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Abstract In the past 20 years, multiple genetic mutations have
been identified in patients with congenital nephrotic syndrome
(CNS) and both familial and sporadic focal segmental
glomerulosclerosis (FSGS). Characterization of the genetic ba-
sis of CNS and FSGS has led to the recognition of the impor-
tance of podocyte injury to the development of
glomerulosclerosis. Genetic mutations induce injury due to
effects on the podocyte’s structure, actin cytoskeleton, calcium
signaling, and lysosomal and mitochondrial function. Trans-
genic animal studies have contributed to our understanding of
podocyte pathobiology. Podocyte endoplasmic reticulum stress
response, cell polarity, and autophagy play a role in mainte-
nance of podocyte health. Further investigations related to the
effects of genetic mutations on podocytes may identify new
pathways for targeting therapeutics for nephrotic syndrome.
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Introduction

Podocytes are highly differentiated and specialized pericyte-
like cells with a complex cyto-architecture that form a major
component of the glomerular filtration barrier. The podocyte
consists of a cell body that extends major (primary) processes.
These processes ramify and terminate in specialized structures
called foot processes that wrap around the glomerular capil-
laries. Neighboring foot processes interdigitate and link to
each other by specialized cell–cell junctions spanning

distances of 40 nm, known as slit diaphragms. The podocyte
foot processes with slit diaphragms act as molecular sieves
that help establish the permselectivity of the glomerular filter.
The three-dimensional structure of the podocyte is supported
by its complex cytoskeleton. The podocyte foot processes
contain a central actin bundle surrounded by a network of
cortical actin fibers [1]. The extensive actin cytoskeleton
allows for dynamic contraction of podocyte foot processes
in response to different stimuli, such as changes in glomerular
capillary hydrostatic pressure (about 60 mmHg), which is
much greater than pressures typical of other capillary beds [2].

Podocyte injury and loss are thought to be the initiating
factor leading to glomerulosclerosis. Why is podocyte loss so
critical? The predominant view is that podocytes are terminally
differentiated cells that cannot repopulate after podocyte loss.
Recent studies have demonstrated a subpopulation of parietal
epithelial cells that may contribute to podocyte regeneration;
however, the capacity for regeneration appears to be limited
[3–6]. Thus, podocyte loss beyond this regenerative capacity
leads to glomerular hyperfiltration and hypertrophy of the
remaining podocytes [7], which results in additional podocyte
stress, injury, loss, and ultimately scar formation [7].

The identification of genetic mutations in familial nephrot-
ic syndrome and focal segmental glomerulosclerosis (FSGS)
over the past few decades (Table 1) has advanced our under-
standing of podocyte biology. These genetic mutations affect
proteins that are expressed in a variety of locations within the
podocyte, including the cell membrane, nucleus, cytoskeleton,
lysosomes and mitochondria (Fig. 1). Here we review some of
the mechanisms by which these genetic mutations lead to
podocyte injury.

Mutations in genes encoding slit diaphragm components

Some of the earliest identified genetic defects leading to
nephrotic syndrome were those in genes encoding the slit
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diaphragm protein nephrin (NPHS1) and podocin (NPHS2),
an integral membrane protein that associates with NPHS1 [8,
9]. The slit diaphragm protein NPHS1 is a transmembrane

protein of the immunoglobulin family of cell-adhesion mole-
cules. The large extracellular portion of NPHS1 has eight
immunoglobulin G-like domains and a single fibronectin

Table 1 Genetic causes of proteinuria

Gene Protein* Mode of 
inheritance

Phenotype Selected 
references

Slit diaphragm and cell signaling proteins
NPHS1 nephrin AR CNS, SRNS [8, 18, 118]
NPHS2 podocin AR CNS, SRNS [9, 119]
PLCE1 AR DMS, SRNS [72, 120]

TRPC6 short transient receptor potential channel 6 AD SRNS [66]
CD2AP CD2-associated protein AD/AR SRNS [35, 43, 44]
Cytoskeleton components
ACTN4 α-actinin-4 AD Late onset SRNS [33]
INF2 inverted formin-2 AD SRNS, Charcot-Marie-Tooth disease 

with glomerulopathy
[34, 64

MYH9 myosin-9 AD Macrothrombocytopenia with sensorineural
deafness, Epstein syndrome, Sebastian 
syndrome, Fechtner syndrome 

[112, 121, 122]

MYO1E unconventional myosin-Ie AR SRNS [53]
ARHGDIA rho GDP-dissociation inhibitorα 1 AR SRNS; seizures, cortical blindness [65]
Nuclear proteins
WT1 Wilms tumor protein AD/AR SRNS, Denys-Drash syndrome,

Frasier syndrome
[99, 123]

LMX1B LIM homeobox transcription factor 1-β AD Nail-patella syndrome/irregular GBM
thickening with patchy lucent 
(“moa-eaten”) areas

[124, 125]

SMARCAL1 SWI/SNF-related matrix-associated 
actin-dependent regulator of chromatin
subfamily A-like protein 1

AR Schimke immuno-osseous dysplasia [126, 127]

GBM proteins
LAMB2 laminin subunit β−2 AR Pierson syndrome [103, 128]
Mitochondrial proteins
COQ2 4-hydroxybenzoate polyprenyltransferase, 

mitochondrial
AR Early-onset SRNS, CoQ10 deficiency [79]

COQ6 ubiquinone biosynthesis 
monooxygenase COQ6

AR NS with sensorineural deafness [81]

PDSS2 decaprenyl-diphosphate AR Leigh syndrome / CoQ10 deficiency [80]
synthase subunit 2

N/AMT-TL1** Maternal Maternally-inherited diabetes or hearing 
loss presenting with FSGS / 
MELAS syndrome 

[78, 129-131]

Lysosomal proteins
SCARB2 lysosome membrane protein 2 (LIMP II) AR Action myoclonus-renal failure syndrome [82]
Other proteins
APOL1 apolipoprotein L1 n/a Sporadic FSGS in African-American

patients
[110]

PTPRO receptor-type tyrosine-protein phosphatase O
(aka glomerular epithelial protein 1/GLEPP1)  

AR SRNS [91, 132]

1-phosphatidylinositol 4,5-bisphosphate
phosphodiesterase epsilon-1 

]

Red: mutations causing non-syndromal renal disease

Blue: mutations causing syndromal renal disease

*For simplicity in the text, protein products are indicated by non-italicized gene symbols ** this encodes a tRNA; no protein is encoded by this gene

Official full names: ACTN4 actinin, alpha 4; APOL1 apolipoprotein L, 1; CD2AP CD2-associated protein; COQ2 coenzyme Q2 4-hydroxybenzoate
polyprenyltransferase;COQ6coenzyme Q6monooxygenase; INF2 inverted formin, FH2 andWH2 domain containing; LAMB2 laminin, beta 2 (laminin
S); LIMP2 lysosome membrane protein 2; LMX1BLIM homeobox transcription factor 1 beta;MT-TL1mitochondrially encoded tRNA leucine 1 (UUA/
G); MYH9 myosin, heavy chain 9, non-muscle; MYO1E myosin IE; NPHS1 nephrosis 1, congenital, Finnish type (nephrin); NPHS2 nephrosis 2,
idiopathic, steroid-resistant (podocin); PDSS2 prenyl (solanesyl) diphosphate synthase, subunit 2; PLCE1 phospholipase C, epsilon 1; PTPRO protein
tyrosine phosphatase receptor type O; SCARB2 scavenger receptor class B, member 2; SMARCAL1SWI/SNF related, matrix associated, actin dependent
regulator of chromatin, subfamily a-like 1; TRPC6 transient receptor potential cation channel, subfamily C, member 6; WT1Wilms tumor 1
MELAS syndrome: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes

Pediatr Nephrol



type-3 motif. It forms homo- and hetero-dimers with proteins
such as NEPH1, 2, and 3 that are expressed on adjacent
podocyte foot processes to generate the zipper-like multi-
protein complexes of the slit diaphragm.

In addition to forming a key structural barrier to loss of
protein in the urine, a complex of NPHS1 and NEPH1 medi-
ates “outside–in” cell signaling to regulate the podocyte actin
cytoskeleton [10]. Once thought to be fairly static, the foot
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Fig. 1 Genetic mutations associated with nephrotic syndrome induce injury due to effects on the podocyte’s structure, actin cytoskeleton, calcium
signaling, and lysosomal and mitochondrial function
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processes are perhaps better viewed as dynamic structures that
are able to remodel due to active regulation of the actin
cytoskeleton. The cytoplasmic tail of NPHS1 is characterized
by multiple SH2 domains which allow Src tyrosine kinases
Fyn and Yes to bind and phosphorylate NPHS1. Adapter
proteins NCK1/2 are recruited to these phosphorylated
NPHS1 domains, leading to actin polymerization [11–13].
Podocyte-specific deletion of NCK1/2 in mice leads to FSGS
lesions, suggesting that dysregulation of NPHS1 signaling
induces podocyte injury [12].

Phosphorylated NPHS1 also binds to the p85 subunit
of phosphatidylinositide 3-kinase (PI3K), leading to acti-
vation of AKT signaling [13, 14]. Classically, PI3K/AKT
is an anti-apoptotic and cell survival pathway, but the
PI3K/AKT pathways also regulate the podocyte actin
cytoskeleton via effects on cofilin (CFL1) [14]. CFL1 is
an enzyme that allows for actin filament severing, facili-
tating actin elongation and remodeling [13]. Loss of CFL1
in cultured podocytes leads to the accumulation of poly-
merized actin and impaired migration [13, 15], and in
mice, it results in an inability for podocytes to regain
their structure after injury [13].

Hence, NPHS1 plays critical roles in maintaining
podocyte health via its effects on cell–cell adhesion, cell
survival, cell signaling, and regulation of the actin cyto-
skeleton. Homozygous NPHS1 loss-of-function mutations
result in the severe phenotype of congenital nephrotic
syndrome (CNS). More than 140 different NPHS1 muta-
tions have been identified, such as nonsense, missense,
frameshift insertion/deletion, and splice-site mutations,
including the classic Finmajor and Finminor mutations that
are responsible for 94 % of the CNS cases in the Finnish
population [16]. The Finmajor mutation is a 2-bp deletion
(c.121delCT; p.L41fs) in the second exon of NPHS1 that
leads to truncation of the NPHS1 polypeptide chain from
1,241 to 90 amino acids [8, 16]. Similarly, the less com-
mon Finminor mutation is a nonsense mutation which
results in a truncated NPHS1 1,109-amino acid protein
that lacks the 82 C-terminal amino acids that interact with
NPHS2. NPHS1 missense mutant proteins are retained in
the endoplasmic reticulum (ER), likely causing a null
allele phenotype [17]. Recently, some less severe mis-
sense NPHS1 mutations have been identified in children
and adults with FSGS [18].

NPHS2 mutations induce injury in part via effects on
the NPHS1 and the actin cytoskeleton. NPHS2 is a
member of the stomatin family and localizes to lipid
rafts where it forms homo-oligomers [19]. Lipid rafts
are microdomains in the plasma membrane that are
enriched with sphingolipids and cholesterol. The lipid
composition is less fluid and more rigid, and facilitates
the concentration of signaling receptors to these micro-
domains. NPHS2 binds cell–cell junction proteins and

serves as a scaffold anchoring the actin cytoskeleton to
cell–cell contacts [20]. NPHS2 also recruits NPHS1 and
other signaling proteins, such as TRPC6, to lipid rafts,
potentially forming a mechano-sensory signaling plat-
form to regulate the podocyte actin cytoskeleton
[21–24].

More than 100 pathogenic NPHS2 mutations have been
reported that involve nonsense and frameshift mutations in
exons. Recessive NPHS2 mutations are the most common
mutations identified in Central European patients with early-
onset steroid-resistant nephrotic syndrome (SRNS) [9, 25,
26]; in contrast, NPHS2 mutations are relatively rare in Afri-
can American children [27]. Complete loss of function may
alter glomerular development and cause CNS [28, 29]. Muta-
tions in the C-terminus, such as R138Q (common in European
populations), cause retention of NPHS2 within the ER and
away from the plasma membrane [30]. Mis-localization of
NPHS2 can also result in mis-localization of its binding
partners NPHS1, CD2AP, and TRPC6 [30–32]. Other NPHS2
mutations do not affect NPHS2 localization but induce
podocyte apoptosis [30].

Mutations in genes encoding proteins involved
in the podocyte actin cytoskeleton

Following the discovery of the role of NPHS1 and NPHS2,
mutations in actin cytoskeleton-associated genes (CD2AP,
ACTN4,MYO1E, INF2, ARHGDIA) were identified in patients
with nephrotic syndrome [33–35]. How do defects in actin
cytoskeleton regulation lead to podocyte injury? One possi-
bility is they may impair the ability of podocyte foot processes
to respond to the dynamic changes in the pressure and shape
of the capillary walls. In vivo fluorescent imaging of
podocytes suggests that podocytes are motile and migrate in
the presence of injury [6]. Altered podocyte motility and
decreased adhesion could induce detachment from the glo-
merular basement membrane (GBM) and eventually podocyte
loss [36].

CD2AP is an 80-kDa cytoplasmic adaptor protein original-
ly identified as a ligand interacting with the T-cell-adhesion
protein CD2 [37]. In podocytes, CD2AP serves as a linker that
anchors NPHS1 and NPHS2 to the actin cytoskeleton [19,
38]. In addition, CD2AP binds other regulators of the actin
cytoskeleton. Cell motility requires the formation of projec-
tions of the actin cytoskeleton, known as lamellipodia.
CD2AP recruits actin capping proteins to cortactin in the
cortical actin cytoskeleton, promoting lamellipodia formation
[39]. CD2AP also binds synaptopodin (SYNPO), an alpha-
actin binding protein that promotes the formation of un-
branched actin filaments and is required for actin remodeling
[40, 41]. In addition to its effects on the actin cytoskeleton,
CD2AP deletion induces podocyte injury and apoptosis
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through the upregulation of transforming growth factor beta
[42]. CD2AP−/− mice develop early onset, severe nephrotic
syndrome, while CD2AP+/− (heterozygous) mice develop
FSGS-like lesions at 9 months [43, 44]. CD2AP mutations
may be rare in humans; to date, only a few heterozygous
CD2AP mutations linked to FSGS [35, 44, 45] and one case
of homozygous CD2AP mutations in infantile form of ne-
phrotic syndrome have been reported [46].

Alpha-4-actinin (ACTN4) is a 100-kDa actin-binding pro-
tein that belongs to the spectrin gene superfamily. ACTN4
forms cross-links between actin filaments and binds adhesion
molecules alpha-1-integrin and vinculin. Missense mutations
in ACTN4 are associated with incompletely penetrant and late-
onset autosomal dominant (AD) FSGS [33]. Mutations in
ACTN4 are relatively rare, accounting for only approximately
4 % of familial FSGS [47]. The identified mutations result in
non-conservative amino acid substitutions affecting the
ACTN4 binding domain. Mutant ACTN4 exhibits increased
binding to filamentous actin in vitro compared with wild-type
protein, and the mutant protein formed aggregates within the
podocyte, impairing podocyte migration in vitro [48, 49].

In addition to effects on the actin cytoskeleton, mutant
ACTN4 may have other deleterious effects on the podocyte.
Transgenic “knock–in” mice that express K255E mutant
ACTN4 develop FSGS lesions and demonstrate activation of
the ER stress response [50, 51]. The ER is a network of
membrane-enclosed tubes (cisternae). Proteins are synthe-
sized on ribosomes attached to the ER, and the ER is enriched
in chaperones that help the nascent proteins fold. These chap-
erones, such as GRP78/BIP, have dual roles, as they also
regulate the cell’s response to stress (reviewed in [52]). In
the absence of stress, members of the unfolded protein re-
sponse (UPR) signaling cascade [including inositol-requiring
kinase 1 (IRE1a), PRKR-like endoplasmic reticulum kinase
(PERK), and activating transcription factor 6 (ATF6)] are
bound and inhibited by GRP78/BIP [52]. Accumulation of
unfolded proteins in the ER sequesters GRP78/BIP and re-
leases this inhibition. Mis-folded proteins are also targeted for
degradation by the ubiquitin–proteasome system. Back-up (or
“choking”) of the ubiquitin–proteosome system with mis-
folded proteins further activates the UPR. Early on, activation
of UPR elements leads to the global suppression of mRNA
transcription and cell cycle arrest. This is likely to be an
adaptive response to enable the cell to recover. However,
continued UPR activation leads to p38 MAPK phosphoryla-
tion and increased expression of C/EBP homologous protein
(CHOP) and BIM [52]. These proteins are pro-apoptotic and
can induce cell death. The K255E mutant ACTN4 causes
“choking” of the ubiquitin–protesome system and activation
of the UPR signaling pathways [51]. Thus, mutant ACTN4
may also induce podocyte injury via ER stress.

Two mutations (A159P and Y695X) in MYO1E, the gene
encoding non-muscle class I myosin, myosin 1E, have been

associated with childhood-onset autosomal-recessive FSGS
[53]. MYO1E is a member of the actin-dependent motor
proteins. Myosins are bound to actin and generate force by
hydrolysis of ATP to ADP, leading to a conformational change
that stimulates movement of the actin filaments. Like other
myosins, the N-terminus of MYO1E has an actin-binding
domain and ATPase [54]. In addition to binding actin,
MYO1E localizes to the slit diaphragm via interactions with
ZO1, a cell–cell junction protein that can form a complex with
slit diaphragm components [54]. MYO1E is required for the
organization of podocyte actin filaments along cell–cell con-
tacts. In one study, cultured podocytes expressing mutant
A159P MYO1E failed to organize actin filaments at cell–cell
junctions [54], and in another study, knockdown of MYO1E
led to impaired podocyte adhesion and podocyte detachment
in vitro [55]. In sum, MYO1E mutations impact both the
assembly of the actin cytoskeleton and cell–cell adhesion,
likely leading to podocyte injury and loss.

INF2 encodes inverted formin 2 (INF2), a member of the
diaphanous formin subfamily of actin-regulating proteins
(mDias). mDias are effectors for RHOA signaling. RHOA,
CDC42, and RAC belong to the RHO family of GTPases that
regulate the actin cytoskeleton and modulate cell shape, mo-
tility, adhesion, polarity, cell cycle, and transcription. A deli-
cate balance of RHOA, RAC, and CDC42 signaling is re-
quired in podocytes, and excess RHOA activation induces
podocyte injury and FSGS lesions in mice [56, 57]. When
RHOA is bound by GTP, and it can bind and active mDias to
stimulate actin polymerization. The mDias have formin ho-
mology domains that are the sites of actin nucleation and
polymerization. They also have two regulatory domains: the
diaphanous inhibitory domain (DID) and the diaphanous
autoregulatory domain (DAD). In the absence of RHOA–
GTP binding, the DID/DAD domains interact to inhibit actin
polymerization. INF2 is homologous to mDias, and its DID
domain can inhibit mDias and actin polymerization [58].
Thus, INF2 acts to fine-tune RHOA signaling. Loss of func-
tion disrupts the cortical actin network in cultured podocytes
[58].

Most of the described mutations in INF2 are heterozygous
missense variants clustered in exons 2–4, which code for the
N-terminal DID of the protein [59–61]. INF2 mutations lead
to loss of its inhibitory function and tip the balance towards
mDia activation [58]. INF2 mutations account for up to 9–
17 % of familial cases of AD FSGS but are rarely associated
with the sporadic cases of FSGS [34, 59, 62, 63]. INF2
mutations have been also identified in individuals with FSGS
and Charcot–Marie–Tooth disease [64].

Mutations in ARHGDIA have recently been identified in an
infant with CNS and in two siblings with early onset SRNS
[65]. ARHGDIA regulates GDP/GTP binding to RHO
GTPases. It can act as a regulatory switch by determining
the proportion of RHO GTPases bound to GDP (inactive)
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versus GTP (active). In cultured podocytes, wild-type
ARHGDIA binds RHOA, RAC, and CDC42 and inhibits cell
migration [65]. Expression of the mutant ARHGDIA leads to
increased RAC1 and CDC42 activity in vitro [65]. Taken
together, data on the mutations in INF2 and ARHGDIA indi-
cate the need for tight regulation of the actin cytoskeleton to
maintain podocyte health.

Mutations associated with calcium signaling in podocytes

The identification of calcium transporter TRPC6 mutations as
a cause of familial FSGS brought to the forefront the concept
that calcium signaling contributes to the maintenance of
podocyte health [66]. Analyses suggested that an activating
TRPC6 mutation led to the AD inheritance pattern [66–68].
Congruent with these findings, podocyte overexpression of
TRPC6 was found to induce FSGS in mice [69]. However, the
mechanisms by which excess calcium entry into podocytes
results in injury remain unclear. One possibility is that
podocyte TRPC6-mediated calcium influx participates in
mechanosensation. In vitro studies support this hypothesis,
as NPHS2 binds TPRC6 and can block stretch-induced calci-
um influx into TRPC6 channels [70]. Increased calcium influx
into the podocyte activates RHOA, leading to perturbations of
the actin cytoskeleton [71]. It can also lead to downregulation
of NPHS1 and loss of podocytes, either through apoptosis or
detachment [71]. Interestingly, these studies reveal a possible
mechanism by which NPHS2 loss-of-function mutations may
lead to podocyte injury via excess calcium influx.

Phospholipase C epsilon 1 (PLCE1) mutations were ini-
tially described in children who develop early onset nephrotic
syndrome [72]. In this study, children with truncating muta-
tions had characteristic histologic lesions of diffuse mesangial
sclerosis (DMS), whereas those with missense mutations had
FSGS [72]. PLCE1 is a member of the phospho-inositide-
specific phospholipase C (PLC) family. PLCs catalyze the
hydrolysis of membrane phospholipids to generate the second
messengers inositol 1,4,5-triphosphate (IP3) and diacylglycer-
ol (DAG). IP3 diffuses through the cytoplasm to the ER,
where it triggers release of the ER’s calcium storage pool.
DAGmeanwhile remains in the phospholipid bilayer, where it
activates protein kinase C (PKC) and the RAS/RAF/MEK
signaling pathways [73–75]. DAG also activates TRPC6,
and in podocytes this leads to increased calcium influx and
the production of reactive oxidative species by NOX2 [24]. A
renal phenotype has not been found in PLCE1 knockout mice
[72]. Enhanced podocyte PLC signaling in transgenic mice,
however, results in podocyte injury and proteinuria [76].
PLCE1 likely also affects podocyte differentiation. PLCE1 is
expressed in the S-shaped body and capillary loop glomeruli.
Children with PLCE1mutations have immature capillary loop
glomeruli and a decreased expression of proteins that are

characteristic of terminally differentiated podocytes such as
NPHS1 and NPHS2 [72].

Recent findings support the possibility of cross-talk be-
tween the actin cytoskeleton regulators, slit diaphragm pro-
teins, and podocyte calcium signaling. PLCE1 has a guanine
nucleotide exchange factor domain on the N-terminus which
allows PLCE1 to be stimulated by small GTPases that regulate
the actin cytoskeleton, such as RAS and RHO [73]. PLCE1
forms a complex with Ras GTPase-activating-like protein
IQGAP1 in podocytes [72]. IQGAP1 can form a complex
with podocyte slit diaphragm proteins, including NPHS1
and NPHS2 [77], and is also regulated by binding to members
of the RHO GTPase family. It can shift the balance between
cell adhesion and migration, as it interacts with cell–cell
adhesion molecules and the actin cytoskeleton. Silencing of
IQGAP1 in podocytes leads to the depolymerization of F-
actin and inhibits migration [77]. Thus, PLCE1 mutations
likely have multiple mechanisms of inducing podocyte injury,
including effects on calcium signaling, the actin cytoskeleton,
and podocyte differentiation.

Mutations in genes encoding mitochondrial proteins

The identification of mutations in mitochondrial genes led to
the recognition of the importance of mitochondria to podocyte
health. This includes a discovery of an A3243G mutation in
the MT-TL1 gene encoding leucine tRNA that causes a respi-
ratory chain defect and induces FSGS [78]. Several genetic
defects in the synthesis of mitochondrial coenzyme Q10
(CoQ10) have been described that result in podocytopathies:
mutat ions in COQ2 gene (which encodes para-
hydroxybenzoate-polyprenyl-transferase) were identified in
some patients with early-onset nephrotic syndrome with or
without neuromuscular symptoms [79]. Mutations in PDSS2,
a gene coding the subunit 2 of the enzyme decaprenyl diphos-
phate synthase, were identified in some patients with Leigh
syndrome with nephrotic-range proteinuria [80]. Mutations
have also been identified in the COQ6 gene, which encodes
CoQ10 biosynthesis monooxygenase 6, in families with early-
onset SRNS and sensorineural deafness [81].

How do mitochondria play a role in maintenance of
podocyte health? CoQ10 is a component of the electron
transport chain that is required for the synthesis of ATP.
The finding of podocytopathy with CoQ10 deficiency
suggests that podocytes may have a relatively high energy
requirement to maintain podocyte health. In addition to
energy production, the mitochondrial electron transport
chain is the source of reactive oxygen species (ROS).
CoQ10 acts to scavenge oxygen free radicals and limits
the oxidation of DNA, RNA, and proteins by ROS. Ge-
netic defects in CoQ10 synthesis are therefore likely to
induce mitochondrial dysfunction and excessive
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generation of ROS, resulting in podocyte injury and apopto-
sis. Congruent with this concept, knockdown of COQ6 in
podocyte cell lines and in zebrafish embryos caused apoptosis
that was partially reversed by CoQ10 treatment [81].

Mutations in genes encoding lysosomal proteins

Homozygous truncating mutations of SCARB2, the gene that
encodes lysosomal integral membrane protein LIMP-II, a β-
glucocerebrosidase receptor, have been associated with action
myoclonus–renal failure syndrome [82]. This is an autosomal
recessive (AR) syndrome that presents in adolescents and
young adults as collapsing FSGS and progressive myoclonic
epilepsy [82]. The neurologic phenotype is similar to that seen
with lysosomal storage diseases. Defects in autophagy, a
cellular process of degradation of cell components that allows
for recycling of cellular material, are associated with lysosom-
al storage diseases [83]. The components to be broken down
are first engulfed in autophagosomes that then fuse with
lysosomes. In lysosomal storage diseases, the auto-
phagosomes are unable to fuse with the lysosomes, resulting
in the accumulation of unfolded proteins, mitochondrial dys-
function, and cell death [83]. A role for autophagy in the
maintenance of podocyte health is supported by genetic stud-
ies in mice. In one study, deletion of ATG5 (a major compo-
nent of the autophagy machinery) in podocytes was found to
increase susceptibility to glomerular disease [84]. Similarly, in
another study, disruption of podocyte mammalian target of
rapamycin (mTOR) signaling, a regulator of autophagy, re-
sulted in disturbed autophagic flux and induced glomerulo-
sclerosis in mice [85]. Thus, the dysregulation of autophagy
can be considered as a potential mechanism for SCARB2-
mediated podocyte injury.

Mutations affecting cell polarity

During embryogenesis, podocytes evolve from columnar ep-
ithelial cells of the S-shaped body into mature arborated cells
with a complex polarity. Namely, mature podocytes have
basal domains that attach to the GBM, apical domains that
face the urinary space, and junctional domains of cell–cell
contact at the slit diaphragm. These domains express distinct
sets of membrane proteins, as is characteristic of polarized
cells. The membrane on the apical side of foot processes
contains negatively charged proteins, such as podocalyxin,
podoplanin, podoendin, and protein tyrosine phosphatase re-
ceptor type O (PTPRO, also known as glomerular epithelial
protein or GLEPP-1), which form a glycocalyx [86].
Podocalyxin is linked to the actin cytoskeleton and is neces-
sary for normal foot process structure in mice [87]. Integrins
are expressed in the basal domains and slit diaphragm proteins

at the junctional domains. Consequently, polarized expression
of proteins in podocytes may support proper cell–matrix and
cell–cell adhesion.

Studies in mice have identified a role for the apico-basal
polarity proteins partioning defective (PARD3/PAR6) and
atypical protein kinase C (aPKC λ/ι) in establishing podocyte
structure during nephrogenesis and in the development of
glomerulosclerosis [88–90]. Mutations of the apical protein,
PTPRO, have been identified in children with AR SRNS [91].
Another apical polarity protein, Crumbs (CRB2B), is required
for proper podocyte structure and NPHS1 localization to the
slit diaphragm in zebrafish [92]. Mutations in the human
crumbs homolog CRB2, identified by exome sequencing in
patients with FSGS, have recently been reported [93]. Actin
dynamics may also affect podocyte polarity, as the deletion of
podocyte RHO GTPase CDC42 in mice led to congenital
nephrotic syndrome with decreased expression of NPHS1,
Pard3, and aPKC [94]. Together, these data indicate that
defects in cell polarity may induce podocyte injury and loss.

Genetic mutations in transcription factors

Mutations in WT-1, a nuclear transcription factor, are associ-
ated with both syndromic and sporadic SRNS. WT-1 is re-
quired for renal development, but its function in the mature
podocyte remains incompletely understood. WT-1 likely af-
fects podocyte differentiation, as NPHS1 and podocalyxin
genes are downregulated in mice with decreased levels of
WT-1 [95]. WT-1 defects also induce podocyte apoptosis
and loss [96].

The type of podocyte injury induced by WT-1 likely de-
pends upon the location of the mutations. Mutations in exons
8 and 9, which code for zinc finger domains 2 and 3, are
associated with Denys–Drash syndrome. Denys–Drash is
characterized by the triad of congenital or infantile SRNSwith
diffuse mesangial sclerosis, XY pseudohermaphroditism
(male-to-female sex reversal), and a high prevalence ofWilms
tumors. Such mutations may lead to a truncation of WT-1
[97]. Truncated WT-1 may act as a dominant negative sup-
pressor of wild-type WT-1, explaining the early onset and
developmental phenotype [97].

In contrast, Frasier syndrome [98] is caused by the muta-
tions in the donor splice site at intron 9 of the WT1 gene [99]
and is characterized by FSGS, XY pseudohermaphroditism,
and high risk of gonadoblastoma. The donor splice site muta-
tions lead to a change in the balance of two splice variants
(+KTS and −KTS). The balance of +KTS/−KTS is usually
2:1. Mutations at intron 9 changes the balance with increased
−KTS versus +KTS variants [99]. The two KTS variants have
distinct roles in the podocyte, with the −KTS variant tending
to bind DNA and the +KTS variant being more prone to bind
RNA than DNA [100]. Thus, the −KTS variant cannot
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compensate for loss of the +KTS variant. The +KTS variant
binds alpha-actinin1 mRNA; thus, dysregulation of the actin
cytoskeleton may be the mechanism by which these WT-1
mutations induce podocyte injury [100].

LMX1Bmutations are associated with the rare AD disorder
Nail–Patella syndrome that is characterized by glomerulo-
sclerosis and hereditary onychoosteodysplasia. LMX1B is a
LIM homeodomain transcription factor. Mutations in this
transcription factor typically occur in either its protein-
binding LIM domain or its DNA binding domain. Loss of
LMX1B leads to defective podocyte differentiation and GBM
formation in mice [101]. Studies with podocyte-specific
LMX1B knockout mice suggest that LMX1B also regulates
podocyte motility, possibly via effects on the transcription of
actin cytoskeleton-associated proteins [102].

Mutations in the GBM components

Podocyte injury can be the result of defects in other parts of
the glomerular filtration barrier, such as in components of the
GBM. LAMB2mutations were first described in patients with
CNS characterized by DMS, in combination with complex
ocular abnormalities and severe neuro-developmental deficits,
known as Pierson syndrome [103]. LAMB2 encodes laminin
β2, an important glycoprotein component of the GBM, which
binds α3β1 integrin, thereby linking podocytes to the GBM
[104, 105]. Laminin binding to the GBM may also induce
modulation of the actin cytoskeleton, as α3β1 integrin is
coupled to the actin cytoskeleton through focal adhesion
complexes. The original studies of LAMB2-/- mice suggested
that podocyte injury occurs subsequent to GBM abnormali-
ties, possibly due to excessive endocytosis of the filtered
albumin [106].

The full Pierson syndrome phenotype is present when
truncating mutations in LAMB2 occur, whereas patients
with missense mutations, such as R246Q and C321R, have
nephrotic syndrome with significantly milder extra-renal
defects [107]. Transgenic mice expressing R246Q mutant
LAMB2 have impaired laminin secretion [108]. The reten-
tion of mis-folded LAMB2 has been found to induce
podocyte ER stress (detected by the production of the
unfolded response protein CHOP) and autophagy activa-
tion [109]. Thus, increased podocyte ER stress is an alter-
native mechanism by which this genetic defect may induce
podocyte injury.

Genetic variants associated with FSGS

Genetic variants in APOL1 were identified initially in a
genome-wide association study (GWAS) examining the
association of single nucleotide polymorphisms (SNPs)

with the development of hypertensive end-stage kidney
disease in African Americans [110]. The initial analysis
of the GWAS identified an association of this disease with
SNPs in MYH9, which encodes a non-muscle myosin IIA
heavy chain [111]. Missense mutations ofMYH9 have been
found to be associated with AD giant-platelet syndromes,
which may include sensorineuronal deafness, cataracts,
and FSGS, consistent with a role for MYH9 in podocyte
health [112].

However, mutations in MYH9 were not identified in the
GWAS study, and further analysis revealed stronger linkage to
two SNPs in the APOL1 gene, termed G1 (S342G and I384M
substitutions) and G2 (deletion of two amino acid residues,
N388 and Y389) [110, 113]. These variants likely provide a
selective advantage in Africa, where homozygous or com-
pound heterozygous carriers of the APOL1G1 and G2 alleles
have an improved capability to lyse the parasite Trypanosoma
brucei rhodensiense, the cause of human African sleeping
sickness [110]. APOL1 risk alleles were subsequently identi-
fied in patients with FSGS.

The physiologic functions of APOL1 are not fully under-
stood beyond its anti-trypanosomal effect. APOL1 is widely
expressed in different tissues, including podocytes, and also
circulates as a component of high-density lipoprotein. There is
some evidence that APOL1 overexpression promotes autoph-
agic cell death [114], but it is not clear whether circulating or
podocyte-specific APOL1 is responsible for glomerular dis-
ease. However, glomerular staining for APOL1 was found to
be decreased in cases of FSGS and human immunodeficiency
virus-nephropathy [115]. It was also reported that transplanted
kidneys with two APOL1 risk alleles experience higher rates
of early failure than kidneys with other genotypes [116].
These data suggest that the APOL1 expressed in the kidney
may play some role in the development of glomerular
disorders.

Conclusions and implications for future therapeutics

One of the most exciting prospects of the contributions of
genetics to our improved understanding of the mechanisms
that maintain podocyte health is the potential for new thera-
peutic options and personalized medicine. Therapeutics
targeting regulation of the actin cytoskeleton, calcium signal-
ing, ER stress, and autophagy are potential areas for investi-
gation opened up by this knowledge. Furthermore, the in-
creasingly less expensive potential to perform next-
generation sequencing is likely to revolutionize our approach
to the care of patients with FSGS and suggests the possibility
for developing personalized treatment for specific genetic
mutations [117]. However, some barriers remain to translating
our understanding of genetics and podocyte health into opti-
mization of patient care and clinical outcomes. We are only
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now starting to have large-scale studies of ethnically diverse
populations of children with nephrotic syndrome and FSGS to
provide us with a detailed understanding of genotype–pheno-
type–environmental correlations, including response to thera-
py, risk for end-stage kidney disease, and recurrence after
transplant.
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