future, and potentially leading to diagnostic and predictive functional 

connectivity biomarkers. SCP coefficient values ci are comparable across subjects within the 

same SCP. Univariate SCP-wise analyses can be performed to look for differences relative 

to known/latent subgroups. Similarly, multi-variate analyses that consider all the coeffcients 

ci of a subject i as a feature vector can lead to potentially insightful results.

5.2. Interpretation of rsfMRI SCP findings

As the results from rsfMRI data (Figures 8,9,10,11) show, this approach is able to separate 

task-positive regions and their associated task-negative regions into separate SCPs in a data-

driven manner, without requiring knowledge of a “seed” region of interest. SCP 1 in Figure 

8 shows anti-correlation between the Dorsal Attention system and the Default Mode. This 

anti-correlation is a well-known finding (Fox et al., 2005), found using seed-based 

correlation. In Figure 9, we see the task-positive systems - Cingulo Opercular, Salience and 

Fronto-Parietal task control. As seen in the patterns, all are known to deactivate the default 

mode system. This was described first using seed-based correlation (Seeley et al., 2007; 

Dosenbach et al., 2007), and more recently demonstrated using non-invasive brain 

stimulation (Chen et al., 2013). Of greater interest is the differential contribution of regions 

belonging to the DM within these SCPs (regions in blue). PCC shows steady contributions, 

while the lateral default mode areas are more variable.
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SCPs 5-10 relate to the task-processing motor and visual areas, shown in Figures 10 and 11. 

SCPs 5 and 6 show two connectivity patterns that involve the sensori-motor areas and its 

anti-correlations. These patterns are reproducible across datasets to some extent (see Figure 

16, SCP 5), contrary to an earlier report (Tian et al., 2007). The visual areas display multiple 

different patterns of connectivity as seen in SCPs 7-10, with either the higher visual (dorsal 

attention) areas only (SCP 8), lateral visual only (SCP 9) or both lateral and medial visual 

areas (SCP 7 and 10). All four SCPs show varying amounts of anti-correlation with the 

default-mode system. Thus, Sparse Learning is able to provide additional insights by 

allowing for spatial overlap between SCPs as well as positive and negative correlations 

within the same SCP. These features of the approach make it possible to assign overlapping 

subsets of regions within a functional system to different SCPs, facilitating a description of 

their varied relationships with other regions of the brain.

The reproducibility of the SCPs described above is reasonably high, as shown in Figure 14a 

for comparison within the same dataset, and Figure 16, across datasets. Although the basis 

obtained using InfoMap and Spatial ICA are reliably reproduced, results from simulated data 

suggest that these results may not be very accurate, as it comes at the cost of ignoring 

regions of overlap and anti-correlated relationships, thus trading accuracy for greater 

reproducibility (Figure 4). This is also reflected in the data-fit plots shown in Figure 14b and 

14c, computed using rsfMRI data. Furthermore, of the four methods considered, Sparse 

Learning is the only method that does not constrain its basis to be spatially or temporally 

segregated, as seen in Figure 15.

5.3. Related methods, limitations and future work

The Sparse Learning approach used herein finds sparse patterns based on second-order 

statistics (correlation) in each subject's data. While this may resemble PCA, sparse PCA 

(sPCA)(Moghaddam et al., 2005; d'Aspremont et al., 2008) and their variant analysis 

approaches, there are several important differences. PCA and sPCA (Moghaddam et al., 

2005; d'Aspremont et al., 2008) find directions of maximum variance based on a single 

covariance matrix common to all data. The proposed method is a matrix factorization 

problem, in which we consider the correlation matrix corresponding to each subject as an 

independent observation. This allows us to model inter-subject variability in the correlations 

by encoding it in the coeffcients cn. Furthermore, in PCA and sPCA the sparse basis vectors 

are computed in sequence, one after another. After each basis vector is computed, the 

projection of the data along this basis is removed from the data, using Matrix Deflation 

(Mackey, 2009). In practice, removing the projection of the data on the kth basis causes the 

(k + 1)th basis to be mostly unrelated to the kth basis, i.e., the resulting basis vectors are 

approximately orthogonal. This is not the case with the proposed Sparse Learning algorithm, 

which simultaneously estimates the basis vectors, with the intent of avoiding orthogonality 

(See SI Figure 4). Finally, the objective function that is optimized is substantially different 

between the two approaches. PCA and sPCA maximize the variance  along the basis 

direction bk, which is second-order in the variable bk. The objective function of the proposed 

method is fourth order in the same variable.
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In the rsfMRI literature, correlation is probably the most widely used connectivity measure, 

with precision measures advocated more recently (Varoquaux et al., 2010). The precision 

matrix is the inverse of the covariance matrix, and its elements are related to partial 

correlation. For most standard rsfMRI datasets, the dimensionality of the data is larger than 

the number of samples (time-points). In such a case additional assumptions are required to 

be able to invert the correlation matrix, typically either via shrinkage or using sparse prior 

(Varoquaux et al., 2010). These two measures (correlation and precision) answer somewhat 

different questions, both useful - precision matrices mitigate indirect connections, 

attempting to find the “true” underlying connnections (Smith et al., 2011), while correlation 

is the simplest pair-wise measure, used widely for dimensionality reduction/community 

detection. We preferred correlation because when the basis B is sparse, the matrix BCBT 

loosely displays a block-diagonal structure, similar to what we typically observe in 

correlation matrices. Thus, the proposed method takes advantage of these indirect 

connections which make up the blocks. Inverting the correlation matrix removes this block-

diagonal structure (the dense but indirect connections within the blocks are lost), hence a 

BCBT type of approximation becomes no longer appropriate for precision matrices.

SCPs presented in this paper were obtained after removing the baseline global signal from 

each subject's data, which facilitates the delineation of functional systems by removing the 

confounding e ects of motion and other non-neuronal sources of noise (Fox et al., 2009). On 

the other hand, many researchers argue that performing Global Signal Regression (GSR) on 

rsfMRI data removes relevant signal and tends to increase the number of negatively 

correlated nodes (Saad et al., 2012). It is unclear if the high reproducibility of our results 

reflects true signal, or a systematic artifact induced due to global signal regression. Hence 

we re-ran Sparse Learning with the global signal retained. SCPs continued to be 

reproducible, however they were substantively different. Of the ten SCPs computed, only 

one SCP had a significant areas of negative correlation - the Dorsal Attention vs. Default 

mode anti-correlation pattern. The other nine SCPs showed only positive correlations. Of 

these, the familiar SCP patterns were the sensori-motor, visual and cingulo-opercular 

networks (see SI Figure 3).

Note that in the current implementation we use random values to initialize the variables. We 

found that repeated random initializations gave very similar results. However, we this might 

not always be the case. Low sample sizes, high dimensionality of the data and large values 

of K will have a large impact on the stability of the results. Keeping this in mind, in future 

implementations we will use multiple starting values and pick SCPs that recur across runs.

The proposed method is a versatile framework that can be combined with other modules to 

obtain specific SCPs that can explain variation along a certain dimension. For example in 

our preliminary work in Eavani et al. (2013), we used sparse learning within a state-space 

model to identify modes of temporal variation, or “brain-states”, which has been the focus of 

many studies in recent years (Chang and Glover, 2010; Leonardi et al., 2013; Janoos et al., 

2013). This framework can also be combined with a discriminative term (Batmanghelich et 

al., 2012; Eavani et al., 2014) to obtain functional bio-markers for disease.
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6. Conclusions

In this paper, we used recent advances in the mathematics of sparse modeling to obtain a 

parsimonious representation of brain function. The presented findings o er novel insights 

into the organization of brain function and effectively captures the heterogeneity of 

functional organization across individuals. These results are reliably reproduced between 

sub-samples of data as well as across datasets, and advance existing knowledge of intrinsic 

connectivity patterns. The novelty and reproducibility of our results across datasets make a 

compelling argument for the usage of sparse representations to model fMRI connectivity. 

These results, taken together with those from other approaches, provide a more complete 

picture that can help elucidate the functional organization of the brain.
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Highlights

- Sparse, low rank decomposition for the analysis of functional connectivity matrices

- Resulting Sparse Connectivity Patterns (SCPs) include both pos and neg 

correlations

- SCPs are not restricted to be orthogonal or independent

- SCPs are reliably reproduced between split-samples as well as in replication dataset

- Resulting SCP coeffs show inter-subject variation, a useful measure for group 

studies
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Figure 1. 
Schematic illustrating our method. Each subject specific correlation matrix Σn is 

approximated by a non-negative sum of sparse rank one matrices . These sparse rank 

one matrices can be interpreted as functionally coherent subsets of brain regions, or sparse 

patterns of connectivity (SCPs), which occur in many of the subjects. A non-negative, 

subject-specific combination of SCPs, denoted by the set of coeffcients cn, approximates the 

input correlation matrix Σn.
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Figure 2. 
Simulated network design consisting of 50 nodes. (a) Network configuration common to all 

subjects. Edges in blue indicate anti-correlation. (b) Ground-truth SCP basis Btrue. (c) 

Subject-averaged correlation matrix. (d) Correlation matrices of five randomly chosen 

subjects. (e) Subject-specific coefficients for all 40 subjects. (f) Heterogeneity in subject 

space, shown by the eight-dimensional coefficients projected down to 2-D.
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Figure 3. 
Cross-validation results for simulated data: Plots of the mean square error (Eqn. 3) vs. 

number of SCPs k (left), and sparsity level λ (right).
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Figure 4. 
Results from simulated data. The basis vectors identified by the sparse learning approach, 

InfoMap, Spatial and Temporal ICA, shown as node-weights, compared against the ground-

truth.
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Figure 5. 
Accuracy of the results, measured using normalized inner-product.

Eavani et al. Page 27

Neuroimage. Author manuscript; available in PMC 2016 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 
Subject-specific coeffcients estimated by Sparse Learning, projected down to 2-D space, 

shown along with the ground truth.
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Figure 7. 
Cross-validation results for PNC data: Plots of the mean square error (Eqn. 3) vs. number of 

SCPs K (left), and sparsity level λ (right).
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Figure 8. 
Sparse learning identified a primary Dorsal Attention (DA) SCP, highlighting the anti-

correlation between DA and Default Mode (DM)
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Figure 9. 
Task-Positive SCPs: SCP 2, 3 and 4 show different regions of the default mode anti-

correlated with the Salience, Cingulo-Opercular and Fronto-Parietal control systems 

respectively.
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Figure 10. 
SCPs 5 and 6 show two types of connectivity patterns involving the sensori-motor areas.
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Figure 11. 
Visual SCPs identified by sparse learning.

Eavani et al. Page 33

Neuroimage. Author manuscript; available in PMC 2016 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 12. 
Figure illustrating the heterogeneity of the data sample captured by SCPs. The color 

indicates the extent to which each SCP is present in a subject.
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Figure 13. 
Inter-subject variability in SCP coeffcients, and their associated time-courses. (a) Location 

of the four ROIs (b) SCP 5 and 6, that the four ROIs are associated with (c) Time-series at 

each of the four ROIs in three different subjects (d) The coeffcients c5 and c6 of the three 

subjects, along with the associated SCP time-courses
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Figure 14. 
Reproducibility and data-fit measured for SCPs obtained from rsfMRI dataset.
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Figure 15. 
Spatial overlap and Temporal correlation measured for SCPs obtained from rsfMRI dataset.
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Figure 16. 
SCPs 1, 2, 5, and 9 computed from the PNC dataset(left) and HCP/fBIRN dataset (right). 

The inner product value for each comparison is also shown.
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