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The origins of schizophrenia have eluded clinicians and researchers since Kraepelin and Bleuler began documenting their

findings. However, large clinical research efforts in recent decades have identified numerous genetic and environmental risk

factors for schizophrenia. The combined data strongly support the neurodevelopmental hypothesis of schizophrenia and

underscore the importance of the common converging effects of diverse insults. In this review, we discuss the evidence that

genetic and environmental risk factors that predispose to schizophrenia disrupt the development and normal functioning of

the GABAergic system.
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INTRODUCTION

Schizophrenia is a devastating neuropsychiatric disorder
that affects approximately 1% of the population. Its core
symptoms fall into three domains: positive symptoms such
as psychosis, negative symptoms such as poor social
function, and cognitive symptoms such as deficient working
memory and attention. Onset is typically in late adolescence
or early adulthood, but signs of dysfunction can be seen in
an earlier prodromal phase (Lewis and Levitt, 2002). Based
on the clinical progression and the 64–81% heritability of
the disorder (Giusti-Rodriguez and Sullivan, 2013), a
hypothesis emerged that schizophrenia’s origins could be
found early in development, long before the onset of
symptoms (Weinberger, 1987). For more than 35 years,
clinicians and scientists have searched for the biological
foundations of an altered developmental trajectory
that leads to the specific disease symptoms, but our
understanding of this process is far from complete.

Accumulating evidence from clinical, genetic, and epide-
miologic studies over the past several decades supports the
neurodevelopmental origin of schizophrenia and has begun
to identify specific disturbances of brain development that
might be pivotal for the emergence of the disease (Lewis and
Levitt, 2002; Marenco and Weinberger, 2000; Rapoport
et al, 2012). The data have identified numerous factors that

increase risk of diagnosis (to be discussed), yet it is clear
that none of these pathological processes alone can be
identified as a singular cause of the disorder.

The genetics of schizophrenia are extremely complex.
Over the past two decades, genetic studies of candi-
date genes implicated multiple disease-predisposing
DNA sequence variants in disrupted-in-schizophrenia 1
(DISC1), neuregulin 1 (NRG1), catechol-O-methyl transfer-
ase (COMT), regulator of G-protein signaling 4 (RGS4),
metabotropic glutamate receptor 3 (GRM3), dysbindin
(DTNBP1), G72, and other sequences (Harrison and
Weinberger, 2005), yet replications of these findings were
quite inconsistent from cohort to cohort. More recently,
genome-wide association studies (GWAS) analyzing
DNA from tens of thousands of patients with schizophrenia
have been identified between one and ‘several thousands
of common alleles of very small effect’ associated with
diagnosis (Aberg et al, 2013; Cross-Disorder Group of the
Psychiatric Genomics C, Genetic Risk Outcome of Psychosis
C, 2013; McAllister, 2014; Purcell et al, 2009; Ripke et al,
2013; Shi et al, 2009; Stefansson et al, 2009), yet these
findings showed only a modest overlap with the outcomes
of the candidate gene studies. With the expansion of the
patient cohorts and development of more sophisticated
analytical approaches, the newest GWAS data argue that
diverse common alleles accumulate within a pathway and
reach a threshold for susceptibility that leads to disease
(Horvath and Mirnics, 2014b). Furthermore, it also appears
that rare copy number variants with potentially large effect
sizes might have an important role in predisposing to
schizophrenia. These deletions or duplications of chromo-
somal regions often span multiple genes and can either
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increase risk or protect from diagnosis, presumably by
altering the ‘dosing’ of the genes contained within the
variant region (Grozeva et al, 2010; International
Schizophrenia C, 2008; Stefansson et al, 2008). For example,
22q11 hemideletion is associated with high rates of schizo-
phrenia (Gothelf et al, 1997; Karayiorgou et al, 2010;
Murphy et al, 1999), whereas 22q11 duplication may protect
against schizophrenia diagnosis (Rees et al, 2014), suggest-
ing that expression levels of specific genes are critical to
normal and pathological brain development.

Epidemiologic studies similarly identified various
environmental disturbances that confer increased brain
disease risk, but do not singularly cause the disorder
(Sullivan et al, 2003; Tsuang, 2000; van Os et al, 2010).
There is evidence that prenatal maternal immune activation
(MIA) (Brown and Derkits, 2010), perinatal hypoxia
(Cannon et al, 2002; Schmidt-Kastner et al, 2012), adole-
scent cannabis use (Arseneault et al, 2004; Henquet et al,
2008), stress (Norman and Malla, 1993), obstetric complica-
tions (Dalman et al, 1999), urbanicity (Vassos et al, 2012),
migrant status (Cantor-Graae and Selten, 2005), advanced
paternal age (Malaspina, 2001), and others (Brown, 2011;
Tandon et al, 2008) interact with predisposing genetics to
increase risk for illness.

Therefore, genetic and environmental influences alone
may confer risk for schizophrenia, but it appears that a
combination of multiple factors is necessary for disease
manifestation in most cases (Giusti-Rodriguez and Sullivan,
2013; Lewis and Levitt, 2002; Mowry and Gratten, 2013;
Sullivan et al, 2003; Tsuang, 2000). Supported by expanded
basic science efforts and increasingly sophisticated animal
models, a unifying concept has emerged stating that many
of these disparate risk factors converge onto common
dysfunctional pathways and lead to illness (Chen et al, 2013;
de Jong et al, 2012; Horvath and Mirnics, 2009, 2014b;
Mirnics et al, 2006). In this review, we discuss the concept
that GABA system development is a major convergence
point for genetic and environmental susceptibility factors
for schizophrenia.

CORTICAL DEVELOPMENT

Early in mammalian development, the telencephalon
emerges from the anterior portion of the neural tube and
develops into the cortex and hippocampus. The plethora
of cell types in the adult brain arise from progenitor pools
in distinct subregions of the developing brain that are
established as early as the morphogenic patterning of the
neural tube (Bystron et al, 2008; Marin and Rubenstein,
2003). Progenitors in the subventricular zone that produce
projection neurons express diverse combinations of trans-
cription factors that guide them from proliferation through
differentiation into unique types of cells (Greig et al, 2013;
Molyneaux et al, 2007). Similarly, GABAergic interneuron
types are predetermined based on unique transcription
factor combinations in different progenitor types in the

subpallial ganglionic eminences (Flames et al, 2007;
Wonders and Anderson, 2006). However, migration pat-
terns of glutamatergic projection neurons and GABAergic
interneurons are quite different: while projection neurons
migrate radially and remain in the general area where they
were born, interneurons have a predominantly tangential
migration, and integrate into regions far away from their
origins (Bystron et al, 2008; Guo and Anton, 2014; Marin
and Rubenstein, 2003; Nadarajah and Parnavelas, 2002).

Cajal–Retzius cells are interneurons that are among the
first-born cells in the developing cortex and hippocampus.
At the beginning of cortical expansion, they migrate into the
cortical preplate (Bielle et al, 2005) and coordinate the
organization of radial glia and migrating projection neurons
by secreting reelin (RELN) (Tissir and Goffinet, 2003).
RELN signals new projection neurons migrating along
radial glia to bypass earlier-born neurons and layer in an
‘inside-out’ manner (Hashimoto-Torii et al, 2008; Tissir and
Goffinet, 2003). The radial glia, meanwhile, are maintained
by NRG1/ErbB signaling and even transient disruptions
of NRG1 signaling cause these cells to differentiate
prematurely, which could have a profound impact on radial
migration (Schmid et al, 2003). GABAergic interneurons
destined for the cortex, however, migrate tangentially over
much longer distances from the subpallium, avoid the
striatum via semaphorin 3A- and 3F-mediated chemorepul-
sion (Marin et al, 2001b), and settle into final positions after
the migration of projection cells is compete (Bartolini et al,
2013; Pla et al, 2006). NRG1/ErbB interactions are necessary
for GABAergic cell migration as neuregulin acts as both a
local and long-range attractant cue for migrating inter-
neurons and dysfunction of either ligand or receptor
leads to deficits in cell migration and cortical patterning
(Flames et al, 2004). Once they reach the cortex, inter-
neuron populations tend to cluster together in specific
layers (Ciceri et al, 2013), likely via cell type-specific expres-
sion of cell adhesion molecules including ErbB4 (Fazzari
et al, 2010). Thus, interneuron integration into cortical
lamina appears to be a tightly regulated spatial–temporal
process.

Neuronal differentiation, migration, and integration are
managed by a number of well-studied molecular processes.
Brain-derived neurotrophic factor (BDNF) and other
neurotrophins promote cellular migration, synaptogenesis,
dendritic extension, and synaptic maintenance throughout
life (Behar et al, 1997; Huang and Reichardt, 2001; Marin
and Rubenstein, 2001a; Park and Poo, 2013). Altering levels
of BDNF in the developing brain can disrupt the migration
of both projection neurons and interneurons (Knusel et al,
1994; Polleux et al, 2002; Woo and Lu, 2006) and
their coordinated extension and retraction of dendrites
(McAllister et al, 1997). In addition to establishing cortical
circuits, these functions of BDNF continue to be critical
when synapses are strengthened or pruned later in develop-
ment (Gorski et al, 2003; Vicario-Abejon et al, 2002) at a
critical time for susceptibility for psychiatric disease (Paus
et al, 2008). Therefore, maintaining appropriate local levels
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of BDNF and other neurotrophins is critical at multiple
points in development from neural progenitor stages to
adolescent brain maturation.

RELN, NRG1/ErbB4, and BDNF are critical for the
establishment of GABAergic circuitry. Defects in these
pathways early in development could have cascading conse-
quences due to GABA’s own role as a trophic factor during
cortical development (Owens and Kriegstein, 2002).

DEVELOPMENT OF THE GABAergic SYSTEM

GABA is the major inhibitory neurotransmitter in the
brain; however, GABAA receptor activation is excitatory
before birth (Ben-Ari, 2002). Tonic GABA release early in
development (Cellot and Cherubini, 2013; Manent et al,
2005) stimulates and guides the migration of new projection
neurons in a receptor type-dependent manner (Owens and
Kriegstein, 2002). GABAA receptors are expressed on neural
progenitors in the proliferative zone where GABA signaling
promotes cell cycle exit and migration (LoTurco et al,
1995). GABAB and GABAC stimulation maintains migration
through the cortical plate (Behar et al, 2001), whereas
additional GABAA activation provides a stop signal (Behar
et al, 2000). This entire process is highly orchestrated by
dynamic expression of receptors during migration (Maric
et al, 2001). Once in place, continued GABAA stimulation
signals new projection neurons to extend processes (Barbin
et al, 1993; Marty et al, 1996) and integrate into developing
circuitry through new synaptic contacts (Wang and
Kriegstein, 2008) while also regulating the maturation of
inhibitory contacts (Wu et al, 2012). Increasing potassium
chloride cotransporter 2 (KCC2) expression around the
time of birth switches the chloride gradient from depolariz-
ing to hyperpolarizing; however, there is evidence that local
chloride gradients may be different at certain interneuron
synapses and in disease states (Arion and Lewis, 2011; Hyde
et al, 2011). These processes continue to guide migration
and integration in the dentate gyrus of the hippocampus
where neurogenesis continues into adulthood (Ge et al,
2006).

The final product of development is a diverse population
of interneurons, each serving a different function. Mature
interneurons can be distinguished by their molecular
content, electrical properties, synaptic targets and laminar
distributions (Ascoli et al, 2008; DeFelipe et al, 2013;
Markram et al, 2004). Interneuron cell types typically
contain either the calcium binding proteins, such as
parvalbumin (PV), calretinin (CR), or calbindin (CB), or
the neuropeptides, such as cholecystokinin (CCK), neuro-
peptide Y (NPY), somatostatin (SST), or vasointestinal
peptide (VIP), but occasionally contain more than one of
these markers (Ascoli et al, 2008; Markram et al, 2004).
PVþ cells are fast-spiking basket and chandelier cells that
innervate pyramidal cell soma and axon initial segments,
respectively (Markram et al, 2004), as well as other inter-
neuron populations (Lovett-Barron et al, 2012). Another

type of basket cells, containing CCK, also form perisomatic
contacts onto pyramidal cells; however, they are distin-
guished from the PVþ variety by their slower, accom-
modating firing patterns (Hefft and Jonas, 2005) that
integrate neuromodulatory information with faster network
activity (Freund, 2003; Varga et al, 2009). Interconnected
networks of NPYþ neurogliaform cells mediate regional
tonic inhibition through extrasynaptic volume transmission
in multiple cortical and subcortical regions (Manko et al,
2012; Olah et al, 2009; Price et al, 2005). Martinotti cells,
containing CR, CB, SST, NPY, and/or CCK, span both
cortical lamina and cortical columns and synapse onto
pyramidal cell tuft dendrites in layer I (Markram et al,
2004). Bipolar and double bouquet cells are found in
multiple cortical lamina and primarily synapse onto
pyramidal cell dendrites and other interneurons and
express some combination of CCK, CR, CB, or VIP, whereas
bitufted cells are similar in their synaptic contacts and
function, but can also express NPY or SST (Markram et al,
2004). A subset of these cells expressing VIP are particularly
interesting because they regulate PVþ and SSTþ inter-
neurons to disinhibit cortical circuits (Pi et al, 2013). While
these are common generalized examples, interneuron cell
types are, in fact, so diverse that they can be further
subdivided using numerous features (Ascoli et al, 2008). For
example, 21 types of interneurons regulate the function of
only three types of glutamatergic cells in the hippocampus
(Klausberger and Somogyi, 2008). This diversity and
integration within networks highlights the importance of
coordinated interneuron development and function in
multiple brain regions.

Brain development requires precise coordination and
timing of many contributing molecular systems. Any
disruption could offset, alter, or cease these coordinated
processes with immediate, delayed, or cascading conse-
quences on brain function and alter the trajectory of
development (Lewis and Levitt, 2002). Depending on the
timing of the insult, common disruptions could have
transient effects or marked and compounding consequences
that lead to chronic disability (Horvath and Mirnics, 2014a;
Insel, 2010; Lewis and Levitt, 2002). Furthermore, the
individual genetic makeup appears to be critical: the same
insult can have minimal effect or a large effect in two
different individuals, and this will largely depend on the
disease-predisposing sequence variants in their genome
(Horvath and Mirnics, 2014b).

ANATOMICAL AND HISTOLOGICAL
FINDINGS SUGGEST
NEURODEVELOPMENTAL DYSFUNCTION
OF CELL MIGRATION AND SYNAPTIC
INTEGRATION IN SCHIZOPHRENIA

In addition to the clinical progression of symptoms across
adolescent and adult development (Insel, 2010; Lewis and
Lieberman, 2000), clues connecting neurodevelopmental
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dysfunction with schizophrenia can be found in
post-mortem brain tissue from patients with the disorder.
Perhaps, the best documented anatomical findings
are reduced cortical thickness and enlarged ventricles
(Harrison, 1999). However, the lack of degenerative pathol-
ogy suggests that these findings are due to abnormalities in
cellular migration and/or neuronal arborization and synaptic
function (Folsom and Fatemi, 2013; Harrison, 1999; Marenco
et al, 2000; Selemon and Goldman-Rakic, 1999). Several
cellular and molecular findings support this view and provide
evidence for neurodevelopmental abnormalities long before
the onset of illness.

Differences in cellular distribution are often attributed to
altered neuronal migration early in brain development
(Metin et al, 2008). Altered neuronal densities were reported
in the prefrontal cortex (Akbarian et al, 1996; Anderson
et al, 1996; Connor et al, 2009; Daviss and Lewis, 1995;
Ikeda et al, 2004; Joshi et al, 2012; Morris et al, 2008;
Rajkowska et al, 1998; Selemon et al, 1995, 1998, 2003; Yang
et al, 2011), auditory cortex (Dorph-Petersen et al, 2009),
cingulate cortex (Benes, 1991, 1993; Brune et al, 2010;
Connor et al, 2009), entorhinal cortex (Arnold et al, 1991;
Falkai et al, 2000; Jakob and Beckmann, 1986; Kovalenko
et al, 2003; Wang et al, 2011), fusiform cortex (Di Rosa et al,
2009), occipital cortex (Selemon et al, 1995), parietal cortex
(Chance et al, 2005), visual cortex (Dorph-Petersen et al,
2007), thalamus (Young et al, 2000), hypothalamus
(Bernstein et al, 1998), striatum (Kreczmanski et al, 2007),
amygdala (Kreczmanski et al, 2007), and hippocampus
(Konradi et al, 2011) in post-mortem brain tissue from
schizophrenic patients. Interestingly, many of these reports
show specific defects in GABAergic interneuron density or
distribution (Benes et al, 1991; Chance et al, 2005; Daviss
and Lewis, 1995; Di Rosa et al, 2009; Ikeda et al, 2004; Joshi
et al, 2012; Konradi et al, 2011; Morris et al, 2008; Wang
et al, 2011; Yang et al, 2011). While the majority of studies
report decreased cell densities, others argue the opposite or
find no change (Beasley et al, 2009; Cullen et al, 2006;
Heckers et al, 1991; Pennington et al, 2008; Smiley et al,
2012).

Interstitial white matter neurons (IWMNs) have also been
particularly well studied. IWMNs are neurons in white
matter tracts that remain from the early cortical subplate
zone (Chun and Shatz, 1989) or GABAergic interneurons
from the ganglionic eminences (Anderson et al, 2001). The
density of these cells typically declines during development
as migration is completed and the subplate disappears
(Connor et al, 2009; Kostovic and Rakic, 1990; Meyer et al,
1992). Several studies have reported changes in
the distribution of superficial and/or deep IWMNs in the
cortices of subjects with schizophrenia. However, like the
cell density studies, these data do not form a consensus.
Some studies report increased density in the superficial
white matter (Anderson et al, 1996; Connor et al, 2009;
Eastwood and Harrison, 2005; Joshi et al, 2012; Kirkpatrick
et al, 1999, 2003; Yang et al, 2011), whereas others report
decreased density in superficial, but increased or variable

density in deep white matter (Akbarian et al, 1993a, b,
1996). Variation in patient populations, brain regions, or
methodologies (such as particular molecular markers used
to identify cells) may account for these discrepancies
(Connor et al, 2009; Eastwood and Harrison, 2005;
Harrison, 1999; Heckers, 1997; Meyer et al, 1992). Regard-
less of the reported differences, the most likely explanation
for the displacement of IWMNs is that cellular migration of
GABAergic interneurons and/or their cell death are
disrupted very early in development.

In summary, the anatomical and histological findings in
schizophrenia suggest that altered cellular migration and
synaptic formation are an important part of the disease
process, and that GABA system-associated genes are
particularly affected in this cascade of deleterious events.
This view is also supported by molecular studies in post-
mortem tissue from patients with schizophrenia and
mechanistic studies in animal models (to be discussed).

GENE EFFECTS CONVERGE ONTO GABA
SYSTEM DEVELOPMENT

In addition to cellular evidence, changes in the expression
of genes with known importance for developmental
processes—including cellular migration, synaptogenesis,
synaptic maintenance, cell signaling, glia, immune regula-
tion, and mitochondrial function—have been found in post-
mortem tissue from patients with schizophrenia (Arion
et al, 2007, 2010; Clay et al, 2010; Hakak et al, 2001;
Harrison and Weinberger, 2005; Horvath and Mirnics,
2014a, b; Jaaro-Peled et al, 2009; Lewis et al, 2005;
McGlashan and Hoffman, 2000; Middleton et al, 2002;
Mirnics et al, 2000, 2001b; Mirnics and Pevsner, 2004;
Roussos et al, 2012). Importantly, multiple studies report
expression changes in GABA system-related transcripts,
including altered expression of GABA-synthesizing en-
zymes, glutamic acid decarboxylase 1 and 2 (GAD1 and
GAD2, discussed in the next section), interneuron-
expressed proteins and neuropeptide genes (PV, CCK,
NPY, SST, and CB) (Hashimoto et al, 2003, 2008a;
Hoftman et al, 2013; Iritani et al, 2000; Kuromitsu et al,
2001; Maldonado-Aviles et al, 2009; Mellios et al, 2009; Volk
et al, 2012), GABA receptor subunits (GABRA1–2,
GABRA4–6, and GABRD) (Benes et al, 1992; Hashimoto
et al, 2008a, b; Hoftman et al, 2013; Maldonado-Aviles et al,
2009; Volk et al, 2002b), and interneuron development- and
maintenance-related mRNAs (GABA transporter 1, sodium
potassium chloride cotransporter 1 (NKCC1), and KCC2)
(Arion et al, 2011; Fish et al, 2011; Hashimoto et al, 2008a,
b; Hoftman et al, 2013; Hyde et al, 2011; Volk et al, 2002b).
Of these, the current review will focus primarily on the
GAD1 deficit and its relationships with RELN, BDNF, NRG1,
and DISC1.

Deficiencies in GAD1 expression, the enzyme responsible
for producing the majority of the GABA in the brain, are
commonly found in many brain regions in post-mortem
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tissue from patients with schizophrenia (Akbarian and
Huang, 2006; Akbarian et al, 1995; Costa et al, 2004; Curley
et al, 2011; Fatemi et al, 2005; Guidotti et al, 2000a;
Hashimoto et al, 2003, 2008a, b; Huang and Akbarian, 2007;
Impagnatiello et al, 1998; Kalkman and Loetscher, 2003;
Knable et al, 2002; Lewis et al, 2005; Mirnics et al, 2000;
Thompson Ray et al, 2011; Volk et al, 2000; Volk and Lewis,
2002a). Interestingly, GAD1 mRNA was not detectable in
approximately 30% of GABAergic interneurons in the
cortex of post-mortem brains from individuals with
schizophrenia (Akbarian et al, 1995; Volk et al, 2000),
whereas cells with detectable GAD1 appeared to have
normal levels (Volk et al, 2000), suggesting dysregulation
of GABAergic gene expression is cell type-specific. How-
ever, this does not mean that the majority of interneurons
are unaffected by the disease process. Reductions of
interneuronal-expressed genes NPY, SST, CCK, and PV
have been found repeatedly in the cortex of subjects with
schizophrenia in post-mortem studies (Hashimoto et al,
2003, 2008a; Hoftman et al, 2013; Ikeda et al, 2004; Iritani
et al, 2000; Kuromitsu et al, 2001; Maldonado-Aviles et al,
2009; Mellios et al, 2009; Volk et al, 2012). Deleting GAD1 in
animal models causes catastrophic effects on development
by almost completely reducing brain GABA content and is
not compatible with life (Asada et al, 1997). However,
GAD1 suppression in limited periods of development or in
restricted cell types has multiple consequences. Disrupting
GABA signaling during early development alters cellular
migration and cortical architecture in cell type-dependent
ways (Aronne et al, 2011; Cuzon et al, 2008; Haas et al, 2013;
Manent et al, 2007; Thompson et al, 2009; Wu et al, 2012).
PVþ interneurons are selectively disrupted by exogenous
GABA potentiation (Haas et al, 2013; Levav-Rabkin et al,
2010). During adolescence, when cells have finished
migrating and cortical circuits are maturing, GAD1
suppression decreases axonal branching in PVþ cells in a
cell autonomous manner (Chattopadhyaya et al, 2007) and
increases pyramidal cell activity (Lazarus et al, 2013). Adult
mice with GAD1 gene expression deficits in restricted
interneuron populations have distinct molecular and
behavioral dysfunction depending on the affected cell type
(Brown et al, 2013; Kvitsiani et al, 2013; Schmidt et al,
2013). These data provide functional context to post-
mortem studies that consistently implicate diverse inter-
neuron cell types in schizophrenia (Hashimoto et al, 2003,
2008a; Hoftman et al, 2013; Iritani et al, 2000; Kuromitsu
et al, 2001; Maldonado-Aviles et al, 2009; Mellios et al, 2009;
Morris et al, 2008; Volk et al, 2012) and suggest that
GABAergic gene expression deficits seen in post-mortem
studies of patients with schizophrenia actively contribute to
important aspects of brain development and behavior
(Lewis et al, 2005; Marin, 2012; Schmidt and Mirnics, 2012).

As mentioned previously, RELN is critical for the
migration and laminar organization of the cortex and
hippocampus. RELN is expressed in Cajal–Retzius cells
during early development and from many GABAergic cells
in multiple cortical layers shortly after birth (Alcantara

et al, 2006). Brain tissue from schizophrenic patients also
consistently report decreased expression of the RELN gene
(Eastwood and Harrison, 2006; Fatemi et al, 2000, 2001;
Folsom and Fatemi, 2013; Guidotti et al, 2000a; Habl et al,
2012; Impagnatiello et al, 1998; Maloku et al, 2010; Ruzicka
et al, 2007), which is likely the result of altered genetic and/
or epigenetic regulation (Costa et al, 2003; Grayson et al,
2005, 2006; Tochigi et al, 2008; Veldic et al, 2004, 2007).
While the RELN deficiency observed in post-mortem tissue
clearly does not impact cortical architecture to the same
degree as total RELN loss during cortical development, it is
likely that even a small reduction of RELN would affect
synaptic integration during development and/or synaptic
stability and plasticity in adulthood (Frotscher, 2010). It is
also likely that the ontogeny of this deficit varies from
patient-to-patient. RELN was initially discovered as a
mutation affecting cortical development and behavior in
reeler mice (reviewed by (Folsom and Fatemi, 2013;
Lambert de Rouvroit and Goffinet, 1998; Tissir and
Goffinet, 2003) and has been studied extensively in other
systems and clinical populations. In addition to being a
necessary component of cortical development, RELN also
has a role in stabilizing neurons and synapses throughout
life (Abraham and Meyer, 2003; Frotscher, 2010; Guidotti
et al, 2000b). It is expressed by GABAergic interneurons and
the expression of the GAD1 and RELN genes is tightly
coordinated by a common epigenetic mechanism (Costa
et al, 2004; Grayson et al, 2005, 2006; Guidotti et al, 2000a;
Impagnatiello et al, 1998; Kundakovic et al, 2009; Maloku
et al, 2010; Noh et al, 2005; Pesold et al, 1999; Rodriguez
et al, 2002; Ruzicka et al, 2007; Tochigi et al, 2008; Veldic
et al, 2004, 2007). In addition, rodent models show that
RELN deficiency alone can result in downstream reductions
of both GAD1 (Kutiyanawalla et al, 2012; Nullmeier et al,
2011; Pascual et al, 2004; Takayama, 1994) and BDNF (Pillai
and Mahadik, 2008). Thus, it appears that RELN and
GABAergic deficits in schizophrenia are tightly linked.

A similar decrease in BDNF has been observed consis-
tently in several studies (Hashimoto et al, 2005; Mellios
et al, 2009; Thompson Ray et al, 2011; Toyooka et al, 2002;
Weickert et al, 2003). Genetic variants of the BDNF gene
associated with schizophrenia (Neves-Pereira et al, 2005)
produce progressive cortical and hippocampal structural
changes, as well as behavioral impairment (Egan et al,
2003a; Pezawas et al, 2004). A genetic variant of BDNF
associated with increased risk for psychiatric disorders
including schizophrenia (Egan et al, 2003b; Gratacos et al,
2007) is linked to reduced cortical and hippocampal
volumes and impaired learning and memory, presumably
by interfering with the development and maintenance of
neurons and synapses (Egan et al, 2003b; Eisenberg et al,
2013; Hariri et al, 2003; Pezawas et al, 2004; Szeszko et al,
2005; Tost et al, 2013). However, these findings are not
always replicated and more studies are needed to clarify the
mechanisms of the Val66Met allele and psychiatric illness
(Kanazawa et al, 2007). Animal studies show that BDNF is
also vital for developing GABAergic circuitry, controlling
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everything from interneuron migration to establishing
synaptic contacts (Danglot et al, 2006; Ikeda et al, 2006;
Ohba et al, 2005; Yamada et al, 2002), positioning and
activating RELN-secreting Cajal–Retzius cells (Alcantara
et al, 2006; Ringstedt et al, 1998), regulating GABA release
probability (Ohba et al, 2005), and expressing GAD1
(Huang et al, 1999; Ohba et al, 2005; Yamada et al, 2002).
Conversely, GABA regulates BDNF through activity-depen-
dent processes that switch from inducing to inhibiting
BDNF gene expression around the same time GABA
signaling switches from excitatory to inhibitory (Berninger
et al, 1995). PV-expressing (PVþ ) interneurons were
hypothesized to be the main target of BDNF-dependent
processes (Hashimoto et al, 2005; Lewis et al, 2005)
because PVþ interneurons express the BDNF receptor
TrkB (Cellerino et al, 1996); however, the differentiation of
NPYþ interneurons in vitro is also BDNF-dependent
(Marty et al, 1996) and in vivo rodent studies demonstrate
that BDNF is necessary for the expression of NPY and
SST in the absence of any changes in PV, GAD1, or GAD2
(Glorioso et al, 2006). These results closely mirror post-
mortem studies of schizophrenia that show tight corre-
lations between NPY, SST, and BDNF gene expression
(Hashimoto et al, 2008b; Mellios et al, 2009). It is possible,
based on the GABAergic regulation of BDNF, that the
developmental time points of in vitro and in vivo measure-
ments in model systems could affect the interpretation of
these and other results due to the changing influence of
GABA signaling on activity-dependent processes across
development. However, this prospect also highlights the
very interesting possibility that risk factors for schizo-
phrenia have different and even opposing consequences
depending on the specific timing of the insult. Regardless, it
is clear that BDNF and GABA systems interact extensively
and deficits in either system may affect the other to a large
degree, particularly during development.

NRG1 and its receptor ErbB4 have both been implicated
in genetic susceptibility for schizophrenia in candidate gene
studies (Harrison and Law, 2006; Mei and Xiong, 2008; Rico
and Marin, 2011; Stefansson et al, 2004). NRG1 mRNA is
increased in the brains of schizophrenic patients along with
its receptor ErbB4 (Chong et al, 2008; Harrison and Law,
2006; Hashimoto et al, 2004; Law et al, 2006, 2007) along
with increased NRG1 protein intracellular domain (Chong
et al, 2008) but decreased C-terminal fragment (Barakat
et al, 2010), indicating abnormal proteolytic cleavage and
dysfunctional NRG1 signaling. Animal studies have elabo-
rated the importance of NRG1/ErbB in GABAergic inter-
neuron migration and provided support for translatability
of the findings. ErbB4 shows conserved interneuron-specific
expression in mice, rats, monkeys, and humans (Neddens
et al, 2011) and NRG1/ErbB4 signaling is necessary for the
development of inhibitory circuits (Del Pino et al, 2013;
Fazzari et al, 2010). Neddens et al (2011) also showed that
ErbB4 expression was restricted to cells that express
interneuron subclass markers PV, CCK, or CR, but not
those that express CB, which is particularly interesting since

CB interneurons are also those that appear to be unaffected
in schizophrenia (Lewis et al, 2005). NRG1/ErbB4 signaling
also appears to have distinct functions in development and
maintenance of cortical circuitry. ErbB4 associates with
GABAAa1 subunit-containing GABA receptors expressed
on interneurons and NRG1/ErbB4 signaling reduces their
surface expression (Mitchell et al, 2013), which likely
contributes to increased excitability of interneurons by
NRG1 (Li et al, 2012) and partially explains the mechanism
behind increased GABA release and decreased pyramidal
cell activity after NRG1 application (Wen et al, 2010). Fast-
spiking PVþ interneurons are necessary for the generation
of gamma oscillations and it is possible that these pathways
underlie deficient oscillatory activity in schizophrenia (Hou
et al, 2013; Lewis et al, 2012; Uhlhaas and Singer, 2010).
However, ERBB4 deletion in mice can lead to either
impaired or increased gamma oscillations depending on
the timing of the deletion. Genomic ERBB4 deletion was
accompanied by a B30% reduction in the number of PVþ
interneurons and lead to decreased oscillatory activity
(Fisahn et al, 2009), whereas conditional deletion in
postmitotic interneurons, albeit with residual expression
due to low receptor turnover, displayed normal PVþ cell
numbers and lead to increased oscillatory power (Del Pino
et al, 2013), suggesting that reduced gamma oscillations in
schizophrenia might arise from insults very early in
development. Despite the evidence in favor of a common
NRG1/ErbB4 signaling/PVþ interneuron dysfunction phe-
notype, restricting ERBB4 deletion to PVþ interneurons
did not account for all of the NRG1/ErbB4-associated
behavioral abnormalities due to the presence of a large
number of NRG1þ /PV� cells in the amygdala (Shamir
et al, 2012). This contrast is a quintessential example
of how similar genetic insults lead to divergent pheno-
types depending on their developmental timing and
cell type-specific expression, as well as brain region-
specific differences, and highlights the importance
of GABAergic cell type-specific effects of genetic mani-
pulations.

DISC1 was identified as a schizophrenia susceptibility
gene in a pedigree of a Scottish family carrying a
translocation that was associated with major mental illness
(Muir et al, 2008; St Clair et al, 1990). Subsequent genetic
and biological research has clarified the function of DISC1
and its importance in development. DISC1 associates with
proteins that regulate microtubules and is necessary for
normal cell migration and neurite outgrowth (Brandon and
Sawa, 2011; Kamiya et al, 2005). It is also important for
synaptic integration in the dentate gyrus in adulthood as
DISC1 knockdown produces abnormalities in neuronal
positioning and synaptic contacts (Duan et al, 2007).
These findings support the role of DISC1 in developing
synaptic connections in the cortex and hippocampus in
schizophrenia, which have been elaborated in mice
(Jaaro-Peled, 2009). Of particular interest for this review,
activity-dependent GABAergic stimulation during early
cortical development and during adult neurogenesis in the
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hippocampus is critical for the DISC1-dependent regulation
of neurite outgrowth and synaptic integration (Duan et al,
2007; Kim et al, 2012). This interaction between DISC1 and
GABAergic systems is thought to underlie alterations in
cortical volumes (Brauns et al, 2011; Duff et al, 2013; Mata
et al, 2010; Trost et al, 2013) and hippocampal function
(Callicott et al, 2013) in patients with DISC1 risk alleles.
Furthermore, the codependence of DISC1 and GABA in this
period of development represents a point of convergence
with other risk factors including NRG1 (Mata et al, 2010;
Wood et al, 2009) and environmental exposures. Impor-
tantly, a dominant-negative DISC1 mutation had differential
effects on the brain and behavior depending on the specific
timing of its expression during development (Ayhan et al,
2011), which reinforces the importance of the timing of
developmental insults.

While extremely informative and irreplaceable, post-
mortem research cannot determine if, when, or how specific
gene expression deficits, environmental insults, or gene�
environment interactions (G� E) incite their principal and
cascading effects. Yet, the question of the developmental
pathophysiological cascade is critical for understanding
the disease: diverse genetic predispositions and various
environmental insults, when combined, give rise to a set
of common phenotypic manifestations that we classify as
schizophrenia. Thus, understanding the convergence pro-
cess that leads from etiological diversity to phenotypic
similarity must be pursued through various in vitro and
in vivo animal models, which has a potential for direct
furthering clinical research and drug discovery (Harrison
and Weinberger, 2005; Horvath et al, 2011; Horvath and
Mirnics, 2009, 2014a; Levitt et al, 2006; Lewis and Mirnics,
2006; Mirnics et al, 2001b, 2006).

ENVIRONMENTAL INSULTS DISRUPT
GABAergic SYSTEM DEVELOPMENT

The combination of anatomical, histological, and molecular
findings in post-mortem tissue of subjects with schizo-
phrenia is consistent with early neurodevelopmental
disturbances. Importantly, gene expression is one of the
initial points of interaction between genes and environment:
cell signaling pathways initiated by environmental events
appear to converge on transcriptional regulators to induce
or inhibit the expression of specific genes (Harrison
and Weinberger, 2005; Horvath et al, 2011; Horvath and
Mirnics, 2009, 2014a, b; Levitt et al, 2006; Lewis and Mirnics,
2006; Mirnics et al, 2001b, 2006). Therefore, while gene
expression changes can indicate either genetic or environ-
mental disruptions, in the context of schizophrenia they
likely represent a sum of G� E interactions. As mentioned
previously, genetic susceptibility alone cannot account for
the risk of schizophrenia diagnosis. The cumulative and
interactive effects of genetic and environmental factors
represent the remainder of the risk. Environmental factors
exert their influences directly by affecting specific cellular

processes (eg, toxins, fast cell signaling events, etc) or
indirectly by manipulating the expression of genes (eg,
hormones, drugs, immune system activation, modulatory
cell signaling events, etc). The interaction between genetics
and environment, through which a genetic predisposition is
revealed, can explain how individuals with identical genetic
makeup (ie, monozygotic twins) differ in subtle aspects of
their appearance or personality, and in some cases in drastic
aspects of their physical and mental health. For example,
concordance rate for schizophrenia diagnosis in monozy-
gotic twins is only about 50% (Cardno and Gottesman,
2000), suggesting that the remainder of risk for psychosis is
attributable to other factors including environmental
exposures. Animal models have been used to determine
the mechanisms behind these environmental insults, G� E
interactions, and brain development.

As mentioned previously, prenatal MIA, stress, cannabis
use, and others have been established as environmental risk
factors for schizophrenia (van Os et al, 2010). However,
determining causality can be difficult because of the
protracted amount of time between insult and diagnosis
(Lewis and Levitt, 2002). Immune system activation has
been implicated as a risk factor for schizophrenia (Horvath
and Mirnics, 2014a) and the major histocompatibility
complex is the most prominent signal in GWAS studies
(McAllister, 2014; Stefansson et al, 2009). MIA in rats and
mice causes dysfunction of GABAergic circuitry in the
hippocampus, amygdala, and cortex (Canetta and Brown,
2012; Meyer, 2014). GABA content decreases (Bitanihirwe
et al, 2010), GAD1 gene expression decreases (Deslauriers
et al, 2013; Richetto et al, 2013), and GABA receptor sub-
unit expression increases (Nyffeler et al, 2006) following
immune activation during prenatal development. These
effects appear to affect specifically PVþ interneurons
(Ducharme et al, 2012; Ibi et al, 2010; Piontkewitz et al,
2012), although effects on other interneuronal cell types
cannot be excluded. Rodent models have pinpointed
interleukin-6 (IL-6) as the critical factor leading to
molecular and behavioral dysfunction (Garbett et al, 2012;
Smith et al, 2007), suggesting that modulating the IL-6
pathway for therapeutic development may be beneficial.
Interestingly, a schizophrenia-associated missense mutation
in the NRG1 gene leads to increased IL-6 gene expression
and protein secretion in humans (Marballi et al, 2010).
Furthermore, interferon-induced transmembrane protein
3 (IFITM3) expression in astroglia appears to be involved in
mediating this MIA-IL-6 response (Ibi et al, 2013), which is
interesting considering IFITM3 is increased in schizophre-
nia and negatively correlated with GABAergic gene expres-
sion (Horvath and Mirnics, 2014a; Siegel et al, 2013).
Furthermore, the delayed molecular and behavioral effects
of MIA in adulthood can be revealed in at-risk genotypes as
mice with mutant forms of DISC1 display additional
phenotypes after in utero exposure to polyinosinic:polycy-
tidylic acid (poly I:C), a double-stranded RNA viral mimetic
and cytokine inducer (Abazyan et al, 2010; Ibi et al, 2010;
Lipina et al, 2013). The immune system, GABAergic
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systems, and schizophrenia risk genes may be an important
point of G� E interaction in schizophrenia. This concept is
further supported by the previously mentioned influences
of NRG1/ErbB4 and immune activation on the migration/
function of PVþ interneurons and the interaction between
DISC1 and GABA on neuronal migration and synaptic
formation.

Stress is also an important risk factor for schizophrenia
(Weinberger, 1987) and animal models provide evidence
that it potentiates the effects of other disease-predisposing
factors. Stress during adulthood compounds the effects of
in utero MIA exposure on GABAergic gene expression,
including decreased expression of GAD1, and leads to
dysfunctional behavior (Deslauriers et al, 2013; Giovanoli
et al, 2013). Chronic social stress interacts with NRG1
deficiency to change inflammatory cytokine and BDNF gene
expression (Desbonnet et al, 2012). Early life stress (Roth
et al, 2009) or chronic social defeat stress (Tsankova et al,
2006) increases persistent methylation and decreases BDNF
gene expression in rodents. While this result mirrors the
decreased BDNF expression seen in patients, the Val66Met
variant associated with psychosis is accompanied by less
BDNF methylation in the PFC (Mill et al, 2008). Owing to
the brain region- and promoter-specific nature of these
effects (Wong et al, 2010), and differences in rodent and
human neuroanatomy, more evidence will be required to
understand the interaction between Val66Met, BDNF
epigenetics, stress, and psychosis (Boulle et al, 2011).
Chronic stress also interacts with the cannabinoid system to
sensitize the effects of cannabinoids and shift cannabinoid-
mediated control of plasticity from projection neurons to
GABAergic cells (Patel et al, 2009; Reich et al, 2013). CCKþ
interneurons are the only interneuron cell type that
expresses the cannabinoid receptor CNR1 (Eggan et al,
2010), which silences CCKþ interneurons (Losonczy et al,
2004) and disrupts the hippocampus (Hajos et al, 2000;
Katona et al, 1999) and amygdala (Katona et al, 2001; Tan
et al, 2010) function. Furthermore, GAD1 suppression in
CCKþ /CNR1þ interneurons leads to dysfunctional amyg-
dala-dependent behavior and aminergic signaling (Brown
et al, 2013; Schmidt et al, 2013). Finally, mild stress during
development results in epigenetic-mediated reduction of
dopaminergic cell function in DISC1 mutant mice (Niwa
et al, 2013), whereas the loss of DISC1 in the frontal cortex
of adult rats increased stress sensitivity and resulted in
cognitive impairments that were not observed in rats with
normal DISC1 expression (Gamo et al, 2013). These results
establish an important G� E interaction between DISC1 and
stress and reinforce the importance of developmental
timing of this interaction.

In this manner, animal models provide the opportunity
for linking data and understanding dynamically and
reciprocally regulated functional and molecular networks.
It is likely that immune activation, stress, and/or repeated
cannabis exposure interact with genetic and/or molecular
dysfunction, including GABA system genes, NRG1, DISC1,
and others, to impair GABAergic circuitry to a greater

degree than any aspect alone and lead to behavioral
abnormalities.

FUTURE RESEARCH DIRECTIONS

Since the initial description of the neurodevelopmental
hypothesis of schizophrenia, data from epidemiological,
clinical, post-mortem, and animal model studies continue to
support and extend its premise (Brandon and Sawa, 2011;
Brown, 2011; Horvath and Mirnics, 2014a, b; Lewis and
Levitt, 2002; Lewis and Mirnics, 2006; Michel et al, 2012;
Mirnics et al, 2000, 2001b, 2006; Mirnics and Lewis, 2001a;
Rapoport et al, 2012; Schmidt and Mirnics, 2012).
Concurrently, GABAergic dysfunction has become recog-
nized as a hallmark feature of the disorder. The number
of studies reporting GABAergic dysfunction in the post-
mortem brain of subjects with schizophrenia and the
percentage of patients with GAD1 deficits in these studies
far surpasses the accountability of GAD1 genetic variation.
Rather, human data and animal models strongly argue that
environmental insults, especially through immune system
changes, converge with genetic susceptibility to alter
GABAergic development and function, and contribute to
behavioral impairment. However several questions remain
unanswered and warrant further study.

First, GAD1, RELN, BDNF, NRG1, DISC1, and other genes
with important developmental functions are regulated by
activity-dependent processes, and this makes the expression
changes found in post-mortem tissue from patients
challenging to interpret. These alterations are either caused
by specific disruptions of signaling events and transcrip-
tional processes specific for each gene (Horvath and
Mirnics, 2014b; Mirnics et al, 2001b) or are possibly
adaptations to generic decreases in synaptic activity. As
GABA is excitatory early in development and inhibitory
after birth, changes in GABA system function should have
opposing consequences on activity-dependent gene expres-
sion depending on when they occur. Recent studies showing
that NKCC1 and KCC2, the ion transporters responsible for
the excitatory/inhibitory switch, are dysregulated in schizo-
phrenia, further complicating the possible interpretational
framework (Arion et al, 2011; Hyde et al, 2011; Tao et al,
2012). More studies are needed to determine how the
specific developmental timing of environmental insults
interact with genetic susceptibility, and we need a better
understanding how altered chloride transporter expression
in the adult brain impacts schizophrenia-relevant
behaviors.

Second, the GABA system is incredibly diverse, making it
difficult to determine what are the effects of specific
GABAergic system deficits at the level of synaptic circuitry
(Ascoli et al, 2008; DeFelipe et al, 2013). It appears that
schizophrenia is characterized by dysfunction of multiple
interneuronal cell types (Lewis et al, 2005). These deficits
presumably interact at a level of neuronal networks, giving
rise to complex behavioral phenotypes, yet we study them in
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isolation. For example, PVþ chandelier cells regulate the
output of cortical pyramidal cells across multiple areas
(Markram et al, 2004; Woodruff et al, 2010). Their ‘fast-
spiking’ activity is determined by their glutamatergic
innervation and by expression of P/Q-type voltage-gated
calcium channels, which cluster at synaptic active zones and
support rapid vesicular release (Hefft and Jonas, 2005).
However, this makes it difficult to determine whether PVþ
interneurons are inherently dysfunctional in the pathophy-
siology of schizophrenia or whether activity-dependent
deficits driven by the glutamatergic system are a more
proximal disturbance. Since PVþ interneurons receive dense
glutamatergic projections (Hefft and Jonas, 2005), glutamate
system dysregulation in schizophrenia (Javitt, 2012) could
preferentially target them even in the absence of primary
GABAergic disturbances. The issue is also complicated by
evidence that at least some PVþ GABAergic synapses may
actually be excitatory owing to atypical local chloride
gradients at axon initial segments (Woodruff et al, 2010).
Furthermore, the activity of PVþ cells is modulated by the
inhibitory action of nearby CCKþ GABAergic interneurons
(Karson et al, 2009). Therefore, GAD1 suppression in CCKþ
interneurons could actually result in a net increase of
inhibitory tone at the circuit level by disinhibiting PVþ
cells (Freund and Katona, 2007), suggesting that disturbances

in multiple interneuronal sub-populations might have com-
plex, and often unexpected behavioral consequences.

Third, GABAergic dysfunction is not unique to schizo-
phrenia. Nearly all neuropsychiatric disorders include
dysfunctional GABA system components: schizophrenia
(Hashimoto et al, 2008a), bipolar disorder (Fatemi et al,
2013; Guidotti et al, 2000a), anxiety (Mohler, 2012),
depression (Gao et al, 2013; Thompson Ray et al, 2011),
panic disorder (Malizia et al, 1998), posttraumatic stress
disorder (Geuze et al, 2008), attention deficit hyperactivity
disorder (Edden et al, 2012), autism (Fatemi et al, 2010,
2002), Rett syndrome (Blue et al, 1999; Chao et al, 2010),
epilepsy (Kang and Macdonald, 2009), and others
(Marin, 2012). There is also some overlap in environmental
risk factors such as immune system activation during
development in schizophrenia and autism (Michel et al,
2012; Patterson, 2009). This raises three intriguing possibi-
lities. First, common insults like MIA might lead to multiple
divergent phenotypes depending on the specific timing of
the insult during development (Lewis and Levitt, 2002). No
where is this potential more evident than in the GABA
system where GABA receptor activation has opposite effects
on neural activity before and after birth. For example,
GABAergic excitation is necessary for DISC1-dependent
regulation of neural development (Duan et al, 2007;
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Genetic factors
(“specifiers”)
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NRG1
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DISC1

Disease
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GABA system
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Winter time of birth
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Maternal depression
Rh incompatibility
Advanced paternal age 
Prenatal MIA/infection
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Perinatal pre-eclampsia
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Figure 1. Genetic factors and environmental influences jointly alter normal interneuronal development. Copy number variants (CNVs), single-nucleotide
polymorphisms (SNPs), and mutations interact with a host of environmental factors. Their effects summate, and jointly regulate the expression of brain-
derived neurotrophic factor (BDNF), reelin (RELN), neuregulin 1 (NRG1), disrupted-in-schizophrenia 1 (DISC1) and glutamic acid decarboxylase
1 (GAD1). This interaction occurs on a developmental timeline, and alters the typical developmental trajectory of interneurons. Depending on the insults
and their timing, the gene� environment (G�E) interaction can disrupt the developmental trajectory at multiple developmental time points (arrows) and
might alter cell proliferation, migration, maturation, integration into cortical circuits, or refinement of GABAergic synaptic connections. Such mechanism
might explain the variability of GABAergic disturbances seen across the patient cohorts. Regardless of the timing of the insult and the exact time point
where the developmental trajectory starts deviating from the typical developmental curve, the end result might be similar—a dysfunctional GABAergic
circuitry, which contributes to the emergence of the disease symptoms. Disease threshold is indicated by the dashed gray line. CNS, central nervous
system; GABA, gamma-aminobutyric acid; MIA, maternal immune activation.
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Kim et al, 2012) and NRG1 regulates the expression
and activity of GABA receptors and interneuron activity
(Li et al, 2012; Mitchell et al, 2013; Wen et al, 2010).
Therefore, any environmental exposure affecting GAD1,
DISC1, or NRG1 might have opposite effects depending on
the developmental time point of its introduction. The
second possibility is that neuropsychiatric patients are
inherently heterogeneous and developmental risk factors
common to multiple disorders are found in overlapping
parts of the spectrum (Adam, 2013; Insel, 2010). In this
context, specific GABAergic deficits reported in multiple
disorders may also represent this overlap. This option may
be informed by new research initiatives seeking to identify
biology underlying specific symptom domains (Cuthbert
and Insel, 2013) and subsequent stratification of future
clinical studies. A third possible explanation is that
environmental factors might predispose to altered trajectory
of brain development, but individual genetic susceptibility
defines the phenotype (and ultimately the diagnosis). We
favor this last explanation (Horvath and Mirnics, 2014b), as
MIA and immune system activation predispose to both
autism and schizophrenia (Michel et al, 2012; Patterson,
2009), and early stress predisposes to a host of psychiatric
disorders (Chrousos and Gold, 1992; Corcoran et al, 2003;
O’Donnell, 2012; Walker et al, 2008). However, symptoms of
autism emerge very early in life while schizophrenia onset is
typically during late adolescence or early adulthood.
Therefore, one might argue that the different genetic
susceptibilities will define the disease phenotype in a
G� E manner, in which the environment can be considered
a ‘disease-predisposer’, and the genetic susceptibility is the
‘disease-specifier’ (Figure 1). This view has some support
from animal studies, where MIA, in conjunction with a
schizophrenia-susceptibility genotype (such as DISC1),
mirrors the late-onset behavioral abnormalities observed
in schizophrenia (Abazyan et al, 2010; Ibi et al, 2010).

Finally, investigation of the pathophysiology of schizo-
phrenia with animal models will remain a major challenge.
The mouse brain is different from the human brain and
rodents do not get schizophrenia. Furthermore, the utility
of animal models in schizophrenia research is limited by the
specificity of each hypothesis under examination. Yet, this
research will continue to be essential for our understanding
of brain function and behavior. Rodent models might not be
ideal for determining causal paths to psychosis, but they are
extremely valuable when asking well-defined questions
about development programs in the brain, the functions
of genes, and many other questions. In this context,
researchers can assess whether risk factors identified by
human genetic and epidemiological studies alter the brain
or species-relevant behavior and whether combinations of
these risk factors interact as part of larger malfunctioning
systems. Taking an ‘apples to apples’ approach removes
confusion associated with attempts to ‘diagnose’ the
behavior of rodents and facilitates fundamental research.
In the absence of anthropomorphism, manipulating gene
expression in mice has provided a wealth of data regarding

the roles GAD1, RELN, BDNF, NRG1, DISC1, and other
genes have in development and behavior. In fact, our
understanding of the developmental importance of the
GABAergic system comes largely from transgenic mouse
research. Simply put, while there are no (and perhaps never
will be) ‘true’ rodent models of schizophrenia or ‘schizo-
phrenic mice’, a combined use of transgenic technology and
environmental challenges in rodent models is essential for
understanding genes, cognition, and mental disorders
(Brown et al, 2013; Garbett et al, 2010, 2012; Jaaro-Peled
et al, 2009; Levitt, 2005; Papaleo et al, 2012; Schmidt et al,
2013; Schmidt and Mirnics, 2012; Smith et al, 2007).

As the field moves toward more complex assessments of
the impact of genetic and environmental factors on normal
and abnormal brain development, it will be increasingly
important to thoughtfully consider and report the precise
timing and cell type specificity of the findings. Despite these
challenges, we can be hopeful that the wealth of information
provided by such studies will identify the biological
foundations of specific behavioral dysfunctions. Only then
can we build the path to new treatment options, and
perhaps arrive to the long-coveted concept of personalized
medicine for psychiatric disorders.
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