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Abstract

Components of the prokaryotic clustered regularly interspersed palindromic repeat (CRISPR) loci 

have recently been repurposed for use in mammalian cells1–6. The Cas9 protein can be 

programmed with a single guide RNA (sgRNA) to generate site-specific DNA breaks, but there 

are few known rules governing on-target efficacy of this system7,8. We created a pool of sgRNAs, 

tiling across all possible target sites of a panel of six endogenous mouse and three endogenous 

human genes and quantitatively assessed their ability to produce null alleles of their target gene by 

antibody staining and flow cytometry. We discovered sequence features that improved activity, 

including a further optimization of the proto-spacer adjacent motif (PAM) of Streptococcus 

pyogenes Cas9. The results from 1,841 sgRNAs were used to construct a predictive model of 

sgRNA activity to improve sgRNA design for gene editing and genetic screens. We provide an 

online tool for the design of highly active sgRNAs for any gene of interest.

When introduced into mammalian cells, the Cas9-sgRNA complex creates sequence specific 

dsDNA breaks that are repaired by the error-prone non-homologous end joining pathway 

(NHEJ), often resulting in gene inactivation by the creation of frameshift alleles4–6. 
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Recently, we and others have shown that CRISPR technology can be used for large scale 

genetic screens in mammalian cells7,9–11. Hit genes from these screens exhibited high 

concordance between distinct sgRNAs targeting the same gene, higher than the agreement 

usually seen in RNAi screens. This indicates that the phenotypic consequences of knockout 

alleles may be more consistent than the varying degrees of knockdown induced by RNAi, 

and that off-target effects of sgRNAs, while detectable, are rare enough to allow high 

concordance of multiple sgRNAs targeting the same gene, facilitating the nomination of true 

positive hits7,9–15.

All genetic CRISPR-based screens published so far have either relied on positive selection 

for resistance to cytotoxic drugs or negative selection based on the depletion of essential 

genes7,9–11. While producing promising results, these assays all involved strong selective 

pressure expected to show robust signal even if only a modest proportion of cells receiving a 

particular sgRNA experienced full gene inactivation. Many future screens, especially those 

where screen success is not measured by increased survival or proliferation, will demand a 

high fraction of sgRNA-treated cells to be complete knockouts, as cells with no knockout 

alleles, heterozygous knockout, or hypomorphic alleles will dilute assay signals. Studies to 

date suggest that while sgRNA activity can be quite high, there is significant variability 

among sgRNAs in their ability to produce null alleles4–7,9,10,16–19. Design criteria to 

maximize sgRNA efficacy are thus of great utility, both to improve screening libraries and 

also for smaller scale gene-editing experiments, which often require researchers to first 

screen multiple sgRNAs for activity.

We therefore sought to discover sequence features within and surrounding the target site that 

predict sgRNA efficacy. To discover generally applicable rules, we tested a wide diversity 

of sgRNAs against multiple gene targets. Our strategy was to target cell surface markers in a 

large cell population, delivering one sgRNA per cell, and then isolating complete (biallelic) 

knockout cells by fluorescence-activated cell sorting (FACS), thereby separating the most 

active sgRNAs. We designed sgRNAs targeting a panel of mouse genes in all exons and 

flanking intronic sequence at all 20 nucleotide (nt) target sites that preceded the NGG PAM 

required by S. pyogenes Cas9, and added a large number of negative control sgRNAs (Fig. 

1a, Supplementary Table 1). These sgRNAs were cloned as a pool into a lentiviral vector 

that simultaneously delivers Cas9, confers puromycin resistance, and expresses a sgRNA, as 

previously described9. A second pool targeting the coding sequence of three human cell 

surface markers and also including negative controls was separately cloned into a lentiviral 

vector that expresses only the sgRNA (Fig. 1a, Supplementary Table 2).

We transduced EL4 cells, a mouse thymic cell line, with the mouse sgRNA pool. Nine days 

post transduction we stained cells for each of nine cell surface markers and analyzed by 

FACS. Endogenous Thy1, H2-K, Cd45, Cd43, Cd28, and Cd5 exhibited good resolution of 

marker-negative cell populations (Fig. 1b), while Cd2, Cd3e, and Cd53 were poorly 

expressed and excluded from subsequent analyses (Supplementary Fig. 1). To assess human 

gene targeting, we prepared three human AML cell lines, MOLM13, NB4, and TF1, by 

transduction with a vector delivering Cas9 and conferring blasticidin resistance. We 

confirmed Cas9 activity in these polyclonal lines (Supplementary Fig. 2), then transduced 

each with the human sgRNA pool and collected marker-negative populations 8 days post 
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transduction. CD15, CD13 and CD33 were evaluated in one, two and three of the cell lines, 

respectively. For all 12 sorted cell populations, PCR of genomic DNA, followed by next 

generation sequencing (NGS) identified the sgRNAs that led to complete loss of the protein 

of interest (Supplementary Tables 2, 3).

We first examined the knockout specificity of the sgRNAs targeting each gene. In the mouse 

pool we observed between 61 – 157 sgRNAs per gene enriched at least 10-fold in each of 

the marker-negative cell populations after normalizing the abundance of sgRNAs in each 

sorted population to their starting abundance in the unsorted population. In the human pool, 

116 – 256 sgRNAs per gene were at least 2-fold enriched after similar normalization; a 

lower threshold was used for this pool because each gene comprises a larger fraction of the 

overall pool. For 11 of the 12 sorted marker-negative populations, 100% of the highly-active 

sgRNAs were those that targeted the sorted marker, i.e. the ‘on-target’ sgRNAs, showing the 

excellent specificity of sgRNAs and of this FACS-based readout (Fig. 1c). For H2-K, all of 

the 10-fold enriched off-target sgRNAs were included in the pool to target H2-D, a gene not 

expressed in EL4 cells but highly similar in sequence to H2-K. All of these H2-D-targeting 

sgRNAs had at least 17 nts of complementarity to H2-K, with 11 differing by only a single 

nucleotide (Supplementary Table 4). As expected from previous studies on the specificity of 

sgRNAs, single-base mismatches that preserved activity were more frequent in the 5’ half of 

the sgRNA sequence14,15,19,20. Many of these off-target sgRNAs scored as likely off-target 

matches using a widely-used off-target scoring algorithm.14 Several, however, received low 

off-target scores, suggesting possible room for improvement in off-target predictions.

We next examined the consistency across cell lines of the activity of sgRNAs targeting 

CD13 or CD33. We observed strongly correlated sgRNA activity in four pairwise cross-cell-

line comparisons, suggesting that relative levels of sgRNA activity can generalize across 

cellular contexts (Fig. 2a, Supplementary Fig. 3). To further validate the results obtained in 

pooled screening format, we re-tested the activity of 17 sgRNAs targeting three genes in 

arrayed format and observed good correspondence between these two assays 

(Supplementary Fig. 4a, Supplementary Table 5). We then examined the spectrum of DNA 

lesions caused by the 17 sgRNAs. As expected, we found that frameshift alleles were more 

common for the sgRNAs that were more enriched in the marker negative populations 

(Supplementary Fig. 4b).

For all nine target genes we annotated each sgRNA by the location of its cut site to 

determine how the position of a target site within the gene relates to its efficacy (Fig. 2b; 

Supplementary Fig. 5; Supplementary Table 6). Some exons contained no active sgRNA 

targets, suggesting that these exons were not expressed in the assayed cell line 

(Supplementary Fig. 5). As expected, we observed diminished activity of sgRNAs targeting 

close to the C’-terminus, since frameshift mutations close to the end of a protein are less 

likely to disrupt expression (Supplementary Fig. 6). Gene-specific patterns also emerged; for 

example, the N’-terminus of CD15 was a less-effective target site, perhaps reflecting local 

chromatin structure. These results show that while a wide-range of the CDS is generally 

suitable as a target site, exceptions could arise from gene-specific features. In a library-

design context, targeting more than one site per gene should help to compensate for gene-

specific limitations.
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We next examined the activity of sgRNAs targeting non-coding regions in the mouse pool. 

We saw >10-fold enrichment among the knockout cells for 55% of sgRNAs with an 

expected cut site exactly at the exon - intron boundary. Activity quickly decreased as a 

function of distance to the nearest CDS: only 2 out of 50 sgRNAs with an expected cut site 6 

nts or farther from the CDS showed greater than 10-fold enrichment (Supplementary Fig. 7). 

Finally, we observed that sgRNAs targeting the 5’ and 3’ UTRs were highly ineffective: 1 of 

119 5’UTR-targeted sgRNAs and 0 of 1,044 3’UTR-targeted sgRNAs were enriched at least 

10-fold in the target gene-negative cell population. These results suggest that sgRNAs 

should generally be designed to target the CDS, although target sites that disrupt splicing 

can be efficacious and may be particularly useful when it is desirable to re-introduce the 

CDS, such as for phenotypic rescue experiments.

To identify sequence features of sgRNAs that correlated with activity, we focused on the 

subset of sgRNAs targeting the CDS. We eliminated all sgRNAs in broadly ineffective 

target regions, e.g. due to proximity to the C’-terminus or apparent lack of exon expression, 

resulting in a set of 1,841 sgRNAs which were normalized by percent-rank within each gene 

(Supplementary Table 7). We examined target strand as a function of activity and saw no 

statistically-significant difference in contrast to a previously observed slight preference for 

the antisense strand (Supplementary Fig. 8)7. Additionally, we observed that sgRNAs with 

low or high G/C content tended to be less active (Fig. 2c), as previously reported7,8.

We next examined nucleotide preferences for active sgRNAs at every position across the 

length of the sgRNA and flanking target sequence. Specifically, we looked for statistical 

enrichment or depletion of sgRNAs with a given sequence feature among the top 20% most 

active of all sgRNAs for the same gene target, as these high-activity sgRNAs are of most 

interest (Fig. 3a, Supplementary Table 8). Within the sgRNA sequence, the most significant 

differences appeared at position 20, the nucleotide immediately adjacent to the PAM; in 

agreement with previous observations, we see that guanine is strongly preferred, and in our 

data, cytosine is strongly unfavorable7,8. Additionally, we see a preference for cytosine and 

against guanine at position 16. This is the last nucleotide of the seed region defined by a 

recent genome-wide analysis of Cas9 binding affinity20. In further agreement with Wang et 

al.7, there was a consistent preference for adenine in the middle of the sgRNA, and cytosine 

was disfavored at position 3.

Notably, we also observed a preference in the variable nucleotide of the PAM, where 

cytosine was favored and thymine was disfavored. The preference for cytosine at this 

position has also recently been observed in zebrafish8. The bias against thymine towards the 

3’ end of the 20 nt sgRNA target site observed by us and others has previously been 

explained from the perspective of sgRNA expression, as RNA polymerase III terminates at 

U-rich regions and the transcript sequence immediately downstream of the 20 nt targeting 

sequence is U-rich7,20. This mechanism cannot be extended to explain the bias against 

thymine in the PAM, however, as this thymine is a feature of the DNA target site and is not 

included in the sgRNA transcript. Additionally, we observed a strong bias against guanine 

immediately 3’ of the PAM suggesting that an extended PAM sequence of CGGH is optimal 

for the use of S. pyogenes Cas9 to engineer dsDNA breaks in mammalian cells. Indeed, 39% 

of targets with a CGGT PAM were in the highest-activity quintile, compared to only 11% in 
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the lowest quintile. Conversely, 42% of targets with the least-optimal PAM sequence of 

TGGG were in the lowest-activity quintile while only 8% were in the highest quintile.

We built a predictive model for sgRNA activity by training a logistic regression classifier to 

discriminate the highest-activity quintile of sgRNAs for each gene using sequence features. 

We used the data from all nine mouse and human genes to determine sequence feature 

weights for activity predictions (Supplementary Table 9). The quintile of highest scores was 

80% comprised of the highest-activity sgRNAs and contained the fewest low-activity 

sgRNAs (Fig. 3b). Conversely, the lowest-score quintile contained the most low-activity 

sgRNAs and the smallest fraction of high-activity sgRNAs. We provide a simple web tool 

using this model to generate sgRNA scores for any sequence of interest (http://

www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design).

To ensure that this model generalizes across genes, we first cross-validated by training on 

eight genes while holding out the remaining gene, and the model accurately predicted 

activities for all nine held-out genes (Fig. 3c). Similarly, base preferences determined from 

the 959 sgRNAs in the mouse pool alone closely converge to the preferences obtained using 

the full 1,841-sgRNA dataset (Supplementary Fig. 9). Notably, the nine genes span a broad 

range of G/C content and length, and do not share any appreciable sequence homology, 

consistent with the observation of no cross-reactivity of sgRNAs among these genes (Fig. 

1c). These analyses suggest that the dataset is large enough for the model to converge on a 

consistent pattern of base preferences.

We further validated the generalizability of the model against a set of 1,278 sgRNAs 

targeting 414 genes, using data from an earlier screen for viability effects in A375 cells, a 

human melanoma line9. We examined functional categories previously established to be 

most highly enriched for essential genes in all cell types (e.g. proteasome, ribosome, etc.) 

and analyzed the subset of genes that, in this viability screen, had multiple targeting sgRNAs 

that were depleted over time9,12,13. We then compared the predicted-efficacy scores for the 

sgRNAs targeting these 414 genes to their observed depletion in the screen. Similar to our 

observations for the FACS protein knockout assay, we saw that the highest quintile of 

predicted scores was comprised of the greatest proportion of high-activity sgRNAs, while 

the lowest-score quintile had the most low-activity sgRNAs (Supplementary Fig. 10, 

Supplementary Table 10). This prediction of activity for 1,278 sgRNAs targeting 414 genes, 

together with the high consistency observed in the base preferences across all sgRNAs for 9 

genes, show that the model presented here generalizes widely to predict highly-active 

sgRNAs.

For screening approaches, a library of potent sgRNAs that provides good genome coverage 

is of primary importance, and we were thus more concerned with correctly identifying the 

highest activity sgRNAs than accurately modeling the activity of all sgRNAs. As a result, 

the scoring system presented here stringently scores predicted activity: only 5% of sgRNAs 

received a score of 0.6 or greater, while the majority of sgRNAs, including many sgRNAs 

that were experimentally highly-active, received scores of < 0.2 (Fig. 3d). Accordingly, the 

most powerful application of this model is as a sgRNA design tool, i.e. to select a few of the 

highest-scoring sgRNAs in order to obtain those most likely to be highly effective. Existing 
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genome-wide libraries, while designed to avoid off-target sites, have not incorporated any 

criteria to enhance on-target activity7,9–11. A library with, for example, 6 sgRNAs per gene 

designed without any on-target activity criteria would contain 2 or fewer sgRNAs in the 

highest quintile of activity for 90% of genes, while a library designed with the criteria for 

enhanced activity presented here would have at least 3 highest-activity quintile sgRNAs for 

90% of genes (Fig. 3e).

Local chromatin structure has recently been identified as a major factor affecting the ability 

of Cas9 to find the PAM and begin to bind DNA with the seed region of the sgRNA20,21. 

The sequence features we find to promote activity apply across different cellular contexts, 

suggesting that some of the steps involved in Cas9-based DNA targeting are governed by 

intrinsic features of the target site and sgRNA sequence. We speculate that, even with 

optimal design rules, certain cellular contexts or sequence properties may render some genes 

difficult to target efficiently with current CRISPR technology; in these cases, RNAi 

technology might provide a better option for probing gene function.

Here we quantitatively assayed the activity of thousands of sgRNAs to uncover sequence 

features that modulate the ability of Cas9 to bind DNA, cleave the target site, and result in a 

null allele. Similar approaches were previously applied to RNAi knockdown22,23. We used a 

direct measurement of target protein levels to categorize sgRNA activity rather than 

phenotypic outcomes that generally do not distinguish biallelic inactivation from 

haploinsufficiency. Indeed, the large number of sgRNAs combined with the quantitative 

assay for protein knockout efficacy may have allowed detection of preferences in the PAM 

region that had not been observed previously, and provide a quantitative measure of the base 

preferences throughout the target site4–6,16,20,24. We found sequence features that are 

predictive of sgRNA activity, developed a quantitative model based on these features to 

optimize sgRNA activity prediction, and created a tool to use this model for sgRNA design. 

The sequence feature model generalized to each of 9 distinct genes and 4 cell lines of both 

human and mouse origin, and also to sgRNA activities for 414 hit genes in a genome-wide 

proliferation screen. By incorporating additional datasets, activity readouts, and modeling 

approaches, it will be possible to further refine these activity predictions, to determine which 

mechanistic steps drive sequence preferences and to identify other factors that influence 

activity. The sequence features shown here that correlate to on-target activity of the Cas9-

sgRNA complex will enable more effective application of CRISPR technology to edit the 

genome and probe gene function.

METHODS

Library design

For a collection of mouse cell surface markers, as well as negative control targets, we 

identified all sgRNA target sites preceding the NGG PAM sequences on the plus and minus 

strands of DNA for all exons, including 25 nts of flanking intronic sequence, as annotated in 

the Ensembl Genome Browser. To all 20 nt sgRNA sequences we prepended a G to allow 

for proper transcription initiation by RNA polymerase III (Supplementary Table 1). For the 

human cell surface markers, we limited our design to coding sequence sgRNAs.
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Library creation

The mouse library creation was as described9. Briefly, oligonucleotides (Agilent) were PCR 

amplified (Pfusion, New England Biolabs) and the resulting PCR product was column 

cleaned (Qiagen PCR Purification) and cloned by Gibson assembly (New England Biolabs) 

into pXPR_001 (e.g. lentiCRISPR, Addgene plasmid 49535). The assembly was column 

cleaned (Qiagen PCR Purification), electroporated into E. coli (Lucigen) and grown at 37°C 

for 16 hours. Colonies were harvested and DNA was prepared (Qiagen, Endotoxin Free 

MaxiPrep). Virus production was as described9,13. Centrifugation at 100,000 × g for 2 hours 

was used to concentrate the virus, followed by resuspension in DMEM + 10% FBS at 4°C 

overnight. For the human library, pairs of oligonucleotides (IDT) with BsmBI-compatible 

overhangs were ordered, individually annealed, and then ligated as a pool into pXPR_003 

(e.g. lentiGuide, Addgene plasmid 52963).

Cell culture and lentiviral infection

EL4 cells were maintained in DMEM + 10% FBS + 50 µM 2-mercaptoethanol and were 

obtained from ATCC. MOLM14 and NB4 were maintained in RPMI + 10% FBS. Both were 

obtained from the Cancer Cell Line Encyclopedia (CCLE). TF1 were maintained in RPMI + 

10% FBS + 2 ng/mL GM-CSF (Invitrogen) and were obtained from CCLE.

Screen Infection Conditions

Mouse EL4 cells—Optimal infection conditions to achieve 30–50% infection efficiency, 

corresponding to an MOI <1 were determined by infecting at multiple virus volumes (eg. 

150 µL, 300 µL, 500 µL and 1 mL) and then 48h post infection, splitting an equal number of 

cells from each infection volume into 2 wells of a 6-well dish, one containing complete 

medium supplemented with 2 µg/mL puromycin, the other containing complete medium 

only. The ratio of live cells 2 days after puromycin addition is the infection efficiency of that 

viral dose. Cells were then infected in 12-well plate format such that each well contained 

1×106 cells, 140 µL of ultracentrifuge-concentrated virus, and complete media to a final 

volume of 2 mL supplemented with 4 µg/mL polybrene. After centrifugation for 2 hours at 

1000 × g, 2 mL of complete media was added per well. The following day, cells were split 

out of the 12-well dish and cultured for an additional 24 hours prior to addition of 

puromycin (2 µg/mL).

Human MOLM13, NB4 and TF1 cells—MOLM13 and NB4 cells were transduced at 

MOI <1 with lentivirus prepared from pLX_TRC311-Cas9, and selected with 5 µg/mL 

blasticidin for 9 days. TF1 cells were transduced at a MOI <1 with lentivirus prepared from 

pXPR_101 (e.g. lentiCas9-blast, Addgene plasmid 52962), and selected with 5 µg/mL 

blasticidin for 14 days as well as for 2 days directly preceding infection with the human 

sgRNA library. Infection efficiency for the human sgRNA library was similarly determined 

to achieve an infection efficiency corresponding to an MOI <1. Briefly, 4 wells of each cell 

line at 2.5×106 cells per well in 2 mL media and 1 mL virus (MOLM13 & NB4) or 300 µL 

virus (TF1) supplemented with 4 µg/mL polybrene were centrifuged for 2 hours at 1000 × g 

then 2 mL media was added per well. 24-hours post infection, cells were split out of the 12-
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well plates and 48-hours post infection 2 µg/mL puromycin was added and maintained until 

analysis by FACS.

Cas9 activity assay

Cas9 expressing MOLM13, NB4 and TF1 cell lines were transduced with pXPR-011 

(Addgene plasmid 59702) at an MOI ~1. Briefly, cells were infected in 24-well plate format, 

with each well containing 2×105 cells, 100 µL virus and 300 µL of media supplemented with 

4 µg/mL polybrene. 48 hours post infection, 2 µg/mL puromycin was added and cells were 

selected for 3 days. Parental lines transduced with XPR-011 only were maintained in 

parallel with Cas9 and pXPR-011 expressing cell lines; samples from both were analyzed on 

a BD-LSRFortessa X-20 ten days post infection. Active Cas9-expressing lines will result in 

a reduction in GFP when transfected with pXPR-011 as this vector delivers both GFP and a 

guide targeting GFP. Because GFP is downstream of puromycin and after a 2A site, 

abrogation of GFP will have no impact on puromycin resistance (Supplementary Fig 2).

FACS

Human and mouse cell surface markers were selected the basis of homogeneity of 

expression as assessed by antibody staining profiles. Only cell lines which showed 

expression of a particular cell surface marker in >98% cells were chosen for analysis.

EL4 cells were independently stained and sorted on a FACS Aria flow cytometer 8 days post 

transduction. Antibodies used in this study included: eBioscience 17-5958-80 Anti-Mouse 

MHC Class I (H-2Kb) APC; eBioscience 12-0281-81 Anti-Mouse CD28 PE; eBioscience 

11-0021-81 Anti-Mouse CD2 FITC; eBioscience 11-0431-81 Anti-Mouse CD43 FITC; 

eBioscience 17-0031-81 Anti-Mouse CD3e APC; eBioscience 17-0051-81 Anti-Mouse CD5 

APC; Biolegend 124705 FITC anti-mouse CD53; BD Biosciences 561974 APC conjugated 

anti-CD90.2 (Thy1.2); BD Biosciences 560695 PE conjugated anti CD45.2

MOLM13, NB4 and TF1 cells were stained and sorted on a BD-FACS Aria II 8 days post 

transduction with the human sgRNA library. Antibodies used in this study included: BD 

Pharmingen 555450 CD33-PE; BD Pharmingen 555394 CD13-PE; BD Pharmingen 562371 

CD15-PE.

Arrayed Guide Activity Assays

EL4 cells expressing Cas9 (pXPR_101) were infected with 17 sgRNAs targeting three cell 

surface markers. Nine days post infection 1×106 cells were isolated, genomic DNA 

extracted (DNeasy Blood and Tissue Kit, Qiagen) and sequencing performed on an Illumina 

MiSeq. Eleven days post sgRNA transduction, 2×105 cells from each sgRNA-infected 

population were stained with their corresponding antibodies and analyzed on an Accuri C6 

Flow Cytometer for gene knockout. Reads were classified as a) wildtype, b) mismatch, c) 

indels producing a frameshift, and d) in-frame indels. The percentage of frameshift alles 

(Supplementary Fig. 4b) was calculated as the number of reads in category c divided by the 

total number of reads.
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Genomic DNA isolation and sequencing

Genomic DNA was isolated (DNeasy Blood and Tissue Kit, Qiagen); cell populations < 1 

million were supplemented with 1 µg of yeast RNA before purification. PCR was performed 

using as previously described, with the exception of using NEBNext High-Fidelity 2× PCR 

Master Mix9. Samples were sequenced on an Illumina HiSeq 2500 or MiSeq.

Data processing and analysis

Illlumina sequencing reads were processed by counting the number of unique reads for each 

sgRNA in each experimental condition (Supplementary Tables 2, 3). With each sample for 

each sgRNA, “Reads per Million” was determined by dividing the number of reads for an 

individual sgRNA by the total number of sgRNA reads in that sample, multiplying by one 

million, adding one, and then log2 transforming. Multiple samples for the same 

experimental condition were then averaged.

For analysis of pooled screening data, log-fold-change values were calculated for each 

sgRNA by subtracting the abundance in the unsorted population from the abundance in the 

marker-negative population. We excluded all sgRNAs that had a run of 4 or more 

thymidines, as this would be expected to cause premature transcription termination. We also 

excluded all sgRNAs that were present at less than 32 reads per million in the unsorted 

population. We visually examined activity maps as a function of cut site position to exclude 

from our predictive model any sgRNAs that targeted areas of generally low activity, even if 

that meant excluding some outlier sgRNAs with high activity, in order to ensure that we 

were not contaminating our modeling dataset with sequences erroneously assigned as low 

activity by virtue of their target site rather than their intrinsic potential efficacy.

Off-target scores (Supplementary Table 4) were obtained from crispr.mit.edu, accessed 

April 24, 2014. Data from Hsu et al. were used to calculate the score, as described on the 

webserver14.

sgRNA Activity Predictive Model

Within each gene, passing sgRNAs were first ranked, with the best shRNA receiving the 

rank of 1. This number was then divided by the total number of sgRNAs, which was then 

subtracted from 1 to determine a percent-rank. This results in the worst sgRNA for a gene 

receiving a percent-rank of 0, while the best sgRNA will have a percent-rank approaching 1. 

Percent-rank values were averaged for genes that were assayed in more than one cell line.

The features used for prediction were the individual nucleotides and all pairs of adjacent 

nucleotides indexed by position in the 30 mer target site. We also included the count of Gs 

and Cs in the 20 nt of the sgRNA. Because of an observed non-linear dependence between 

G/C content and efficacy, two G/C-count features were also incorporated: one for deviations 

below ten and one for deviations above ten. To allow for independent weights for each 

nucleotide feature, the nucleotide feature space was represented with one-hot encoding.

Because the full set of features – with 120 single nucleotide features, 464 dinucleotide 

features, and the two G/C-count features – was over-determined, we incorporated feature 

selection to choose a subset of features with the best generalization error. An L1-regularized 
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linear support vector machine (SVM) implemented in the python module scikit-learn was 

used to generate sets of features as a function of the L1-norm penalty. Given the set of 

features from the SVM, a logistic regression classifier was trained to discriminate the top 

quintile of sgRNAs for each gene from the remainder. We cross-validated the model by 

training on the data for eight genes and predicting on the data for the remaining gene. The 

feature selection step was run in a nested stratified cross validation loop on the training data 

in which each fold excluded an equal proportion of the sgRNAs for each of the eight 

training genes. The L1-norm penalty was chosen to maximize the average holdout AUC in 

the nested loop. We also used leave-one-sgRNA-out cross validation to measure the 

performance of the model, though leave-one-gene-out is a more realistic measure of 

generalization performance. After validation, we trained a final model using all available 

data (Supplementary Table 9), which used only 72 of the 586 features, including both GC-

count features.

The model weights presented in Supplementary Table 9 can be used to easily compute the 

sgRNA score. A guide necessarily only has a subset of all the features, indicated via one-hot 

encoding as binary variables. Let the model weights for the features i for a particular guide sj 

be wii, the intercept int. Then the sgRNA score f(sj) is given via logistic regression as:

Model scores f(sj) will fall into the range [0,1], and higher values predict higher activity.

Analysis of A375 viability data

For analysis of A375 screening data for lethal sgRNAs, we were interested in generating a 

set of sgRNAs with as few false positives as possible, and were less interested in capturing 

all true positives. Starting from a library of 64,751 sgRNAs, we applied numerous filters to 

improve data quality: a) removed any sgRNAs present at fewer than 8 reads per million at 

the early time point; b) removed any sgRNAs containing a run of 4 or more thymidines; c) 

examined only sgRNAs targeting genes in sets already well-established to be essential for 

viability9,25 d) required at least two sgRNAs targeting the gene to remain in the dataset. This 

generated a list of 1278 sgRNAs (Supplementary Table 10). We subtracted the gene average 

depletion from the depletion caused by the individual sgRNA, to produce a gene-normalized 

activity for each sgRNA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
sgRNA activity screens in mouse and human cells. (a) Representation of the sgRNA 

libraries. Colors represent genes assayed by FACS; light gray indicates genes either poorly 

expressed or not assayed; dark gray indicates targets not found in the mouse or human 

genomes. (b) Top: Antibody staining in cells (red) compared to unstained cells (black). 

Bottom: FACS plots indicating the negative population isolated for each cell surface marker 

after library transduction. (c) Percent of sgRNAs enriched >10-fold (mouse) or >2-fold 

(human) in the marker-negative population that were on-target.
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Figure 2. 
Features of sgRNA activity. (a) sgRNA concordance across cell lines. Pairwise comparison 

between cell lines of sgRNA percent-rank (see Methods for percent-rank calculation) for 

sgRNAs targeting CD13 or CD33; Spearman rank correlation of 0.87 and 0.80, respectively. 

(b) Activity maps of sgRNA by cut site position. Exons and 100 nts of flanking intron are 

represented as lines on the x-axis with gaps marking the remaining intronic sequence. 

sgRNAs excluded from activity modeling are indicated in gray. Boundary sgRNAs (green) 

are those where the cut site, between nts 17 and 18, falls between annotated regions (e.g. 
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CDS/intron). All sgRNAs with fold enrichment ≤ 0.25 are grouped at the bottom of the y-

axis. Scale bar indicates 500nt of sequence. (c) Activity as a function of G/C content for the 

1,841 CDS-targeting sgRNAs analyzed. The top, middle and bottom lines of the box 

represent the 25th, 50th, and 75th percentiles, respectively; the whiskers represent the 10th 

and 90th percentiles. p* = 0.0003, p** = 3 × 10−11, Kolmogorov-Smirnov test.
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Figure 3. 
Model of sgRNA activity. (a) p-values of observing the conditional probability of a guide 

with a percent-rank activity of >0.8 under the null distribution examined at every position 

including the 4 nt upstream of the sgRNA target site, the 20 nt of sgRNA complementarity, 

the PAM, and the 3 nt downstream of the sgRNA target sequence. p-values were calculated 

from the binomial distribution with a baseline probability of 0.2 using 1,841 CDS-targeting 

guides. (b) Performance evaluation of sgRNA activity prediction scores based on nucleotide 

features. Scores for 1,841 sgRNAs are divided by quintile (x-axis) and experimentally-

determined activity within each prediction group is assessed by sgRNA percent rank, and 

also binned by quintile (y-axis). (c) Performance validation of sgRNA prediction algorithm. 

The model was trained on all possible combinations of 8 genes and tested individually on 

the remaining held-out gene. Each gray line indicates the ROC curve for a held-out gene. 

The black line is the mean ROC curve. The bar graph inset indicates the Area Under the 
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Curve (AUC) for each gene. (d) Distribution of 1,841 sgRNAs across predicted score 

quintiles. (e) Simulation of the fraction of most-active sgRNAs, arbitrarily defined as the top 

20% of sgRNA for a gene, in hypothetical libraries with 6 sgRNAs per gene. For a library 

designed with no on-target criteria (null, in red) the values are simply the binominal 

expansion of 0.2. For the hypothetical library that incorporates sgRNA scoring rules to 

enrich for highly-active sgRNAs (blue), the model predicts that the top two quintiles of 

scores (0.6 – 1.0) contain 66.3% of most-active sgRNAs, and thus the values are the 

binomial expansion of 0.663.
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