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Several lines of evidence suggest that adult neurogenesis, the production of new neurons in adulthood, may play a role in

psychiatric disorders, including depression, anxiety, and schizophrenia. Medications and other treatments for mental

disorders often promote the proliferation of new neurons; the time course for maturation and integration of new neurons in

circuitry parallels the delayed efficacy of psychiatric therapies; adverse and beneficial experiences similarly affect

development of mental illness and neurogenesis; and ablation of new neurons in adulthood alters the behavioral impact

of drugs in animal models. At present, the links between adult neurogenesis and depression seem stronger than those

suggesting a relationship between new neurons and anxiety or schizophrenia. Yet, even in the case of depression there is

currently no direct evidence for a causative role. This article reviews the data relating adult neurogenesis to mental illness and

discusses where research needs to head in the future.
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INTRODUCTION

Mental illness is debilitating not only to those afflicted
with various disorders but to mankind as a whole. It has
been estimated that 26% of the adult population have a
diagnosable mental disorder (Kessler et al, 2005), and the
economic burden of serious mental illness yearly has been
estimated at 193 billion dollars because of annual loss of
earnings alone (Kessler et al, 2008). More effective and
innovative treatment options are necessary for battling this
terrible burden.

The hippocampus has long been associated with psychia-
tric disorders (Antonova et al, 2004; Geuze et al, 2005;
Sapolsky, 2000). The hippocampus is highly plastic
throughout life and is particularly sensitive to changes in
the environment, making it a promising research target
for mental illness. Developmental lesions of the ventral
hippocampus produce an animal model of schizophrenia
(Lipska et al, 2002; Swerdlow et al, 2001). Hippocampal
volume reductions are reported in patients suffering from
various mental disorders such as depression, anxiety, and
schizophrenia (Campbell et al, 2004; Nelson et al, 1998;
Sheline et al, 2003; Vythilingam et al, 2002), as well as in
animal models of these diseases (Gilabert-Juan et al, 2013;
Golub et al, 2011; Kaae et al, 2012; Kalisch et al, 2006).
Understanding how the hippocampus is changed in the

context of mental disorders will provide clues to their
etiology and new avenues for prevention and treatment of
these diseases.

One unusual feature of the hippocampus is that it
contains a population of neuronal precursor cells in the
dentate gyrus that generate large numbers of new granule
neurons throughout adulthood. The mechanisms, stages,
and time course of adult neurogenesis in the dentate gyrus
have been extensively studied (Aimone et al, 2014; Lepousez
et al, 2013). New dentate gyrus neurons generate action
potentials (van Praag et al, 2002) and are activated by
functionally relevant experiences (Belarbi et al, 2012; Kee
et al, 2007; Schoenfeld et al, 2013; Snyder et al, 2009a, 2009c,
2012; Tashiro et al, 2007), suggesting that new neurons play
a role in functions associated with this region.

The generation of new neurons in the adult brain has
been of particular interest to researchers investigating the
etiology and treatment of mental illness (Eisch, 2002; Jacobs
et al, 2000; Lucassen et al, 2009; Samuels and Hen, 2011a),
because of a number of similarities between the factors
regulating adult neurogenesis and affecting psychiatric
disease. Evidence that new neurons are important for mental
health could come from: (1) factors that trigger or increase
likelihood of developing mental illness and inhibit neurogen-
esis; (2) drugs and other treatments that improve mental
illness or its symptoms and enhance neurogenesis; (3)
behavioral changes mimicking features of illness that occur
following inhibition of adult neurogenesis in animals; and
(4) changes in adult neurogenesis in patients with disease. In
this review, we will discuss each of these types of evidence,
focusing on the potential links between adult neurogenesis
and major depression, anxiety disorders, and schizophrenia.
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GENETIC AND ENVIRONMENTAL EFFECTS
ON ADULT NEUROGENESIS AND MENTAL
ILLNESS

One argument for a role of new neurons in the adult
mammalian brain in positive mental health is that a number
of behaviors and experiences that affect mental health also
alter adult neurogenesis (Eisch, 2002; Jacobs et al, 2000;
Lucassen et al, 2009; Samuels and Hen, 2011a). Typically,
negative experiences, such as stress, sleep deprivation, and
inflammation, adversely affect mental health and decrease
the generation of new neurons. Conversely, positive experi-
ences, such as exercise and environmental enrichment, tend
to have beneficial effects on mental health and increase
adult neurogenesis. Genetic predispositions and develop-
mental insults also tend to affect adult neurogenesis and
development of mental illness in parallel.

Effects of Early-Life Experiences on Adult
Neurogenesis and Mental Illness

There is growing interest in the long-lasting effects of
childhood trauma on mental health into adulthood. Among
the general population, people with a history of childhood
trauma, including physical, emotional, and/or sexual abuse,
are predisposed to anxiety and depression (Chapman et al,
2004; McCauley et al, 1997; Moffitt et al, 2007). Adults who
have had hallucinations are also more likely to have suffered
from childhood physical or sexual abuse (Whitfield et al,
2005). In patients with diagnosed schizophrenia, there is
also a positive association between childhood abuse and
specifically dissociative symptoms in adulthood (Holowka
et al, 2003; Sar et al, 2010; Schäfer et al, 2012). In addition,
traumatic events not involving abuse, such as parental loss
early in life, are associated with developing major depres-
sion, anxiety disorders, and schizophrenia in adulthood
(Agid et al, 1999; Kendler et al, 1992). Even prenatal stress,
because of infection, malnutrition, or maternal psychologi-
cal stress, is a significant risk factor for developing mental
illness in adulthood (Brown et al, 2000, 2004; St Clair et al,
2005; Stein et al, 2009; Watson et al, 1999). In women with
major depression, childhood abuse is correlated with
smaller hippocampal volume, suggesting long-lasting effects
of developmental experience on hippocampal structure in
humans (Vythilingam et al, 2002).

In animal models, early-life stress increases behavior
suggestive of psychiatric illness in adulthood. Rodents born
to mothers experiencing stress during pregnancy show
behavioral deficits thought to model depression, anxiety,
and schizophrenia. Maternal infection, stress, and malnutri-
tion increase schizophrenia-like behavior in adult offspring
(Borrell et al, 2002; Fortier et al, 2007; Koenig et al, 2005;
Palmer et al, 2004). Elevated anxiety-like behavior is seen
in mice and rats exposed to prenatal infection and stress
(Enayati et al, 2012; Fride and Weinstock, 1988; Hava et al,
2006; Walf and Frye, 2007). Prenatal infections and stress
also increase depression-like behavior in adult rodents (Abe

et al, 2007; Enayati et al, 2012; Lin and Wang, 2014; Tamura
et al, 2011). During the early postnatal period, maternal
separation, a commonly used experimental early-life stress,
leads to increased anxiety-, depression-, and schizophrenia-
like behavior in adulthood (Chen et al, 2011; Ellenbroek
et al, 1998; Huot et al, 2001; Martisova et al, 2012; Romeo
et al, 2003). In addition, juvenile rodents exposed to
stressful events after weaning show increased depression-
and anxiety-like behavior in adulthood (Jacobson-Pick and
Richter-Levin, 2010; Pohl et al, 2007; Wilkin et al, 2012).

Early-life stress typically inhibits the production of new
neurons in adulthood. Prenatal stress produces long-lasting
deficits in the production and survival of new neurons into
adulthood (Koo et al, 2003; Lemaire et al, 2000; Zuena et al,
2008). A recent study indicates that infection during
pregnancy reduces cell proliferation and neurogenesis in
both juvenile and adult offspring (Lin and Wang, 2014).
Undernourished mothers produce offspring with lower
rates of cell proliferation and neuronal survival in adult-
hood (Matos et al, 2011). Prenatal stress and maternal
separation even decreases the size and complexity of the
new neurons that are born in adulthood in the dentate gyrus
(Leslie et al, 2011; Tamura et al, 2011). Stress during the
early postnatal period produced by maternal separation
reduces cell proliferation, neurogenesis, and the survival
of new neurons in adult rodents in the dentate gyrus
(Aisa et al, 2009; Leslie et al, 2011; Mirescu et al, 2004; Sachs
et al, 2013).

The evidence that enriching experiences during early
life lead to positive effects on adult mental health and
neurogenesis in the dentate gyrus is more mixed. One
study reported that housing pregnant dams in an enriched
environment led to decreased anxiety-like behavior in adult
offspring (Friske and Gammie, 2005). However, environ-
mental enrichment for neonates and juvenile rodents had
anxiolytic- and antidepressant-like effects on adult behavior
in some studies (Baldini et al, 2013; Benaroya-Milshtein
et al, 2004; Urakawa et al, 2013; Workman et al, 2011) but
not others (Ishihama et al, 2010; Workman et al, 2011;
Yildirim et al, 2012). Early-life wheel running also appears
to have little effect on adult anxiety-like behavior (Ishikawa
et al, 2014). Evidence is similarly sparse and mixed on
lasting effects of early-life and prenatal enrichment on adult
neurogenesis (Boehme et al, 2011; Schaefers, 2013). Given
that the effects of early-life enrichment on neurogenesis and
behavior are similarly mixed, this might still indicate
parallels. It may be that animal models of environmental
enrichment, which were developed for adult animals, are
simply not as enriching for juveniles or pregnant dams. It is
also possible that standard experimental housing, with
plenty of food and an absence of predators, provide an
optimal environment for emotional/cognitive development
of rodents. In any case, it is unclear from animal studies
whether positive events, or simply the lack of negative
events, during development affect neurogenesis and beha-
vior into adulthood. However, the data make a strong case
that adverse experiences in early development can inhibit
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neurogenesis and increase mental illness-related behaviors
in adulthood.

Adverse Experiences in Adulthood

Stressful experiences have long been linked as potential
contributors to the development of psychiatric disorders
(Anisman and Zacharko, 1982; Kessler et al, 1985).
Prolonged stress in humans can lead to an overloading of
the stress response system, leaving people at risk for the
development of illness, both physical and psychiatric
(McEwen, 2004). Chronic exposure to stress has been
implicated as a predisposing factor for developing major
depressive disorder, anxiety disorders, posttraumatic stress
disorder, and schizophrenia (Davidson and Baum, 1986;
Gold et al, 1988; Pêgo et al, 2010; Pollin, 1972; Southwick
et al, 2005). Chronic stress is frequently used in animals to
produce behavioral states modeling depression, anxiety,
and schizophrenia (Bahi, 2013; Brzózka et al, 2011; Katz,
1982; Taliaz et al, 2011). The hippocampus is a key brain
region for linking stress and behavior. Hippocampal neurons
express high levels of glucocorticoid and mineralocorticoid
receptors, receptors for stress hormones, and the hippo-
campus provides negative feedback of the stress response,
inhibiting the hypothalamic–pituitary–adrenal (HPA) axis
in response to an increase in circulating stress hormones
(Gerlach and McEwen, 1972; Jankord and Herman, 2008;
McEwen et al, 1968; Roozendaal et al, 2001). New neurons
in the adult dentate gyrus have receptors for stress hormones
and are activated by stress, and hence they could play a
direct role in stress response (Cameron et al, 1993;
Schoenfeld and Gould, 2013). The effects of stress on adult
neurogenesis are complex (reviewed in Schoenfeld and
Gould, 2012), but it is clear that in at least some situations,
chronic stress can reduce cell proliferation and survival of
new neurons in the dentate gyrus (Czéh et al, 2007; Dagyte
et al, 2009; Ferragud et al, 2010; Pham et al, 2003).

Prolonged sleep deprivation has been suggested to be a
risk factor for developing mood disorders like depression
and anxiety disorders (Kahn-Greene et al, 2007; Taylor et al,
2005; Tkachenko et al, 2014), and patients with schizo-
phrenia show impairments in various stages of sleep
(Ferrarelli et al, 2010; Keshavan et al, 1998). Similarly, in
animal studies, sleep deprivation can increase anxiety-like
behavior in mice (Silva et al, 2004), and rodent models of
anxiety, depression, and schizophrenia produce fragmented
sleep (Gr�nli et al, 2004; Jakubcakova et al, 2012; Oliver
et al, 2012; Phillips et al, 2012; Popa et al, 2006). The pro-
duction of new neurons in the dentate gyrus is also inhibited
by chronic sleep restriction or fragmentation (Mirescu et al,
2006).

A proinflammatory state has been associated with mental
disorders, including major depression, anxiety, and schizo-
phrenia (Dowlati et al, 2010; Fan et al, 2007; Rohleder et al,
2004). Increased inflammation has been suggested as a
risk factor for developing a mood or psychotic disorder
(Pervanidou et al, 2007; Reichenberg et al, 2001; Stojanovic

et al, 2014; Wichers et al, 2007), and anti-inflammatory
medication reduces symptoms of depression in antidepres-
sant-resistant populations (Raison et al, 2012). In rodents,
activating inflammation in the brain, by genetic means or
injection of endotoxins, induces behavioral phenotypes of
depression, anxiety, and schizophrenia (Fahey et al, 2007;
Takao et al, 2013; Wohleb et al, 2011), and suppresses
proliferation and survival of new neurons in the dentate
gyrus (Ekdahl et al, 2003; Goshen et al, 2007; Monje et al,
2003; Vallières et al, 2002).

Effects of Rewarding Experiences on Adult
Neurogenesis and Mental Illness

Physical exercise can reduce symptoms in patients suffering
from major depression, anxiety disorders, and schizophre-
nia (Beebe et al, 2005; Blumenthal et al, 1999; Herring et al,
2011), and can reduce feelings of anxiety and depression in
healthy adults as well (Blumenthal et al, 1982; DiLorenzo
et al, 1999). Similarly, exercise in the form of voluntary
wheel running also ameliorates depressive- and anxiety-like
symptoms in naive animals (Duman et al, 2008; Schoenfeld
et al, 2013) as well as in animal models of mental illness
(Lapmanee et al, 2013; Maniam and Morris, 2010; Wolf
et al, 2011). Wheel running robustly enhances adult neuro-
genesis in experimental animals, increasing the prolifera-
tion, maturation, and survival of new neurons in the dentate
gyrus (Schoenfeld et al, 2013; Snyder et al, 2009b; Stranahan
et al, 2006; van Praag et al, 1999).

Another experimental manipulation used to bolster the
proliferation and survival of new neurons in the adult
dentate gyrus is enrichment of the animals’ housing
environment through the addition of toys, tunnels, greater
space, social interactions, and other means to make home
cages more complicated and stimulating (Kempermann
et al, 1997; van Praag et al, 1999; Veena et al, 2009a). These
environmental enrichments also reduce anxiety-, depres-
sive-, and schizophrenic-related behaviors in animal models
of illness (Jha et al, 2011; McOmish et al, 2008; Veena et al,
2009b). The effects of housing environments on adult
neurogenesis and behavior in animals may parallel envir-
onmental effects on mental illness in humans, although it is
unclear exactly what type of experience is modeled by
enrichment of rodent cages. One possibility is that impo-
verished standard rodent cage environments model low
socioeconomic status (Milgram et al, 2006). It has long been
thought that socioeconomic status contributes to mental
health, with higher prevalence of depression, anxiety, and
schizophrenia in lower-income populations (Hemmingsson,
2014; Holzer et al, 1986; Kessler et al, 1994; Zimmerman and
Katon, 2005). The specific environmental features respon-
sible for the risk are difficult to delineate, however. For
example, one factor that has been a focus of attention in
human studies, income inequality (Pickett and Wilkinson,
2010), is unlikely to apply directly to rodent-enriched
environment models, but dominant and subordinate
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rodents may have unequal access to preferred toys or
shelters in enriched environments.

EFFECTS OF PSYCHIATRIC MEDICATIONS
AND TREATMENTS ON ADULT
NEUROGENESIS

In addition to looking for parallels between factors that
regulate neurogenesis and those that predispose humans to
psychiatric disorders, a great deal of work has investigated
the relationship between neurogenesis and treatments
for mental illness (Figure 1). Demonstrating an effect of a
psychiatric medication on neurogenesis provides intriguing
but relatively weak evidence for a link between new neurons
and disease, but the finding that drugs with different direct
targets and nonpharmacological treatments have similar
neurogenic effects begins to make a stronger, if still indirect,
case for a causative connection.

Depression

The past decade and a half of research on the role of adult
neurogenesis in mental disorders has focused mainly on
depression. The neurogenesis hypothesis of depression
(Duman et al, 1999; Madsen et al, 2000; Sahay and Hen,
2007; Sapolsky, 2000) postulates that the production of new
neurons may be causally related to depressive behaviors,
based primarily on findings that stress inhibits adult
neurogenesis and increases vulnerability to depression, that

the time course of the differentiation, maturation, and
integration of new neurons into dentate gyrus circuitry
parallels the timing of antidepressant efficacy, and that
antidepressant treatments increase the rate of adult neuro-
genesis in the dentate gyrus (Duman et al, 1999; Madsen
et al, 2000).

Many classical antidepressant drugs and therapeutic
interventions have positive effects on the rates of cell pro-
liferation and neurogenesis in the dentate gyrus of adult
mammals. This was demonstrated first by showing that
electroconvulsive shock treatment, a clinically effective tool
to treat major depression, increased neurogenesis in adult
rodents (Madsen et al, 2000; Scott et al, 2000), an experi-
ment likely inspired by earlier findings that chemical and
electrically induced seizures increase granule cell precursor
proliferation (Bengzon et al, 1997; Parent et al, 1997).
Malberg et al (2000) significantly extended this finding,
demonstrating that chronic treatment with classic anti-
depressants fluoxetine, reboxetine, and tranylcypromine, as
well as electroconvulsive shock, increased neurogenesis in
the adult rodent. This research importantly showed that
different antidepressants that target different neurotrans-
mitters, that is, serotonin and norepinephrine, have the
same effect on adult neurogenesis (Malberg et al, 2000).
Chronic fluoxetine and electroconvulsive shock also in-
crease adult neurogenesis in non-human primates (Perera
et al, 2007, 2011). Additional studies have since shown that
additional SSRIs (citalopram and escitalopram), tricyclics
(imipramine), and mood stabilizers (lithium) all enhance

Increase Increase

Increase

Increase

Increase

N/A

Increase

Increase

Increase

Increase

Increase

Increase

Increase

Increase

Antidepressants

ECT/Deep brain stim

Anxiolytics

Cannabinoids

Classic antipsychotics

Atypical antipsychotics

Increase

Decrease

No change

No change

ML

SGZ

Proliferation Maturation Survival

GCL

Proliferation Maturation Survival

to CA3

Figure 1. Summary of the effects of psychiatric drugs and other therapies on different processes involved in neurogenesis. The processes, shown
below, include division of stem and precursor cells to generate additional neuronal progenitors (proliferation), development of neuronal morphology and
functional synapses (maturation), and avoidance of cell death that normally eliminates a large fraction of new neurons (survival).
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cell proliferation and neurogenesis in the adult rodent
(Chen et al, 2000; Jaako-Movits et al, 2006; Jayatissa et al,
2006; Surget et al, 2008). Atypical antidepressants, such as
AMPA-receptor potentiators, agomelatine, and other 5HT-
2C antagonists, increase production of new neurons in the
rodent as well (Bai et al, 2003; Banasr et al, 2006; Dekeyne
et al, 2008; Soumier et al, 2009). Similarly, transcranial
magnetic stimulation, like ECS, increases proliferation of
granule cell precursors (Zhang et al, 2014). Acute, but not
chronic (see above), sleep deprivation also rapidly increases
granule cell precursor proliferation and improves symp-
toms of depression (Grassi Zucconi et al, 2006), although
the speed of these behavioral changes make it unlikely that
they are related to the birth of the still very immature
neurons.

Most studies of antidepressant treatment on adult
neurogenesis have focused on changes in proliferation,
but recent findings indicate that antidepressants can alter
maturation and survival of new neurons as well. Chronic
fluoxetine treatment hastens maturation of new neurons
and enhances LTP of new neurons (Wang et al, 2008).
Agomelatine increases survival of new neurons and enhances
their maturation, as seen by their more rapid loss of the
immature marker PSA-NCAM (Soumier et al, 2009).
Electroconvulsive shock, deep brain stimulation, and
transcranial magnetic stimulation also hasten new neuron
maturation, enhancing dendritic growth and inducing
mature spine formation in newly born neurons and increas-
ing their survival (Schmuckermair et al, 2013; Zhang et al,
2014; Zhao et al, 2012).

The slow time course of maturation and integration of
new neurons into dentate gyrus circuitry was also part
of the initial rationale for the neurogenesis hypothesis of
depression, as the well-accepted delay in therapeutic onset
of antidepressants suggests that some neuroplastic change
is required. There is typically a delay of at least 2 weeks
between the start of antidepressant treatment and positive
effects on depressive behavior (Bodnoff et al, 1988; Duman
et al, 1997; Porsolt et al, 1978; Wang et al, 2008; Willner
et al, 1987). It also requires at least 2–3 weeks for granule
cells in the rodent dentate gyrus to become functionally
integrated into existing circuitry, showing electrophysiolo-
gical activation and behavioral relevance (Schmidt-Hieber
et al, 2004; Shors et al, 2001; Snyder et al, 2005, 2009a).
Other studies have suggested a somewhat longer time
course of new neuron maturation (Denny et al, 2012;
Espósito et al, 2005; Ge et al, 2007; Gu et al, 2012; Kee et al,
2007; van Praag et al, 2002; Zhao et al, 2006), a difference
that may reflect different methods of assessing integration
and functionality (eg, physiogical profiles of neurons vs
behavioral effects), species differences between mice and
rats (Snyder et al, 2009a), and differential housing or other
environmental conditions, such as running, that affect the
time course of new neuron maturation (Piatti et al, 2011;
Snyder et al, 2009b). Altogether, rodent studies suggest
that new neurons require between 1 and 8 weeks to become
mature.

The novel antidepressant ketamine has recently demon-
strated very rapid therapeutic effects, within hours (Browne
and Lucki, 2013), suggesting a need for reevaluation of the
parallel time course idea. Moreover, despite the long-
standing belief that classical antidepressants require several
weeks to show therapeutic efficacy, a recent meta-analysis
suggests that their effects also begin more rapidly than
previously thought (Lam, 2012). Very rapid effects of
antidepressants seem unlikely to be mediated by increased
birth of new neurons, but this is not necessarily a blow to
the neurogenesis hypothesis of depression, as the prolif-
erative effects may be important for prolonged or maximal
effects of treatment, and the effects of antidepressants
on maturation and survival of new neurons, which are
only beginning to be examined, could have more rapid
functional effects.

Anxiety

Although the role of adult neurogenesis in anxiety disorders
has not been intensively investigated as it has in depressive
disorders, the high comorbidity seen between anxiety and
depression (Hirschfeld, 2001; Lamers et al, 2011) suggests
that any role that neurogenesis in the dentate gyrus might
have in depression is likely to affect anxiety disorders as
well. Indeed, animal models of depression often produce
anxiogenic-like effects as well (David et al, 2009; Fahey et al,
2007; Rainer et al, 2012), and chronic administration of
antidepressants and deep brain stimulation tend to decrease
anxiety-like behaviors in animal models (David et al, 2009;
Dulawa et al, 2004; Schmuckermair et al, 2013).

Classic anxiolytics typically mimic the effects of the
inhibitory neurotransmitter GABA (Tallman and Gallager,
1985). These medications produce their anxiolytic effects
very rapidly, unlike antidepressants, indicating that their
mechanism of action is unlikely to involve slow processes
such as the generation or survival of new neurons (see
above). Chronic use of anxiolytics, however, could poten-
tially have effects on adult neurogenesis that interact with
those of antidepressants when coadministered. Studies have
shown mixed results of acute anxiolytic or GABAergic drugs
on neurogenesis. The benzodiazepine diazepam had no
effect on cell proliferation in the dentate gyrus in male mice
or male rats (Sun et al, 2013; Wu and Castrén, 2009), but
increased granule cell precursor proliferation in a third
study that used female mice and a 10-fold higher dose of the
drug (Petrus et al, 2009). There is general agreement that
diazepam does not affect survival of the young dentate
gyrus neurons in mice or rats (Karten et al, 2006; Sun et al,
2013; Wu and Castrén, 2009). However, activating GABA-A
receptors with barbiturates over several days reduced
cell proliferation and increased cell survival in mice in
one study (Tozuka et al, 2005). This difference between
barbiturates and benzodiazepines, both of which act as
agonists on the same GABA-A receptor, could potentially be
explained by actions of barbiturates at several addi-
tional targets (Löscher and Rogawski, 2012). Importantly,
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although diazepam has few, if any, effects on adult neuro-
genesis on its own, it prevents the proneurogenic effects of
fluoxetine on adult neurogenesis and behavior (Sun et al,
2013; Wu and Castrén, 2009), suggesting that although
these drugs are frequently used in combination at the start
of clinical treatment, this coadministration may be detri-
mental if neurogenesis plays a role in human depressive
illness.

Anxiolytics might be expected to enhance new granule
cell maturation, because endogenous GABAergic signaling
has been proposed to have this function (Schoenfeld and
Gould, 2013). The first synaptic inputs onto new granule
neurons are GABAergic, and running, which accelerates
granule cell maturation, enhances GABA in the dentate
gyrus (Markwardt et al, 2011; Schoenfeld et al, 2013; Snyder
et al, 2009b). In fact, the anxiolytic-like effects of running
are blocked by GABA receptor antagonists in mice
(Schoenfeld et al, 2013), suggesting that running and
anxiolytic drugs may share the same mechanism. Little is
known about the effects of anxiolytic medications on granule
neuron maturation, but pentobarbital increases dendritic
length in young granule neurons, whereas the GABA-A
receptor antagonist picrotoxin inhibits maturation, decreas-
ing both spine density and dendritic length (Sun et al,
2009). In addition to any effects on maturation, the finding
that running increases GABAergic signaling in the dentate
gyrus and decreases the activation of new granule neurons
by stress (Schoenfeld et al, 2013) suggests that anxiolytic
medications may alter the functioning of new neurons in
stressful situations. This mechanism would be very different
from the increase in the number of new neurons proposed
as a mechanism for antidepressants, but it is consistent with
very rapid time course of anxiolytic effects.

Several studies have found that synthetic cannabinoids
can reduce anxiety (Fabre and McLendon, 1981; Grant et al,
2011; Schindler et al, 2008). Cannabinoid effects on anxiety-
like behavior in rodents have recently been described
(Braida et al, 2007; Jiang et al, 2005; Patel and Hillard, 2006).
Cannabinoids and cannabinoid receptor agonists increase
the proliferation of new neurons in the adult dentate gyrus
(Avraham et al, 2014; Campos et al, 2013; Jiang et al, 2005)
and increase new granule cell survival (Wolf et al, 2010).
However, the rapid time course of cannabinoid effects on
behavior, and dissociations between behavioral and neuro-
genic effects of different cannabinoids (Wolf et al, 2010),
argue against the anxiolytic effects of cannabinoids being
mediated by adult neurogenesis.

Schizophrenia

Animal behavior models and human genetic studies have
implicated the hippocampus in the etiology of schizophre-
nia. One of the best-characterized animal models of
schizophrenia is the neonatal ventral hippocampal lesion
model that produces periadolescent onset of schizophrenic-
like behaviors in rats (O’Donnell, 2012; Tseng et al, 2009).
Because schizophrenia has a heritable component, researchers

have long sought for genetic abnormalities that may lead to
a predisposition to developing schizophrenia. Genetic
analysis of a Scottish family with a high prevalence of
schizophrenia indicated a mutation in the DISC1 (disrupted
in schizophrenia 1) gene (Millar et al, 2000) that codes for
a scaffolding protein that interacts with different protein
partners to promote development and growth (Soares et al,
2011). The locations and time course of DISC1 expression
suggest a role in neurogenesis; in the postnatal brain, it is
localized primarily to the hippocampus (Austin et al, 2004;
Schurov et al, 2004). Downregulation of DISC1 gene in mice
has been shown to impair cell proliferation in the adult
dentate gyrus (Mao et al, 2009). DISC1 has been suggested
to guide migration of new neurons in the dentate gyrus
(Namba et al, 2011) and, indeed, knockdown of DISC1
protein in mice leads to accelerated maturation and
abnormal morphology of new neurons in the adult dentate
gyrus (Duan et al, 2007). These new neurons appear to be
misplaced in circuitry and show aberrant physiological
characteristics. Another gene, NPAS3, a member of a family
of transcription factors known to be involved in a wide
array of functions, including neurogenesis (Crews, 1998),
has been shown to be affected in schizophrenia (Kamnasaran
et al, 2003). Similarly, NPAS3 knockout mice show impaired
neurogenesis in adulthood (Pieper et al, 2005).

Research into the effects of antipsychotic medications on
adult neurogenesis, however, provide little evidence for a
role for adult neurogenesis in treatment for schizophrenia.
The classical antipsychotic haloperidol effectively reverses
deficits in prepulse inhibition in animal models of
schizophrenia (Mansbach et al, 1988). However haloperidol
had no effect on neurogenesis in the adult dentate gyrus in
several studies, using several doses and treatment regimens
and examining long-term survival of new neurons as well as
their generation (Halim et al, 2004; Malberg et al, 2000;
Wakade et al, 2002; Wang et al, 2004). Similarly, atypical
antipsychotics like olanzapine, risperidone, and clozapine
were also ineffective at altering adult neurogenesis in several
studies (Green et al, 2006; Meyer et al, 2010; Wakade et al,
2002; Wang et al, 2004). One study demonstrated an
increase in proliferation with clozapine treatment, but the
new cells were lost within 3 weeks, likely before becoming
functional, despite ongoing clozapine treatment (Halim
et al, 2004). Another found that olanzapine increased cell
proliferation (Kodama et al, 2004), in contrast to other
studies (Green et al, 2006; Wang et al, 2004); the observed
increase was only 20% over baseline levels, suggesting that
there may be a modest and variable effect of this drug on
neurogenesis. One group found increased precursor cell
proliferation with risperidone and increased survival of new
granule cells with both haloperidol and risperidone
(Keilhoff et al, 2010a, b). It is unclear why these findings
diverge from those of the majority of studies, as the doses,
species, and time courses of the studies all overlap. Despite
the lack of clear data suggesting effects of antipsychotic
medications on adult neurogenesis, it is possible that such
effect would emerge when structural changes underlying
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schizophrenia are elucidated and animal models of such
changes are generated.

BEHAVIORAL EFFECTS OF INHIBITING
ADULT NEUROGENESIS

Depression

Short of real-time imaging to track neurogenesis levels in
humans, which is not currently possible, the best evidence
for a causal role of new neurons in depression will likely
come from studies demonstrating depressive-like behavior
in animal models of reduced neurogenesis. Rapid or
prolonged immobility in the forced swim test (FST), long
latency to eat in the novelty-suppressed feeding (NSF) test,
and decreased sucrose preference in the sucrose preference
test (SPT) are the most commonly used rodent behavioral
analogs of depressive behavior. Inhibiting adult neuro-
genesis, using brain irradiation or the mitotic blocker
methylazoxymethanol acetate (MAM), produce no change
in immobility in the FST (Airan et al, 2007; Bessa et al, 2009;
Holick et al, 2008); however, one study using pharmacoge-
netic methods to eliminate adult neurogenesis found
increased FST immobility (Snyder et al, 2011). One possible
explanation for these differential findings is that Snyder
et al (2011) measured immobility during the early phase
of testing, when animals are least likely to be immobile,
whereas other studies followed a common drug testing
protocol and measured immobility during the latter part of
the test and/or after a pretest. In the NSF test, or related
‘cookie test,’ several studies found no effect of inhibiting
neurogenesis (Meshi et al, 2006; Revest et al, 2009; Santarelli
et al, 2003; Surget et al, 2011; Wang et al, 2008; Zhu et al,
2010). Bessa et al (2009) found increased latency to eat
under similar conditions; however, the dose of MAM used
to inhibit neurogenesis may decrease motivation to eat
independent of its effects on neurogenesis (Dupret et al,
2005; Shors et al, 2001). A study using pharmacogenetic
methods showed decreased latency to eat, that is, decreased

depressive-like behavior, in rats lacking new neurons
relative to controls. However, this group found a similar
difference in transgenic animals without drug treatment to
inhibit neurogenesis, suggesting a transgene insertion effect
(Groves et al, 2013). Fewer studies have examined the
effects of increasing, as opposed to inhibiting, adult
neurogenesis, but mice with increased neurogenesis because
of genetic deletion of a cell death gene also show no baseline
change in forced swim or NSF behavior (Sahay et al, 2011).

The only study to date to report an effect on NSF found
no effect of new neurons under naive conditions but found
that acute stress immediately before NSF testing increased
latency in animals without neurogenesis but had no effect in
controls—suggesting that new neurons can affect depres-
sive-like behavior by buffering the effects of stress (Snyder
et al, 2011). This effect on stress response may explain why
these mice show depressive-like behavior in the FST under
baseline/naive conditions—this test, unlike the NSF test, is
very stressful, and hence mice may be responding to the
stress of the test itself. These stress response effects are
intriguing, given the strong relationship between stress and
mental health (described above), and suggest that having
low levels of adult neurogenesis might increase suscept-
ibility to the effects of stress on mental health (Figure 2).
Interestingly, chronic mild stress does not differentially
affect depressive-like behavior in mice with inhibited and
intact neurogenesis (David et al, 2009; Surget et al, 2008).
This could reflect a role for new neurons only in moderate
to severe stress, regardless of duration. Alternatively, as
corticosterone treatment and stress inhibit adult neurogen-
esis, the nonirradiated/nontransgenic control mice in these
studies may have decreased numbers of new neurons like
the ablated mice, resulting in a lack of behavioral difference.

Although most studies show no change in depressive-like
behavior in naive rodents following manipulation of
neurogenesis, removal of new neurons alters the behavioral
effects of antidepressants. Santarelli et al (2003) were the
first to show that eliminating adult neurogenesis via
irradiation blocked the antidepressant effect of fluoxetine

Genetic abnormalities
Prenatal stress/Infection
Traumatic events
chronic stress
Inflammation

Drug treatment
Non-drug intervention
Exercise
Enrichment

Adult
neurogenesis

Negative

Positive

Buffers

Stress

Resilience

Figure 2. Diagram showing a potential role for new neurons in maintaining mental health. Genetic, developmental, physiological, experiential, and
therapeutic interventions can upregulate or downregulate adult neurogenesis. The population of functioning new neurons may protect an individual from
negative or inappropriate effects of stress, increasing resilience and thereby promoting mental health.
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on NSF behavior in mice. Since then, several studies have
replicated and extended this finding, showing adult
neurogenesis is required for the effects of antidepressants
on the FST and cookie test as well as on the NSF test (Airan
et al, 2007; Surget et al, 2011; Wang et al, 2008). Elimination
of adult neurogenesis via irradiation also blocks the
beneficial effect of fluoxetine on anhedonia in non-human
primates (Perera et al, 2011), indicating that this new
neuron requirement holds for primates as well and may be
relevant in humans. Inhibiting adult neurogenesis in
rodents also prevents the antidepressant effects on LTP
and HPA axis reactivity to stress (Surget et al, 2011;
Wang et al, 2008). Bessa et al (2009) found that decreasing
neurogenesis did not prevent antidepressant effects on
anhedonia and learned helplessness in rodents, but
the MAM treatment used in this study only partially
arrested adult neurogenesis, suggesting that greater inhibi-
tion of neurogenesis might be necessary to block the
antidepressant effects. The antidepressant effects of fluox-
etine in the FST were unaffected by irradiation in a strain of
highly anxious mice (Holick et al, 2008), perhaps fitting
with the lack of effect of new neurons on anxiety (see
below).

Anxiety

Anxiety-like behavior is generally tested in rodents using
exploratory tests like the open field test and elevated plus
maze. Lesions of the hippocampus, in particular the ventral
hippocampus, decrease anxiety-related behavior, indicat-
ing a role for the hippocampus in generating anxiety
(Bannerman et al, 2014; Deacon et al, 2002), suggesting that
neurogenesis might also play a role in anxiety. However,
several studies have failed to find any effect of genetic or
irradiation-induced ablation of adult neurogenesis on
anxiety-like behavior in the open field test or elevated plus
maze, either in naive animals (Jaholkowski et al, 2009; Saxe
et al, 2006; Snyder et al, 2011; Wei et al, 2011) or after acute
stress (Snyder et al, 2011). A recent meta-analysis of open
field and elevated plus maze behavior data from 25 studies
also found no significant effects of adult neurogenesis
(Groves et al, 2013). Increasing the survival of new neurons
also has no effect on anxiety-like behavior in these tasks
(Sahay et al, 2011). One study found that deleting the brain-
derived neurotrophic factor TrkB receptors from new
neurons increased anxiety-like behavior on the open field
and elevated plus maze (Bergami et al, 2008). It is surprising
that deleting a single gene in this neuronal population
would have a greater behavioral impact than eliminating the
cells altogether. This paradoxical finding suggests that the
deletion of this gene may not be limited to new neurons in
this model or that changes in TrkB in these neurons has
downstream effects in other cell types. In contrast to the
lack of effect of adult neurogenesis on anxiety-like behavior,
Roughton et al (2012) showed that irradiation during the
juvenile period in rodents increased anxiety-like behavior
on the open field in adulthood, suggesting that postnatal

neurogenesis, and the primary granule cell population that
is born during this period, are more important for anxiety
than adult-born granule cells.

The NSF test is sensitive to both antidepressants and
anxiolytics in rodents, and hence changes in behavior in
this test can be interpreted as reflecting anxiety and/or
depression (Samuels and Hen, 2011b). Snyder et al (2011)
found increased latency to feed after acute stress in mice
lacking adult neurogenesis, as described above, potentially
suggesting increased anxiety-like behavior. However,
because the mice showed no behavioral differences in the
elevated plus maze but did behave differently in multiple
tests of depressive-like behavior, this NSF test behavior
appears more likely to reflect depressive-like than anxiety-
like behavior.

It is not known whether new neurons are required for the
effects of classic anxiolytics. Cannabinoids, however, have
anxiolytic-like effects in elevated plus maze and the NSF test
that are blocked by ablation of new neurons (Campos et al,
2013; Jiang et al, 2005). Adult neurogenesis is required for
the anxiolytic-like effects of cannabinoids in a chronic
stress model of anxiety as well as under baseline conditions
(Campos et al, 2013). More studies are needed to test the
role of new neurons in mediating behavioral effects of
cannabinoids and classical anxiolytics.

Schizophrenia

Schizophrenia-associated symptoms may be the most
difficult to model in rodent behavior tests. Diminished
prepulse inhibition of startle behavior, which is believed to
reflect sensory gating deficits, is often described as a bio-
logical marker of schizophrenia, although it is not specific
to this condition (Braff et al, 2001). Rats lacking adult
neurogenesis, because of irradiation or MAM treatment,
show impairments in prepulse inhibition of acoustic startle
(Iwata et al, 2008; Maekawa et al, 2009). Irradiated rats also
show behavioral abnormalities in social interactions and
working memory that are also impaired in human schizo-
phrenia (Iwata et al, 2008). These findings suggest a potential
role for new neurons in schizophrenia-related behavior,
although a great deal of work is still clearly needed. The
effects of antipsychotics in animals following ablation of
new neurons has not been tested, but the apparent lack of
effects of these medications on the rate of neurogenesis in
rodents suggests that the effects on adult neurogenesis are
unlikely to underlie their effects. That said, the lack of
baseline effects of antipsychotics on neurogenesis does not
preclude the effects in models of schizophrenia.

FUTURE RESEARCH DIRECTIONS

Human Studies

The most direct evidence for a relationship between adult
neurogenesis and mental illness has to come from studies of
human patients, even though these studies can at best only
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offer correlational data—and can currently only provide
postmortem snapshots. No studies have examined cell
proliferation or neurogenesis in patients with anxiety
disorders and very few have looked at the rates of
neurogenesis in subjects with schizophrenia. One study of
postmortem tissue found a decrease in cell proliferation in
the dentate gyrus of adults suffering from schizophrenia
compared with controls (Reif et al, 2006), although the
reported discarding of several samples that had high
numbers of Ki67-positive cells suggests potential immu-
nostaining problems in the included samples. It is
impossible to make any conclusions about the relationship
between adult neurogenesis and schizophrenia or anxiety
disorders based on the scant evidence to date.

There have been more studies looking into the role
of adult neurogenesis in human depressive disorder.
Decreased numbers of MCM-expressing dividing cells were
found in postmortem tissue from depressed patients
(Boldrini et al, 2009; Lucassen et al, 2010), although no
changes have been found in cell expressing two other cell
division markers, PH3 and Ki67, or the stem cell marker
nestin (Boldrini et al, 2012; Lucassen et al, 2010; Reif et al,
2006). The current data, therefore, do not strongly support
an effect of major depressive disorder on cell proliferation.
Examination of antidepressant effects have produced
similarly mixed results, showing strong (6–20� ) increases
in nestin-expressing precursor cells in two studies (Boldrini
et al, 2009; 2012) but no change in cell division in another
(Lucassen et al, 2010). Taken together, these findings
suggest a possible association between neurogenesis and
depressive disorder, but they also point to several
difficulties with postmortem studies. First, immunostaining
in human postmortem tissue is difficult, and the resulting
staining is generally of much lower quality than immunos-
taining in perfused rodent brain. Second, the variability in
these studies is quite high, and hence even 10� differences
across means can just barely reach statistical significance.
Third, without injecting BrdU before death, which is rarely
done in human studies (Eriksson et al, 1998), there is no
way to follow new cells and compare rates of true mature
neuron production.

There is clearly a need for innovative and reliable in vivo
methods of identifying new neurons in humans, both in
postmortem tissue and, ideally, in the living brain. Live
imaging of neuronal precursor cells or recently generated
neurons in humans has been discussed, but the available
techniques do not yet have the sensitivity and specificity
required to detect adult neurogenesis (Couillard-Despres
and Aigner, 2011). The advancement of such technology
would allow for studies that can address critical ques-
tions, such as whether the rate of neurogenesis changes over
the course of disease and whether there is a within-subject
change in the rate of neurogenesis with treatment.
Technology that enables live imaging of adult neuro-
genesis would be invaluable for resolving basic questions
about whether adult neurogenesis plays a role in mental
illness.

Animal Models

Because of the difficulties in studying adult neurogenesis in
humans, described above, the vast majority of information
on the interplay between adult neurogenesis and mental
illness comes from work on rodents. Although work in
rodent models has generated many new ideas about potential
roles for new neurons in the etiology and treatment of
mental disorders, the limitations of studying very complex
human thought processes in rodents are clear (Donaldson
and Hen, 2014; Hyman, 2014). A handful of studies have
investigated the role of new neurons in antidepressant
treatment in non-human primates, but these studies are
tremendously costly, and it is largely unknown how well
non-human primate psychiatric models reflect conditions
in humans.

There is a clear need for better rodent models of mental
illness. The term ‘animal models’ of psychiatric disease is
used to mean both tests of behaviors that model symptom
and manipulations that increase disease-related behaviors
in these tests. Both of these need improvement. It is unclear
which aspects of mental illness rodents are capable of
reproducing. Clearly, ‘mice will never have guilty rumina-
tions [or] suicidal thoughts’ (Donaldson and Hen, 2014),
although they (if rats are included) do show evidence of
some mental processes related to psychiatry, such as
motivation and empathy (Ben-Ami Bartal et al, 2011; Der-
Avakian and Markou, 2012; Simpson et al, 2012). But even if
rodents could experience many features of human mental
illness, it would be difficult to determine with any certainty
because of their inability to communicate with us. It is very
difficult to imagine, for example, how we would know if a
mouse had hallucinations. But the problems with modeling
psychiatric illness are not all due to shortcomings of
rodents; incomplete understanding of the constellations of
symptoms associated with mental illness in humans hinders
development of animal models as well. Improved under-
standing of human symptoms, for example the key features
of anhedonia or the relationship between anxiety and
depression, will enable generation of better tests of rodent
behaviors modeling these symptoms. Although the current
rodent models may seem to lead in circles as far as drug
development is concerned (Donaldson and Hen, 2014;
Hyman, 2014), any improvement on the human or the
rodent side could potentially produce a positive feedback
loop in which an improved rodent model might generate a
new hypothesis about human illness that could then inspire
an even better rodent model.

Improvement is also needed in animal models of the
other type, that is, manipulations that increase behaviors
resembling psychiatric symptoms. There are models of
schizophrenic-like behavior in rats, but for the reasons
discussed above, it is difficult to determine how well they
truly model the disease. Developmental insults and/or
chronic stress in adulthood have been used to increase
depressive-like behavior in rodents. However, the majority
of experiments looking at effects of psychiatric medications
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on neurogenesis or the effects of neurogenesis on mental
illness-related behavior have used naive animals, under
baseline conditions. Even if animals lacking neurogenesis
show no change in psychiatric disease-related behavior
under baseline conditions, behavioral changes may result
from a combination of altered neurogenesis and a particular
adverse experience. In the case of depressive-like behavior,
this idea is supported by the finding that mice lacking adult
neurogenesis show normal behavior in the NSF test if they
are naive but increased depressive behavior following acute
stress (Snyder et al, 2011).

Animal models used for work on the role of adult
neurogenesis in psychiatric disorders should attempt to
model risk factors for developing those diseases rather than
focusing on naive animals. Because traumatic life events are
so strongly associated with many forms of mental illness,
future research should investigate the role of new neurons
on the development of behaviors associated with mental
illness in various stress models. To date, no studies have
looked at the long-lasting effects of acute traumatic events
in rodent models of neurogenesis ablation. It is possible that
adult-born neurons in the hippocampus may facilitate
recovery and general resiliency to salient stressors, whereas
animals with impaired or ablated neurogenesis may show
heightened and prolonged ill effects of traumatic events
(Figure 2). In addition, it is unknown how neurogenesis is
functionally involved in behavioral changes produced by
stressors occurring prenatally or in early life. Combinations
of genetic predispositions, prenatal illness/inflammation,
early-life stress, chronic stress in adulthood, and/or single
traumatic events may produce behavioral phenotypes
that provide insight into the role of neurogenesis in
development of and recovery from anxiety, depression,
and schizophrenia.

Neurogenesis in Other Regions

Finally, although the vast majority of research on adult
neurogenesis in psychiatric disease has been aimed at the
dentate gyrus, new neurons generated in other brain regions
could play a role in mental health as well. The brain region
that adds the largest number of neurons in adulthood is the
olfactory bulb. Although the olfactory bulb may not come to
mind as a key region for mental illness, the depressive-like
state produced in rodents by removal of the olfactory bulbs
and the olfactory changes in depressed human patients
suggests a potential association between olfaction and
depression (Schablitzky and Pause, 2014; Yuan and Slotnick,
2014). Olfactory deficits are observed in schizophrenia as
well (Nguyen et al, 2010; Rupp, 2010). The effects of
antipsychotic and anxiolytic medications on cell prolifera-
tion in the subventricular zone (SVZ), the source of
olfactory bulb neurons, have been examined in a handful
of studies, but with mixed results (Green et al, 2006; Kippin
et al, 2005; Kodama et al, 2004; Wakade et al, 2002;
Yamaguchi and Mori, 2005).

The olfactory epithelium generates new neurons through-
out life and therefore offers a source of neural stem cells
that is relatively easily accessed in humans. These cells are
often studied as potential markers for neurogenic activity in
the brain (Féron et al, 1999), although these sensory
neurons are not very closely related to the neurons
generated in the brain and may not reflect pathological
changes in central nervous system stem cells.

Adult neurogenesis has also been reported in other brain
areas believed to be involved in depression, anxiety, and
schizophrenia, including the amygdala and prefrontal
cortex. Adult neurogenesis has been reported in the
amygdala of rodents and monkeys (Bernier et al, 2002;
Jiang et al, 2014; Takemura, 2005), although the evidence
for double labeling of the proliferation marker BrdU and
mature neuronal markers is not especially strong. Effects of
olfactory bulbectomy, fear conditioning, and fluoxetine
have been observed on the numbers of adult-born cells in
the amygdala (Jiang et al, 2014; Keilhoff et al, 2006; Okuda
et al, 2009), but it is unclear how many of the affected cells
are neurons.

Adult neurogenesis has also been reported in the
prefrontal cortex of adult rats and primates (Dayer et al,
2005; Gould et al, 1999a, b, 2001). The new neurons are
small interneurons and make up only a fraction of the
newborn cells in this region (Dayer et al, 2005; Gould et al,
2001). In mice, neocortical adult neurogenesis appears to
be almost nonexistent (Snyder et al, 2009a). In rats, the
number of new neurons generated in neocortex is quite
small relative to the number in the dentate gyrus, but the
fraction of neurons produced (of small interneurons or
granule cells, respectively) is equivalent in the two regions
(Cameron and Dayer, 2008). Nevertheless, the small number
of neurons produced across a large volume of cortex in rats
makes quantitative studies of new neurons in the adult
neocortex very difficult. Several studies have investigated
the effects of factors related to mental illness on cell
proliferation in the prefrontal cortex. Glucocorticoid treat-
ment and stress inhibit proliferation of NG2-expressing
cells, the proposed neuronal precursors, in the prefrontal
cortex, and antidepressant treatments, including electro-
convulsive shock and fluoxetine, increase proliferation in
this region (Alonso, 2000; Banasr et al, 2007; Czéh et al,
2007; Dayer et al, 2005; Madsen et al, 2005). Olanzapine also
increases proliferation in the prefrontal cortex (Green et al,
2006; Kodama et al, 2004; Wang et al, 2004). However, as
most new daughter cells in the neocortex do not appear to
differentiate into neurons (Dayer et al, 2005), it is unclear
whether any of these changes reflect effects on neurogen-
esis. One recent study has reported that chronic fluoxetine
treatment increases the generation of GABAergic interneur-
ons in the rodent neocortex (Ohira et al, 2013), although
this finding will need to be replicated.

Despite the importance of the amygdala and prefrontal
cortex to mental health, the potential contributions of adult
neurogenesis in these regions has largely been ignored. This
is most likely because of the small numbers of neurons
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generated in these regions, the difficult nature of neurogen-
esis experiments in these regions, and the poor quality of
much of the resulting data. Although the number of neurons
produced in these regions is low, production of even small
numbers of interneurons is likely to have functional effects
(Cameron and Dayer, 2008). Better methods for identifying
the particular types of neurons born in the amygdala and
neocortex could potentially lead to identification of some
of the previously unidentifiable cells generated in these
regions as neurons (Dayer et al, 2005). Even without this,
better methods for long-term labeling of newborn cells
could increase the numbers of new neurons that can be
detected, allowing quantitative studies of how these neurons
are affected by factors that trigger or treat mental illness.
Future studies should also investigate the functional effects
of specific ablation of or increases in these new neuron
populations. Identifying the location and identity/protein
expression pattern of the precursor cells generating new
neurons in each brain region will aid in specific targeting
of these pools by focal irradiation and pharmacogenetic
methods. So little is known about adult neurogenesis in
these important regions that this presents a challenge but
also a tremendous opportunity for uncovering new links
between adult neurogenesis and mental illness.
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