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Abstract

The functional magnetic resonance (fMRI) baseline is known to drift over the course of an 

experiment and is often attributed to hardware instability. These ultraslow fMRI fluctuations are 

inseparable from blood oxygenation level dependent (BOLD) changes in standard single echo 

fMRI and they are therefore typically removed before further analysis in both resting-state and 

task paradigms. However, some part of these fluctuations may be of neuronal origin, as neural 

activity can indeed fluctuate at the scale of several minutes or even longer, such as after the 

administration of drugs or during the ultradian rhythms. Here, we show that it is possible to 

separate the slow BOLD and non-BOLD drifts automatically using multi-echo fMRI and multi-

echo independent components analysis (ME-ICA) denoising by demonstrating the detection of a 

visual signal evoked from a flickering checkerboard with slowly changing contrast.
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Introduction

The functional magnetic resonance imaging (fMRI) baseline is known to drift over the 

course of an experiment (Aguirre et al., 1997; Zarahn et al., 1997). These drifts are 

nonlinear, vary by voxel, and are difficult to distinguish from slow changes in brain 

response to pharmaceutical drugs (Wise et al., 2004) or spontaneous fluctuations in the 

resting state (Biswal et al., 1995). They are attributed to scanner instability (Smith et al., 

1999), pooling of blood in veins (Lee et al., 1995), subject motion and incomplete motion 

correction (Bandettini et al., 1993), and brain physiology changes (Yan et al., 2009). In 

standard single echo blood oxygen level dependent (BOLD) fMRI, the non-BOLD drifts are 

inseparable from the data making the detection of slow BOLD related change difficult. We 

show that it is possible to do this with multi-echo (ME) fMRI.

Common approaches to remove drift in preprocessing of single echo fMRI data have 

involved using linear, low-order polynomial or spline models (Bandettini et al., 1993; Liu et 
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al., 2001; Kay et al., 2008), high pass filtering (Lund et al., 2006), or ICA component 

removal (Thomas et al., 2002). Improper modeling and removal of drifts affects the 

sensitivity of the statistical results (Lowe and Russell, 1999) and also limits the task or 

frequencies which can be measured in these experiments. For task paradigms the strategy 

has been to use box-car and repetitive event designs using frequencies that exceed scanner 

drift frequencies (Birn et al., 2002). For resting state scans, the data are typically band-pass 

filtered to remove frequencies that are deemed unlikely to be functionally relevant (Cordes 

et al., 2001). However, these approaches do not work in the case of an experiment that has 

only one transition (e.g. bolus injection of a drug) or very slow changes (sleep, circadian 

rhythms, transcranial magnetic stimulation (TMS)). In these cases it is particularly important 

to properly model the baseline changes in order to accurately measure the desired BOLD 

responses, which is complicated by long run lengths and potentially coupled subject motion.

There are several dual-echo techniques that have been proposed that attempt to capture 

baseline drift in a very short echo acquired in the space before the standard echo (Talagala et 

al., 1999; Bright and Murphy, 2013; Ing and Schwarzbauer, 2012). However, there will 

always be some BOLD weighting in the measured short echo time series due to the long 

acquisition window required to obtain the images, which increases the effective echo time 

(TE). Speck and Hennig (1998) used an eight echo acquisition to simultaneously map both 

 and spin density or inflow effects over a few slices in the brain. The ability to calculate 

both of these parameters at every time point comes at the cost of reduced brain coverage and 

increased repetition time due to the large number of echoes required to obtain good 

simultaneous parameter estimates. This makes the method difficult to extend to cognitive 

studies, which typically require whole brain coverage. An alternate MRI functional imaging 

technique that intrinsically measures a quantitative baseline is arterial spin labeling (ASL) 

(Aguirre and Detre, 2012). ASL time series do not exhibit signal drifts owing to the 

subtraction of the control and tag images to generate flow images. Wang et al. (2003) 

demonstrated the benefits of using ASL for long task block lengths and runs separated in 

time by over 2 min in length. Notably, the BOLD data in this study was high-pass filtered 

and inherently limited their ability to detect the longer block tasks. However, the reduced 

coverage, slower measurement times, and lower signal-to-noise ratio (SNR) of ASL, as 

compared to BOLD fMRI, remain problematic for applications to many studies (Wang et al., 

2011). Furthermore, the insensitivity of ASL to slow motion and drifts is at the expense of 

enhanced motion sensitivity to short-term motion on the time scale of the TR arising from 

the pairwise image subtractions.

Improvements in imaging acquisition have made it possible to trade high resolution single 

echo images for coarser resolution at multiple echo times per repetition with minimal 

sacrifice in repetition time (TR) and spatial coverage for fMRI (TEs: 14,30, 46 ms, 2 s TR, 

28 slices with cubic resolution of 3.5 mm, for example). Multi-echo acquisition enables the 

measurement of TE-dependence of the signal (Peltier and Noll, 2002) but is still more 

frequently used in quantitative T2* measurements than in fMRI (Gowland and Bowtell, 

2007). In the context of fMRI, the acquired echoes are typically combined to improve the 

overall image SNR and recover signal dropout (Posse et al., 1999; Poser et al., 2006). The 

recently developed multi-echo independent components analysis (ME-ICA) denoising 
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method (Kundu et al., 2013) uses TE-dependence throughout the analysis pipeline to 

separate the data into primarily BOLD and non-BOLD subspaces in an automatic, data 

driven way that is based on the principles of BOLD contrast. ME-ICA differs from other 

automated ICA component selection methods in that no restrictions are placed on the time-

frequency or anatomical localization characteristics of the components in the selection 

process. Therefore, it has the potential to separate artifactual, hardware-related drifts, which 

would fall into the non-BOLD subspace, from hemodynamic signal changes that are likely 

of neuronal relevance. Importantly, this enables study of low-frequency BOLD components 

that would ordinarily be discarded in the band-pass filtering step that is conventionally 

applied during preprocessing.

In this study, we use a visual task with slowly changing contrast over 5 min as an example 

of a slow BOLD change and we compare conventional preprocessing to ME-ICA denoising. 

As well, we investigate the temporal, amplitude properties of the time series and the 

sensitivity of the methods in differentiating two slow slope changes. We demonstrate the 

ability to separate the sigmoid task response from baseline drifts using ME-ICA denoising in 

a case where the task is undetectable in conventionally preprocessed data.

Methods

Subjects

Fifteen healthy volunteers (aged 21–39, 8 males) participated in this study. Informed 

consent was obtained for each subject in accordance with the Combined Neuroscience 

Institutional Review Board of the National Institutes of Health. Subjects were instructed to 

remain awake, lie still and fixate on the cross in the center of the screen during all visual 

tasks. The entire experiment had a duration of an hour and a half of imaging, which 

consisted of one anatomical and seven functional scans.

MR Image acquisition

Scanning was performed on a 3T Skyra (Siemens GmBH, Germany) using a 32 channel 

head coil. A whole brain 3D T1 MPRAGE anatomical scan was performed with a cubic 

resolution of 1 mm (TR: 2.5 s, TI: 1.1 s, TE: 5.4 ms, flip angle: 7°), matrix 256 × 256 × 256, 

field-of-view 25.6 cm, 6 min, followed by a 10 minute resting state scan and 7.5 minute 

multi-echo EPI fMRI visual tasks with scan parameters of TE: 13, 30, 43 ms, TR: 2 s, at a 

cubic resolution of 3.5 mm with GRAPPA acceleration factor 2 over 28 slices covering the 

whole brain (flip angle 90°, matrix 64 × 64, field-of-view 22.4 cm, interleaved slice 

acquisition). Four dummy scans preceded each run to ensure steady-state equilibration for 

the saved data. Respiratory and cardiac traces were recorded using respiratory bellows and 

pulse oximeter with AcqKnowledge software (BIOPAC Systems Inc., Goleta, CA).

Visual contrast tasks

The visual stimuli consisted of a full visual field checkerboard reversing from black to white 

at a rate of 7.5 Hz. The timing and amplitude of the stimuli are illustrated in Fig. 1 and 

consist of a) a contrast localization run with 15 s blocks of one of four different contrast 

levels: 2.5%, 5%, 20%, and 100%, alternating with a fixation cross (0% contrast), there are a 
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total of 16 contrast blocks or four repetitions of each contrast b) a long block of 80 s at 20% 

contrast followed by 80 s of fixation (0% contrast) c) a long block of 80 s at 5% contrast 

followed by 80 s of fixation d) a shorter block of 60 s at 20% contrast followed by 100 s of 

fixation e) a sigmoid ramp (at slope of −1/40) from 20% to 0% contrast over the course of 2 

min and f) a sigmoid ramp (at a slope of −1/60) from 16% to 0% contrast transition over the 

course of 5 min. Instructions to fixate on the cross in the middle of the checkerboard were 

reiterated between scans to ensure the subject remained awake and on task for the duration 

of the experiment. The flanking pairs of 15 s blocks at 80% in each task served as an 

embedded vigilance check for task compliance and are not explicitly considered further.

Preprocessing

Processing of the fMRI data was performed using AFNI (Cox, 1996), compile date: 17 Dec, 

2013. Each echo was pre-processed separately as described below prior to ME-ICA 

denoising.

Single echo

The anatomical image was first skull-stripped and then warped to Talairach coordinates 

(auto_tlrc, TT_N27 template). The anatomical image was then registered to the first frame 

of the middle echo (30 ms) data and 12 parameter affine coregistration was computed using 

the local Pearson correlation (LPC) cost function (Saad et al., 2009) with the gray matter 

segment of the EPI base image (3dSeg) as the LPC weight mask. Motion correction 

(3dvolreg) for all echoes was performed using the first frame of the middle echo as 

reference. The estimated six-parameter rigid body motion parameters were combined with 

the anatomical-functional coregistration parameters into a single alignment matrix. The 

images from each TE were slice-time corrected (3dTshift) and subsequently simultaneously 

motion corrected and spatially aligned (3dvolreg) using the combined alignment matrix.

Optimal echo combination

The optimal echo time for imaging the BOLD effect is where TE equals , However, 

varies across the brain and as such, single echo images are not optimally sensitive to this 

variation. The acquisition of multiple echoes enables the calculation of an “optimal” 

weighted average of echoes that recovers signal in drop-out areas and improves contrast-to-

noise (CNR) ratio throughout the brain (Posse et al., 1999; Poser et al., 2006). The optimal 

echo combination (OC) as found in Poser et al. (2006) used here is described below.

The signal at an echo, n, varies as a function of the initial signal intensity So and transverse 

susceptibility  and is given by the mono-exponential decay:

(1)

which can be linearized to simplify estimation of  and So as the slope and intercept of a 

line by least squares fitting:
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(2a)

(2b)

The normalized  data weighting that maximizes BOLD CNR for a set of N echoes is 

given by

(3)

Where  is the transverse relaxation time estimated for each voxel using Eq. (2b) above.

The OC time series are used in the results and in certain steps of the ME-ICA pipeline as 

described below. The OC time series summed using these weights are more comparable to 

the denoised data output from the ME-ICA pipeline, which are calculated from the OC data, 

while being preprocessed the same way as single echo data.

Multi-echo ICA denoising

A summary of the ME-ICA denoising method is found here, for full details please see 

Kundu et al. (2013).

Theory—TE-dependence analysis determines the BOLD or non-BOLD origin of fMRI 

signal changes in a component based on how the component's value scales with TE. A 

component is, for example, a beta weight from general linear model fitting of each echo, or a 

component from ICA or principal components analysis (PCA).

Estimation of both So and  simultaneously from Eq. (1) is noisy (Gowland and Bowtell, 

2007), however, for small changes in So and , Eq. (2b) can approximated as

(4)

which is specially separable into two sub-models where one depends only on So (Eq. (5a)) 

and the other only on  (Eq. (5b)) as follows:

(5a)

or

(5b)
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These sub-models are separately fit to the data on a voxelwise basis and goodness of fit F-

statistic are calculated for each model. Note that precise values of  and So cannot be 

calculated using this approach as some physiological or motion artifacts may produce 

coupled  and So changes (Wu and Li, 2005) but that it is sufficient to classify a signal 

fluctuation as primarily  change and not an So change (Kundu et al., 2012).

The F-statistics generated from the voxelwise fit coefficients can be used together with the 

normalized voxel (v) component (c) values zc,v to create two summary statistics κ, and ρ 

representing BOLD, or , and non-BOLD, or So, component weighting respectively, as 

follows:

(6)

(7)

where the weighting by  attenuates the effect of random fit error in brain regions where 

the component is not prominent. Values of the exponent p > 2 generate similar results 

(Kundu et al., 2013) and increase weight values of F where the amplitude z is high. In this 

model it is expected that high κ and low ρ indicate a  weighted and likely functionally 

related BOLD component (Kundu et al., 2012).

Components were split into primarily BOLD and non-BOLD sets after sorting based on their 

values of κ and ρ. Sorted values of κ and ρ produce spectra with clear elbows and a 

threshold is determined using an elbow finding algorithm. Components with κ above the κ 

threshold and ρ below the ρ threshold are selected as functionally related “high κ” multi-

echo denoised (me-dn) BOLD components, and the remainder are identified as “low ρ” non-

BOLD components. Additionally, me-dn BOLD selected components with relatively low ρ 

but with outlier values of percent variance explained and percent signal change (at the 90th 

percentile of voxelwise percent signal change) are excluded from the me-dn BOLD set 

because they localize to the sagittal sinus and draining veins Kundu et al. (2012). The 

component selection algorithm is designed to be conservative and prevent the incorrect 

assignment of components containing BOLD signal and as such, imperfect separation is 

possible.

Implementation—After preprocessing, ME datasets were optimally combined and 

dimensionally reduced by TE-dependence based principal components analysis (ME-PCA) 

Kundu et al. (2013). Dimensionality estimation was based on the κ and ρ spectra of the PCA 

components, which have clear elbows where a threshold can be determined. Components 

with κ above the κ threshold and ρ below the ρ threshold were kept as were components 

explaining high variance. The dimensionally reduced ME data were then decomposed with 

FastICA (implemented in Python MDP) producing a mixing matrix which was variance 

normalized in the time dimension. This mixing matrix was fit to the (full rank) OC data to 
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compute values of κ and ρ for each component as defined above. The component amplitude 

maps and time series obtained by regressing the optimally combined ME time series on the 

full ICA mixing matrix were used as the basis for producing denoised time series. 

Specifically, multiplying the subset of BOLD high κ component signal amplitude maps with 

their respective time series produced the me-dn BOLD high κ time series dataset. Similarly, 

multiplying the subset of low ρ high κ and outlier variance component signal amplitude 

maps with their respective time series produced the low ρ non-BOLD time series dataset.

Analysis

Individual general linear model analysis with the task regressors defined in Fig. 1 was 

applied to each of four datasets derived from the preprocessed data above using 

3dDeconvolve: single echo data (single) taken as the middle echo of the multi-echo 

acquisition, OC data, me-dn BOLD, and non-BOLD components resulting from the ME-

ICA preprocessing of the multi-echo data. Linear polynomial detrending was used in the 

regression baseline for the OC and single echo data where indicated. No higher order 

detrending was applied for the me-dn BOLD or non-BOLD components. Group maps were 

created for each task type (3dttest).

Results

First, a comparison of the group contrast scaling response in the contrast localizer task is 

shown for the single echo, OC, and denoised time series. Next, the temporal response to the 

slow block and ramp tasks is shown illustrating the benefit of using denoised BOLD time 

series in comparison to conventional preprocessing. Finally, the spatial specificity of the 

BOLD component response for these tasks is demonstrated along with a comparison of all 

the tasks.

Contrast localization/response

The contrast localization task is an example of a standard fMRI task design. It is used here 

to illustrate the equivalence of the results of me-dn BOLD in terms of percent change 

response with improvements in the resolution of the contrast levels. The group average 

temporal and amplitude response for each of the contrast levels along with the standard error 

are shown in the Fig. 2 for me-dn BOLD, non-BOLD, OC, and single-echo data. The 

timecourse averages were taken over the V1 ROI and across the repetitions of the contrast in 

the localizer task and then averaged across subject. The me-dn BOLD timecourses clearly 

show an increase in percent change as a function of contrast, which is reflected in the 

amplitude plot (part e of the Figure). Both the OC and single-echo also show this same 

increase and response curves however, the 5% and 20% time series appear very close in 

amplitude and in fact appear reversed in comparison to the me-dn BOLD components. The 

median values of the individual peak differences still increase as a function of contrast as 

indicated in the amplitude boxplots. The me-dn BOLD component timecourses appear to be 

less noisy as compared to the single echo, some of this is due to the inclusion of the three 

echoes in combination, as can be seen in the improved profile in the OC panel. The 

timecourses of the me-dn BOLD components all start from the same intercept value as the 
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jitter is taken up in the non-BOLD components. In the following analyses OC rather than 

single echo time series will be used because it is more comparable to the me-dn BOLD data.

Temporal response

Fig. 3 contains group average time series over voxels in the visual cortex for the 20% block 

(left) and ramp (right) contrast tasks for me-dn BOLD component, optimally combined (OC) 

echo, and non-BOLD time series, the shading is the standard error about the mean (thick 

line). The visual cortex region of interest (ROI) was identified from a group map 

(thresholded at p < 0.05 family wise error (FWE)) using the contrast localization task. For 

the OC time series, the block task response is visible but shows a positive trend, which is 

removed after detrending. In the ramp task the response is relatively flat with some positive 

trend that is completely removed after detrending. In the me-dn BOLD time series the 

response to the block stimulus is clearly visible and there is a plausible negative trend for the 

ramp task. Note that the shape of the block response differs slightly between the detrended 

OC and the me-dn BOLD data, particularly in the period after the stimulus. The non-BOLD 

component time series suggests that the positive trend found in the OC time series is 

artifactual and obscures the ramp task. The massive averaging, over all the voxels in V1 and 

over all subjects, of the non-BOLD time series reveals the likely scanner specific trend is 

mostly linear, but obscures the higher order baseline variations seen on a voxel-wise basis as 

discussed in A.

Spatial localization

Each row in Fig. 4 represents a group average of the individual correlation maps over all the 

subjects for the 20% block (left) and ramp (right) contrast tasks for the OC, detrended, me-

dn BOLD components, and non-BOLD component time series. The maps are thresholded at 

p < 0.05, FWE corrected. Only the task regressor was used in the model to create the 

individual correlation maps. The me-dn BOLD component maps show clear localization to 

the visual cortex of the response in both tasks. The OC data show a weak response in the 

visual cortex which becomes statistically significant after detrending for the block task but 

not for the ramp task. The non-BOLD component time series shows no supra-threshold 

voxels, but does show non-specific response pattern at lower thresholds (shown in 

Supplementary materials).

Temporal, amplitude and slope differentiation

Fig. 5 shows group averaged time series over V1 for pairs of tasks to compare the 

amplitude, temporal, and slope differentiation properties of the OC, detrended, and me-dn 

BOLD data. Part a) shows the two amplitude (20%, 5%) tasks where the adaptation rate is 

seen clearly in the denoised data. The percent change amplitude difference taken from the 

equilibrium segments of this averaged time series show a change of 0.25% for the 20% case 

and 0.25% for the 5% case in the me-dn data. Part b) of the Figure shows the long and short 

20% block tasks with matched adaptation rate and baseline in the denoised data, which is 

seen in the detrended data with higher variance, but not in the conventional data. Part c) 

shows the two ramp tasks both with negative trends following the task in the denoised data, 

which is not reflected in the OC or detrended data. Linear fits to the slopes show the ability 

to identify the two slope tasks in the me-dn data whereas the slope in the OC is positive. The 
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fits to each slope are insignificantly different from one another. Fitting a line to the 

detrended time series, yields a zero slope. The slope values for each of the fits and 

individual voxel counts for both slope tasks are shown in the Supplementary materials.

Discussion

We have shown that ME-ICA denoising of multi-echo fMRI data can directly separate 

ultraslow BOLD from non-BOLD drifts based on an analysis of TE-dependence. The 

resulting me-dn dataset contains a faithful temporal representation of the low frequency task 

and is also spatially localized in the expected visual regions. This denoising process was 

equally valuable for standard block designs, as exemplified by the contrast localization task, 

where it ties the blocks to the same baseline and improves the differentiation of contrast 

levels.

The BOLD signal contrast changes measured in the block design task from all preprocessing 

methods reflect a comparable monotonic increase with contrast level in V1. These results 

are in agreement with prior reports of contrast dependent BOLD responses (Chiacchiaretta 

et al., 2013; Kastner et al., 2004; Tootell et al., 1995). The short duration of the block task 

with small number of block repeats (15 s × 4 repeats) for each contrast gives this task low 

contrast to noise ratio and reduces its ability to distinguish between the contrast levels in 

comparison to other studies. Despite this, the me-dn BOLD data show clearly the expected 

stratification of amplitude for the contrast levels. In comparison, the optimally combined 

time series from the same data has almost identical amplitudes for each level except at 20% 

contrast where there is a substantial dip, which is explained by a dip in the non-BOLD 

components (Fig. 2e). A separate study using similar contrast levels (Chiacchiaretta et al., 

2013) found contrast level stratification using spin echo instead of gradient echo contrast. 

However, in their results the undershoot was not different between the two image types and 

here there seems to be a greater undershoot for the 100% contrast block. The larger 

undershoot in our study could be a function of task duration or due to using interleaved 

contrast levels in the task rather than a single contrast level per run where the neural demand 

may reach steady state. We did explicitly randomize contrast block level order for a subset 

of the subjects to account for this effect, but the order did not make a difference as seen by 

Kastner et al. (2004).

The contrast adaptation in the long stimulus blocks (Figs. 1b, c) is similar to that found by 

(Gardner et al., 2005) at similar contrast levels. They used high pass filtering at 0.004 Hz to 

control for slow drifts which they stated did accentuate the decay at the beginning of their 

adaption period. The current results do not suffer from such distortion. The lack of 

amplitude difference between the 20% and 5% contrast levels in the long blocks (see Fig. 

5a) is in disagreement with the different amplitude levels found by Gardner et al. (2005). 

The response difference that was found in the contrast localization task was small (−0.1%) 

and non-significant but a larger significant difference was found between 20% and 2.5% 

(see Fig. 2b). One potential explanation for the difference between our experiments and that 

of others is an absolute calibration difference between the projector contrast levels as viewed 

in the scanner bore, which we did not explicitly quantify.
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The group map for the 20% stimulus block shows what could be a motor response in 

addition to the visual response in the visual cortex, which is not present in the ramp task (see 

Fig. 4, row 3 slice 4). This cluster is potentially related to a task correlated effect between 

checkerboard and fixation conditions. In the ramp task, the checkerboard is constantly there, 

which may explain the lack of this cluster in this task, which is potentially an argument 

towards the benefit of slowly varying tasks to reduce task correlated artifacts.

As a new result, we show the ability to differentiate task slopes using me-dn data (see Fig. 

5c). Slope responses are also expected from learning tasks, which have not generally been 

extensively measured using fMRI. In a simultaneous ASL/BOLD experiment using a 

sequence motor learning task over 20 min, (Olson et al., 2006) showed brain areas with 

reduction in blood flow correlated with the reduction in response time as the task was 

learned over the scan. However, they could not find a similar result in their BOLD data, but 

could find regions involved in error making. For our scanner, the hardware drift in the 

consolidated non-BOLD components is approximately a 1% change over 5 min (0.003%/s) 

therefore any task slope responses below this would not be able to be resolved using 

standard methods.

ASL has previously been shown to have better noise stability across the frequency spectrum 

than BOLD and to be more sensitive to tasks longer than 60 s blocks (Aguirre et al., 2002; 

Wang et al., 2003), but here the long block stimulus is easily detected after denoising. Multi-

echo fMRI with ME-ICA denoising therefore provides an alternative functional imaging 

method for these types of task and applications like pharmaceutical fMRI where ASL has 

been suggested as potential imaging marker of drug action (Wang et al., 2011), but with 

greater spatial and temporal coverages and sensitivity than ASL. While the non-BOLD 

components are largely removed in ME-ICA denoising, any BOLD baseline drifts or 

changes in neurovascular coupling are still not accounted for. This yields an opportunity to 

more closely study these possibly artifactual BOLD changes in combination with other types 

of imaging contrasts such as ASL, spin echo, or diffusion weighting. Additionally, a multi-

contrast approach would aid in the investigation of the effects of inflow and any changes in 

intra and extra vascular BOLD weighting that may occur over the echoes on the denoising 

process.

The tasks used in this study have simple known models, in particular both ramp tasks are 

effectively linear and have a similar percent change increase to the opposing hardware 

gradient drift. Arguably, the addition of a period of baseline preceding the task or simply 

using a more complicated contrast variation pattern would improve detection after linear 

detrending. In other studies, the exact brain response model will not be known and the 

detrending model estimate could impact the measured response shape. The use of higher 

order detrending, more typical of runs of this length, does not improve the results in the 

detrended data in either the block or ramp tasks and may remove useful or interesting slow 

BOLD effects.

In this experiment, the expected effects occur over several minutes and should not be 

affected by local variations in the heart or respiratory rate (Birn et al., 2009). An 

investigation of the recorded cardiac and respiratory signals indicated that there was not a 
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general slowing of both heart and respiratory rates as the subject relaxes in the scanner, 

which could have potentially been seen in the BOLD components (see Supplementary 

materials). The extent to which the denoised BOLD components correlate with the neural 

signal could be investigated with simultaneous EEG for example. Until it is known how 

much of the respiratory and cardiac effects remain in the denoised BOLD components it is 

advisable to continue to record these physiological parameters.

This work provides an important step forward in the detection of low frequency baseline 

BOLD changes such as those found after the administration of pharmaceuticals, in 

ultraradian rhythms or learning paradigms. Experiments to measure these changes must be 

longer than a standard fMRI scan to capture their full characteristics thereby incurring 

greater amounts of non-BOLD hardware drifts in addition to an increased likelihood of 

contamination from subject motion.

ME-ICA is a principled approach that can directly separate slowly varying artifacts from the 

desired BOLD response. It is more stable than methods that simultaneously fit for BOLD 

and spin density changes at each voxel as it uses aggregated fit statistics over the entire 

volume. Other ICA methods applied at the individual subject level without the multi-echo 

acquisition require the use of circular reasoning in the form of prior spatial or temporal 

assumption to find effects of interest in those same domains. ME-ICA also uses the third 

domain of TE-dependence for dimensionality estimation, which enables a stable-high 

dimensional decomposition of the data that does not require high pass pre filtering. 

Additionally, the component selection process is fully independent of anatomical templates. 

Both of these features ultimately make the ME-ICA approach straightforward and reliable. 

Many studies already exist in the literature that could benefit from using this technique as a 

clean way to separate out BOLD specific signal. The ability of multi-echo fMRI and ME-

ICA denoising to remove the non-BOLD baseline opens the possibilities of using novel 

continuous paradigms and resolve complicated brain responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix A. Baseline drift in a single subject

The time series plots shown above are averaged over all subjects and V1 and smooth out the 

trends that are seen at the voxel level. A 3 × 3 grid of time series from voxels from the visual 

cortex of a single subject is shown in Fig. A.6 for the 20% long block task illustrating these 

baseline variations. The me-dn BOLD (red), non-BOLD (black) and OC (blue) time series 

are shown overlayed. Voxel a shows an excellent agreement between the me-dn BOLD and 

OC time series and a principally linear positive trendin the non-BOLD component (which 

can be seen to influence the OC at the beginning and end of the task). Voxels b, c, d, e, and f 

show the ability of me-dn to pull out the task signal from very noisy voxels to a better extent 

than OC. Voxels g, h, and i show a very nonlinear non-BOLD baseline, which translates to a 

similar OC time series, however me-dn BOLD shows a completely flat trace, indicating no 

task response was likely present in this voxel.
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In particular, note that the OC time series follows the non-BOLD components in many 

voxels. Additionally, the non-BOLD trend in each of these voxels is generally positive, 

however the baseline in each voxel has its own particular signature. Some of the non-BOLD 

fluctuations are reminiscent of possible task patterns (e.g. voxel f) but are successfully 

automatically removed using the ME-ICA denoising procedure revealing the true task 

response. This demonstrates a strength of ME-ICA denoising at the single subject and single 

voxel level.

Fig. A.6. 
A set of voxels taken from the visual cortex of a single subject for the 20% block task (‘on’ 

for the first half of the time shown). The time courses shown are me-dn BOLD (red), non-

BOLD (black) and OC (blue).

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/

j.neuroimage.2014.10.051.
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Highlights

• Successful separation of slow task signal from slow non-BOLD baseline drifts 

using ME-ICA

• ME-ICA resolves tasks responses more faithfully than standard preprocessing.

• ME-ICA enables the study of low-frequency BOLD activity and the use of 

slower task paradigms.
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Fig. 1. 
Tasks. a) contrast localizer block task b) long 20% contrast block c) 5% contrast block d) 

short 20% contrast block, e and f) sigmoid ramp tasks.
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Fig. 2. 
The contrast response curves are shown for a) single echo, b) me-dn BOLD, c) optimally 

combined (OC), and d) non-BOLD time series for the 2.5%, 5%, 20% and 100% contrast 

levels. Part e) shows the magnitude of the difference between the maximum and baseline for 

all time series types.
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Fig. 3. 
Group average time series taken over voxels in V1 for the 20% block and ramp tasks for the 

OC, detrended OC, me-dn BOLD, and non-BOLD components where the thick line is the 

mean and the shading is the standard error, the data are demeaned.
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Fig. 4. 
The spatial response to the a) 20% block and b) ramp tasks for the OC, me-dn BOLD, 

detrended, and non-BOLD time series.
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Fig. 5. 
Pairs of tasks are shown for the OC, detrended, and me-dn BOLD time series for 

comparison a) 20% and 5% blocks b) 20% long and short blocks and c) both ramp tasks.
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