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Abstract

Alopecia areata (AA), a cell mediated autoimmune disease, is the second most common form of 

hair loss in humans. While the autoimmune disease is responsible for the underlying pathogenesis, 

the alopecia phenotype is ultimately due to hair shaft fragility and breakage associated with 

structural deficits. Quantitative trait genetic analyses using the C3H/HeJ mouse AA model 

identified cysteine-rich secretory protein 1 (Crisp1), a hair shaft structural protein, as a candidate 

gene within the major AA locus. Crisp1 transcripts in the skin at various times during disease 

development were barely detectable. In situ hybridization identified Crisp1 expression within the 

medulla of hair shafts from clinically normal strains of mice but not C3H/HeJ mice with AA. 

Follow-up work with 5-day-old C3H/HeJ mice with normal hair also had essentially no expression 

of Crisp1. Other non-inflammatory based follicular dystrophy mouse models with similar hair 

shaft abnormalities also have little or no Crisp1 expression. Shotgun proteomics, used to 

determine strain difference in hair proteins, confirmed there was very little CRISP1 within normal 

C3H/HeJ mouse hair in comparison to 11 other strains. However, mutant mice with hair medulla 

defects also had undetectable levels of CRISP1 in their hair. Crisp1 null mice had normal skin, 

hair follicles, and hair shafts indicating that lack of the CRISP1 protein does not translate directly 

into defects in the hair shaft or hair follicle. These results suggest that CRISP1 may be an 

important structural component of mouse hair and that its strain-specific dysregulation may 

indicate a predisposition to hair shaft disease such as AA.
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Introduction

Alopecia areata (AA), a cell mediated autoimmune disease, is the second most common 

form of alopecia in humans. The C3H/HeJ mouse model has been instrumental in dissecting 

the pathophysiology of this disease (King et al., 2008), but little is known about the cause or 

structural defects in the hair shafts that ultimately result in breakage (clinically evident 

alopecia) other than that hair keratins and melanin associated proteins have been proposed as 

the inciting antigens (Gilhar et al., 2001; Tobin et al., 1997). Transcriptome studies 

suggested that epitope spreading was a nonspecific, secondary effect of the cell mediated 

autoimmune aspect of AA, thereby explaining why a variety of autoantibodies were found to 

melanin associated and keratin proteins in both patients and controls (Carroll et al., 2002). 

Through studies in both mouse models and human AA patients, natural killer cell subsets are 

emerging as the underling effecter cells causing abnormalities in the hair follicle with 

secondary disruption of the normal hair shaft structure (Duncan et al., 2013; Xing et al., 

2014). However, the cellular and molecular mechanisms underlying this structural damage 

to the hair shaft are obscure. For example, it is currently not clear whether pre-existing 

structural abnormalities (e.g. changes in protein composition) are involved either with the 

initiation of the disease process or with the severity and extent of AA.

The Hoxc13 transcription factor regulates formation of the hair shaft medulla (HSM). 

Dysregulation of this gene, either by overexpression in transgenic mice or lack of expression 

in null mice, results in defective hair shafts that break at the skin surface similar to AA. 

Cysteine-rich secretory protein 1 (Crisp1) expression is lost within the HSM in both of these 

Hoxc13 mutant mice (Peterson et al., 2005; Potter et al., 2011). Crisp1 is located on mouse 

chromosome 17 within the major quantitative trait locus for AA (Alaa1) (Sundberg et al., 

2004). Therefore, it is possible that Crisp1 plays a role in the pathogenesis of AA in the 

C3H/HeJ mouse model.

This study describes the lack of CRISP1 protein and Crisp1 transcripts in the skin and hair 

follicles of mice that develop spontaneous AA, both mice with the disease and those that are 

young and clinically normal in comparison to other strains which do not develop AA. These 

results suggest CRISP1 is either involved in the pathogenesis predisposing to AA or its 

presence or absence may affect severity variability among individual patients.

Materials and methods

Mice

All procedures were done with approval by The Jackson Laboratory Animal Care and Use 

Committee. Mice were obtained from production colonies at The Jackson Laboratory (Bar 

Harbor, ME; http://jaxmice.jax.org/). The strains evaluated were AKR/J-Soat1ald/ald (strain 

abbreviation: AK; JR#648), BALB/cByJ (CBy; JR#1026), C3H/HeJ (C3; JR#659), 
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C57BL/6J (B6; JR#664), CAST/EiJ (CAST; JR#928), DBA/1J (D1; JR#670), LP/J (LP; 

JR#676), MRL/MpJ (MRL; JR#486), MRL/MpJ-Faslpr/lpr, Foxq1sa-J/sa-J (MRL-FX; 

JR#3896), NOD/ShiLtJ (NOD; JR#1976), NZW/LacJ (NZW; JR#1058), RF/J (RF; JR#682), 

SB/LeJ-Lystbg/bg, Foxq1sa/sa (SB; JR#269), STOCK-a/a, Tmem79ma/ma, Flgft/ft/J (MAFT; 

JR#281), STOCK- Sgk3fz-ica/fz-ica/McirJ (FZ; JR#6135), and WSB/EiJ (WSB; JR#1145) 

(strain abbreviations obtained from: http://www.informatics.jax.org/external/festing/

search_form.cgi; http://jaxmice.jax.org/).

Mice were maintained at The Jackson Laboratory in a humidity-, temperature-, and light 

cycle (12:12) controlled vivarium under specific pathogen-free conditions and were allowed 

free access to autoclaved food (NIH 31, 6% fat; LabDiet 5K52, Purina Mills, St. Louis, MO) 

and acidified water (pH 2.8–3.2).

Dorsal skin was collected from adult C57BL/6N-Crisp1tm1Pasc/tm1Pasc (1 female and 5 

males), Crisp1tm1Pasc/+ (1 male and 1 female), and Crisp1+/+ (4 males) mice (Da Ros et al., 

2008) at the Instituto de Biologia y Medicina Experimental (IBYME-CONICET) in Buenos 

Aires, Argentina. Skin was fixed in Fekete’s acid-alcohol-formalin, processed routinely, 

embedded in paraffin, sectioned at 6 μm, stained with hematoxylin and eosin (H&E). Hair 

was also collected by plucking from these same mice, mounted on glass slides with 

mounting media and coverslips as previously described (Silva and Sundberg, 2012). All 

samples were reviewed by an experienced board certified pathologist (JPS).

The microarray study was previously reported (Duncan et al., 2013; McPhee et al., 2012). 

Full thickness skin grafts from old C3H/HeJ mice with AA to young, histocompatible, 

unaffected mice were performed to induce AA in a very reproducible manner in terms of 

time of onset and progression (McElwee et al., 1998; Silva and Sundberg, 2013). Only 

female mice were used to reduce fighting, and females have a slightly higher frequency of 

spontaneous AA with greater clinical severity than do males (Sundberg et al., 1994a). Skin 

was collected and fixed by immersion in Fekete’s acid-alcohol-formalin solution for 

histopathology and in RNAlater (Ambion, Austin, TX) for transcriptome analyses. Skin was 

collected from 3 different AA graft and 3 different normal graft recipient mice at 5, 10, 15, 

and 20 weeks post grafting, as well as 3 different mice with spontaneous (natural) AA and 3 

different normal C3H/HeJ mice.

For the in situ hybridization studies, skin was collected from 5 C3H/HeJ mice at 5 days of 

age and 5 at 12–18 months of age. For comparison, skin was also collected from age and 

gender matched FVB/NTac (Taconic, Hudson, NY).

Transcriptome analysis

Five age groups were analyzed consisting of 3 mice each with AA (15 arrays) versus age 

and gender matched controls (15 arrays), for a total of 30 arrays. Briefly, skin samples were 

stored in RNAlater (Ambion, division of Life Technologies, Grand Island, NY)). Total RNA 

was isolated using TRIzol and reverse transcribed with an oligo(dT)-T7 primer (Affymetrix, 

Santa Clara, CA), followed by double-stranded cDNA synthesisis with the Superscript 

(Invitrogen, division of Life Technologies, Grand Island, NY). The cDNA was amplified 

using T7 RNA polymerase, labeled with biotinylated nucleotides (Enzo Diagnostics, 
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Farmingdale, NY) and was and hybridized onto the MOE430v2.0 GeneChip™ arrays 

(Affymetrix, Santa Clara, CA). The arrays were scanned with a GeneChip™ Scanner 3000 

laser confocal slide scanner. Images were quantified using GCOS 1.0 software GeneChip™ 

Operating Software, Affymetrix, Santa Clara, CA). Data were transformed using RMA 

(Robust Multi-Array) normalization. An analysis of variance (ANOVA) model was applied 

to the data. Differentially expressed genes with q values < 0.05 were considered significant. 

Significantly different genes were then analyzed using Ingenuity Pathways Analysis® and 

Ariadne Genomics Pathway Studio® tools.

Shotgun Proteomics

Shotgun proteomic studies were previously reported (Rice et al., 2012) and details are 

available on the Mouse Phenome Database (http://phenome.jax.org/). Pelage hair from 16 

mouse strains and mutant stocks were obtained by cutting hair with electric clippers from 

mice euthanized by CO2 asphyxiation. Hair samples were rinsed in SDS, reduced and 

alkylated, recovered by ethanol precipitation, and proteolyzed with stabilized bovine trypsin. 

The clarified digest was acidified with trifluoroacetic acid and applied to online reverse 

phase chromatography connected to a Thermo-Finnigan LTQ ion trap mass spectrometer. 

Mass spectra were extracted with Xcalibur version 2.0.7, X!Tandem was used to search the 

mouse Uniprot database, and Scaffold (version 3.5.1) was used to validate the peptide and 

protein identifications.

In situ hybridization

In situ hybridization (ISH) for Crisp1 was done as previously described (Peterson et al., 

2005). For the collection of skin from 5 day postpartum, clinically normal, C3H/HeJ female 

and FVB/NTac mice were euthanized by decapitation. Older, 12/18 month old female 

C3H/HeJ mice with alopecia areata and FVB/NTac normal mice were euthanized by CO2 

asphyxiation. Skin from the scapular region was fixed in 4% paraformaldehyde in 

phosphate-buffered saline (PBS) at 4°C overnight, followed by dehydration through a series 

of 5%, 15% and 30% sucrose in PBS prior to embedding in OCT compound and stored at 

−80°C. In situ hybridization of adult skin with Crisp1-specific digoxygenin (Roche Applied 

Science, Indianapolis, Indiana)-labeled RNA probes (Peterson et al. 2005) to 10 μm 

cryosections was performed as described (Abzhanov et al., 2003; Murtaugh et al., 1999; 

Pruett et al., 2004). Hybridization signals were visualized using the standard NBT/BCIP 

detection system (Roche).

ISH analysis of Crisp1 expression in dorsal skin of mice at 5 days postpartum was 

performed with a probe generated from plasmid pCrisp1-ISH. This plasmid was cloned by 

inserting into the EcoRI site of pSafyre vector (Bieberich et al., 1990) a central segment of 

676 bp of the Crisp1 coding region that was prepared by PCR-amplification from mouse 

Crisp1 cDNA (GenBank: BC011150.1) using 5′CCTTGCATCATGGTCTTCTGC and 

5′TGGGCTAGACTTGACTCCGA forward and reverse primer sequences, respectively.
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Results and discussion

Shotgun proteomic analysis revealed low (females) to undetectable (males) levels of 

CRISP1 protein in normal C3H/HeJ hair shafts (Fig. 1). This finding was revealed during 

analysis of 11 inbred strains and 5 mutant stocks, showing that these strains were 

distinguishable by their protein profiles (Rice et al., 2012). CRISP1 was also undetectable in 

mutant mice in which the HSM did not form properly (mutations in the Foxq1 and Soat1 

genes) and do not develop AA spontaneously (Wu et al., 2010; Wu et al., 2013). Targeted 

mutant mice, in which the Crisp1 gene had been inactivated, did not have any lesions 

affecting the hair follicles or hair shafts other than scattered follicular dystrophy, mild 

ulceration, or subepidermal fibrosis consistent with B6 alopecia and dermatitis, a common 

strain specific background disease in the C57BL/6 substrains (Sundberg et al., 2011).

In situ hybridization to detect Crisp1 transcript expression patterns within the HSM in 

C3H/HeJ adult female mice with AA, due to either full thickness skin engraftment 

(McElwee et al., 1998) or spontaneous disease (Sundberg et al., 1994b), indicated nearly 

undetectable expression within the hair follicle (Fig. 2a, b). Using methods previously 

described (Peterson et al., 2005), no Crisp1 expression was found in C3H/HeJ adults with 

AA compared with normal FVB/NTac control HSM. In follow-up studies in 5 day old 

C3H/HeJ mice with clinically and histologically normal HSM, Crisp1 mRNA expression 

was also undetectable compared to age- and gender-matched FVB/NTac mouse hair where it 

was evident.

Gene expression studies using both the full thickness skin graft (at 5, 10, 15, and 20 weeks 

after engraftment) and spontaneous disease C3H/HeJ mouse models revealed average 

intensity values close to background (data not shown), thereby confirming the proteomic and 

ISH studies.

Quantitative trait locus (QTL) analysis genetic studies of C3H/HeJ females with AA crossed 

with C57BL/6J mice, analyzing the F2 progeny, identified one major and three minor QTLs 

(Sundberg et al., 2004). Crisp1 was located within the major QTL on chromosome 17. As 

we showed previously, if Hoxc13, a transcription factor involved in hair medulla formation, 

was overexpressed (transgenic mice) or not expressed (null mutation) the hair shafts were 

severely dystrophic resulting in alopecia, similar to that seen in human and mouse AA. We 

also demonstrated that several mouse strains with single mutations in genes downstream of 

Hoxc13 had hair medulla defects combined with low to no expression of CRISP1 protein 

(Rice et al., 2012). This was further validated in adult C3H/HeJ mice with AA in which 

there were essentially no detectable levels of Crisp1 within the medulla. These results 

suggested that Crisp1 may be one of the target genes/proteins involved in the autoimmune 

process ultimately causing the hair shaft defect seen in AA. However, lack of Crisp1 

expression was also evident in hair of 5 day old female C3H/HeJ mice as determined by 

ISH. This finding is consistent with data at the protein level obtained by shotgun proteomics 

of adult C3H/HeJ mice that had no clinical or histologic evidence of AA. Collectively, these 

results indicate that CRISP1 expression within the HSM of C3H/HeJ mice is greatly reduced 

or totally absent. Different Crisp1 alleles contain single nucleotide polymorphisms and some 

of these result in amino acid changes in the predicted protein sequence when compared to 
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C57BL/6J (http://www.sanger.ac.uk/cgi-bin/modelorgs/mousegenomes/snps.pl), the normal 

reference strain crossed with C3H/HeJ for QTL studies (Sundberg et al., 2004), confirming 

these data. While C3H/HeJ mice with clinically normal hair have what appears to be a 

normal HSM, the medulla and entire hair shaft disintegrate when mice develop AA at 

specific stages of the disease leading to hair shaft breakage and alopecia. Initial studies 

found that male and female Crisp1 null mice exhibited no differences in fertility compared 

to controls, although there were functional differences in the ability of sperm to penetrate 

both zona pellucida-intact and zona pellucida-free eggs (Da Ros et al., 2008) suggesting that 

hair defects might also go unnoticed unless stressed by AA or environmental influences. 

These results suggest that in addition to serving as a structural component of the HSM, 

Crisp1 is likely to have roles that are currently unknown. Abnormalities in CRISP1 

expression may predispose patients to AA or affect severity of disease.

Conclusions

While alopecia areata is a cell mediated autoimmune disorder, the ultimate cause of the 

clinical hair loss is follicular dystrophy with breakage of the hair shaft. This change is 

evident in humans and mice that develop alopecia areata. The inbred mouse strain which is 

prone to alopecia areata, C3H/HeJ and related substrains, have an inherent deficiency of 

CRISP1 protein in the hair shaft with low to undetectable levels of mRNA by gene array and 

in situ hybridization. These findings suggest this may predispose this strain of mice to 

develop alopecia or may be a complicating factor affecting severity of disease among 

affected individuals.
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Abbreviations

AA alopecia areata

Alaa1 alopecia areata quantitative trait locus 1

Crisp1/CRISP1 cysteine-rich secretory protein 1, gene/PROTEIN

Crisp1tm1Pasc Crisp1 targeted (knockout) mutant mouse line

Foxq1 forkhead box q1 gene

HSM hair shaft medulla

Hoxc13 homeobox C13 gene

ISH in situ hybridization

QTL quantitative trait locus

Soat1 sterol-acyltransferase 1, gene
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Figure 1. 
Shotgun proteomic peptide spectral counts for CRISP1protein in female and male mice from 

10 inbred strains (C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/1J, FVB/NJ, LP/J, MRL/MpJ- 

Faslpr/lpr, NOD/ShiLtJ, NZW/LacJ, and WSB/EiJ wild type mice) and inbred strains 

carrying filaggrin (STOCK- a/a, Tmem79ma/ma, Flgft/ft), satin (SB/LeJ-Lystbg/bg, 

Foxq1sa/sa), Satin-J (MRL/MpJ-Faslpr/lpr, Foxq1sa-J/sa-J, and sterol O-acyltransferase 1 

(AKR/J-Soat1ald/ald) mutations. Note that C3H/HeJ males have no CRISP1 and females 

have very little as also seen for mutant mice with hair medulla defects (Foxq1sa, Foxq1sa-J, 

and Soat1).
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Figure 2. In situ hybridization for Crisp1
There is no Crisp1 expression in representative anagen follicles from an adult AA affected 

C3H/HeJ mouse (A) in contrast to the blue signal in the medulla of an FVB/NTac albino 

mouse (B). Hair shafts were clipped from 2 adult females and 2 adult males. Note the 

dystrophic hair shaft in the bulb of the C3H/HeJ mouse hair follicle (A, arrow). Crisp1 

expression was not detectable in normal hair shafts from 5 day old C3H/HeJ mice (C) in 

contrast to control 5 day old FVB/NTac mice (D). Size bar = 40μm.
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