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Abstract

In this paper, we propose a new method for longitudinal shape analysis that fits a linear mixed-

effects model, while simultaneously optimizing correspondences on a set of anatomical shapes. 

Shape changes are modeled in a hierarchical fashion, with the global population trend as a fixed 

effect and individual trends as random effects. The statistical significance of the estimated trends 

are evaluated using specifically designed permutation tests. We also develop a permutation test 

based on the Hotelling T2 statistic to compare the average shapes trends between two populations. 

We demonstrate the benefits of our method on a synthetic example of longitudinal tori and data 

from a developmental neuroimaging study.

1 Introduction

Longitudinal imaging studies involve the collection of imaging data at multiple time points 

for each participant. Such studies have the potential to provide a rich picture of the 

anatomical changes occurring during development, disease progression or recovery. 

Tracking each individual in a longitudinal study gives a model of change with a clarity that 

cannot be achieved in a cross-sectional study. Further, a more accurate model is possible if 

each individual in a longitudinal study acts as their own control, that is, factors that vary 

between individuals remain constant within the same individual. This control over nuisance 

factors reduces the variance in measurements and results in higher statistical power to 

quantify change.

Previous work on characterizing anatomical shape changes has focused primarily on the 

analysis of cross-sectional data. Approaches to the shape regression problem have been 
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formulated for several shape representations or metrics, including diffeomorphic shape 

changes [1], medial shape representations [2], atlas appearance models [3], deformation 

tensors [4], and shape regression using particle-based representation in [5]. Work on 

longitudinal shape modeling includes the use of diffeomorphic mappings and parallel 

transport by Qiu et al. [6] to track changes in an individual and mapping the individual 

trends to a population atlas. Durrleman et al. [7] construct spatiotemporal image atlases from 

longitudinal data. Lorenzi et al. [8] use a hierarchical model on stationary velocity fields, in 

a framework that does not include a Riemannian metric on the manifold of 

diffeomorphisms. Fishbaugh et al. [9] estimate smooth growth trajectories as deformations 

defined through ows with regularized acceleration fields. Barry and Bowman [10] built 

mixed-effects models on a small number of manually selected landmarks to model the 

development of facial shape. [11] develop a manifold version of a mixed-effects model to 

analyze longitudinal data taking values on a Riemannian manifold.

Linear mixed-effects models, pioneered by Laird and Ware [12] have become a natural 

choice when modeling univariate longitudinal data. These models are hierarchical, 

characterizing each individual trend as a linear model, which in turn can be modeled as a 

perturbation of the overall population trend. While these models are powerful for analyzing 

univariate or low-dimensional multivariate data, little has been done in the high-dimensional 

setting, such as longitudinal data extracted from medical images. A major bottleneck is the 

difficulty of estimating the large number of parameters involved in covariances between 

random effects.

In this paper, we present a new method for characterizing longitudinal shape change that 

combines point correspondences across shapes with the statistical modeling of individual 

and population trends via the linear mixed-effects model. Our shape models are based on the 

particle correspondence framework introduced by Cates et al [13], where particle positions 

on the object surfaces are optimized in a variational framework that seeks a balance between 

model simplicity and geometric accuracy of the surface representations.

2 Background

In the following section we provide a brief overview the particle-system correspondence 

optimization method as proposed in [13]. The general strategy of this method is to represent 

correspondences as point sets that are distributed across an ensemble of similar shapes by 

minimizing an objective function that quantifies the entropy of the system. We also review 

the linear mixed-effects model, described by Laird and Ware [12], and used as the 

underlying statistical descriptor of longitudinal changes in our system.

2.1 Correspondence Optimization

Let us define a surface as a smooth, closed manifold of codimension one, which is a subset 

of ℝd (e.g., d = 3 for volumes). We sample the surface  ⊂ ℝd using a discrete set of N 

points that are considered as random variables S = (Y1, Y2, …, YN)T, Y ∈ ℝd drawn from a 

probability density function (PDF), p(Y). We denote a realization of this PDF with lower 
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case, and thus we have s = (y1, y2, …, yN)T, where s ∈ N. We refer to the positions y as 

particles, and a set of particles, a particle system.

The amount of information encoded in this random sampling is, in the limit, the differential 

entropy of the PDF, given by H[Y] = −E{logp(Y)}, where E{·} is the expectation. 

Approximating the expectation by the sample mean, we have . 

To determine the probability of a particle’s position, p(yi), [13] uses a nonparametric Parzen-

window density estimation given by a mixture of multivariate, isotropic Gaussian kernels 

with standard deviation σ that determines the strength of particle interaction with N 

neighbouring particles within the defined window. An ensemble comprised of M surfaces, ℰ 

= s1, … sM can be described by a Nd × M matrix of particle positions , where k = 1, 

…, M and j = 1, …, N. Let sk ∈ ℝNd be an instance of a random variable S, then, the 

combined ensemble and shape cost function is defined by

(1)

This cost function is composed of two interacting terms. The first term produces a compact 

distribution of samples in shape space, while the second term provides uniformly-distributed 

correspondence positions on the shape surfaces, to achieve a faithful shape representation. 

The optimization process of this cost function is defined via gradient descent as described in 

[13].

2.2 The Laird and Ware linear mixed-effects model

In a linear mixed-effects model, the response or observed variable yi is assumed to have a set 

of parameters α, fixed across individuals. In addition, each individual i, is assigned a set of 

random parameters bi that model the deviation from the fixed effect α. For i ∈ {1, 2, …, m}, 

the model reads as follows:

(2)

where for the ith individual, Xi and Zi are known independent variables which influence yi 

through fixed and random effects respectively. bi are distributed as N(0, D), D being an 

arbitrary covariance matrix. εi models the error from the observed data, and is distributed as 

N(0, σ2Ii), Ii being an identity matrix.

A simple case of the mixed-effects model occurs when we have a single independent 

variable (such as time or age) that is used for both fixed and random effects. In this case we 

have Zi = Xi and (2) simply reduces to

(3)

where for the ith individual, α and bi are 2-vectors interpreted as slope-intercept pairs of the 

group and random effects of the individual, respectively.
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An example of synthetically generated data from the model (3) is shown in Fig. 1. This 

example illustrates the power of mixed-effects models and the importance of modeling 

correlations within each individual. Ignoring these correlations leaves us with a simple linear 

regression model. Fig. 1 shows the estimated linear regression model, which does not concur 

with the trends of the individuals. In contrast, the estimated α from mixed-effects modeling 

optimally summarizes the overall group trend.

3 Methodology

The correspondence optimization framework described in Sec. 2.1 was extended to 

incorporate a linear regression based approach in [5]. However, this approach may not 

model longitudinal data correctly due to differences in relationships across individuals. To 

address this issue, we propose a method that incorporates the linear mixed-effects model 

described in Sec. 2.2 into the framework in Sec. 2.1. Parameters of the linear mixed-effects 

model are simultaneously estimated along with the correspondence optimization. The 

following section describes our approach and revisits the parameter estimation for the linear 

mixed-effects model given by [12].

3.1 Correspondence with Linear Mixed-effects Modeling of Shapes

With the assumption of a Gaussian distribution in shape space, we can introduce a 

generative statistical model

(4)

for correspondences, where μ is the vector of mean correspondences, and ε is normally-

distributed error. Replacing μ in this model with a function of an explanatory variable x 

gives the more general, regression model

(5)

We propose to optimize correspondences under the linear mixed-effects model described in 

Sec. 2.2 to facilitate the estimation of individual and population trends in longitudinal data. 

Using the same explanatory variable (age of the individual, in case of real data) for both 

fixed and random effects as in (3), we assume that correspondences for shapes belonging to 

individual i are generated by the following analogous statistical model:

(6)

where Xi represents the explanatory variable (age; in the case of real data), Yi is the matrix 

containing correspondences for all shapes in the population, α represents the fixed-effects 

parameters (slope, intercept), while bi represents the random-effects parameters (slope, 

intercept) for the individual i and εi represents the error in correspondences.

The algorithm proceeds as follows. (1) Correspondences are first optimized under the 

nonregression model (4) to minimize the entropy associated with the total error ε, and are 

used to compute an initial estimate of the linear mixed-effects model parameters. (2) We 
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then follow the optimization procedure as described in Sec. 2.1, with the replacement of the 

model covariance Σ by the covariance Σ̂ of the underlying residual relative to the regression 

model. (3) We interleave the two estimation problems, re-estimating the mixed-effects 

model parameters after each iteration of the gradient descent on the correspondences.

3.2 Estimation of Parameters

We denote the parameters in the covariance matrix D and σ2 by a vector θ. We compute 

maximum likelihood (ML) estimates for α and θ and empirical Bayes estimates for bi. If we 

were to able to observe bi and εi, we could compute closed-form ML estimates of α and θ, 

but this is not the case. Therefore, an expectation maximization (EM) algorithm is used to 

estimate α and θ, treating bi and εi as hidden variables. The EM algorithm guarantees that 

the likelihood increases or stays constant at each iteration, but it can converge to a local 

maximum instead of the global one.

We model the response variable yi in (2) as being marginally distributed as 

. Since we don’t observe bi and εi, let us replace σ2 and D by their 

current estimates σ2(j) and D̂(j) at iteration j of the EM algorithm. Let us also define 

, and . The ML estimate for α is given by

The random-effects, bi, are estimated using empirical Bayes as

The covariances σ2 and D are estimated by taking the expectation over hidden variables εi 

and bi, conditioned on yi and the current estimates of α and θ. This step combines both the 

estimation and a maximization. The resulting estimate for the error variance is

where . Similarly, the estimate for covariance matrix D 

is given by
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We initialize the covariance matrix D̂(0) to the identity matrix and σ̂2(0) to 1 before starting 

the EM iterations.

3.3 Permutation test for significance of random-effects

In the case of longitudinal data, correlations may exist within shapes at different time-points 

for a given individual and break the independence assumption of the simple linear regression 

model. Another assumption that can be broken is homoscedasticity, i.e., the property that the 

variance of the residuals is constant across the independent parameter. When these 

assumptions are not met, simple linear regression models give less reliable (i.e., higher 

variance) estimates of the α parameters.

We use a nonparametric permutation test based on an estimate of the error variance Vε to 

confirm the significance of the random-effects introduced in the mixed-effects model. This 

permutation test works by permuting the assignment of shapes to individuals. The 

explanatory variable for the shape is not permuted only “group memberships” are permuted. 

For every permutation, we can compute the squared norm of the residual vector for each 

shape, and use the average value as an estimate of Vε in fitting the linear mixed-effects 

model to this permuted ensemble of shapes. This allows us to compute a distribution of Vε 

of the model as a test statistic and test the null hypothesis that random-effects have no effect 

on the final parameter estimates of the model, and consequently lead to unaltered Vε values 

across permutations. Then comparing our unpermuted Vε to this distribution, we can 

compute a p-value to test the null hypothesis. We perform the correspondence optimization 

on each permutation separately, and thus the results of our permutation test are not biased 

by the correspondence optimization method.

3.4 Permutation test for group discrimination

One of the major motivations of longitudinal data analysis is to test if changes observed in 

one group differ from those found in another. For instance, one might ask if the brain 

anatomy of Alzheimer’s patients deteriorates faster than those of healthily aging subjects. In 

this section, we develop a permutation test on the Hotelling T2 statistic to test the statistical 

significance of group-parameter differences between two groups of longitudinal data.

Recall the Hotelling T2 statistic is a test statistic often used in a multivariate test of the 

difference between sample means, p̄, q̄, of two groups of data {p1, …, pm} and {q1, … qn}, 

with all pi, qi ∈ ℝd. The idea is to compare the difference between the two means, relative to 

the pooled sample covariance:
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The T2 statistic can be thought of as a squared Mahalanobis distance between the means, 

using this pooled covariance, W. The sample T2 statistic is given by

(7)

The permutation test procedure is as follows: (1) compute the t2 statistic, (2) randomly 

permute (swap) data points between the p and q groups, computing a  statistic for the 

permuted groups, (3) repeat step 2 for k = 1, …, P, (4) compute the p-value: p = B/(P +1), 

where B is the number of . The final p-value can be interpreted as the probability of 

finding a larger group difference by random chance under the null hypothesis (that there is 

no difference between the means).

Consider the specific problem of comparing the mean trends in two different groups G and 

H. Let  and  be two sets of longitudinal data and the resulting parameter estimates 

for the two groups to be  and . It is often most interesting to separate the 

tests of the slope parameter α1 and the intercept parameter α2. For example, in testing the 

differences in anatomical changes between a healthy and disease group, it is important to 

distinguish if the shape differences are present at baseline (intercept) or if they develop over 

time (slope). To make this distinction, we can separate the above Hotelling T2 test into these 

two components. We will thus look at the two separated statistics,  and  given by (7).

4 Results and Discussion

We validate the proposed method through experiments on synthetic longitudinal tori, and 

test the significance of our estimated parameters via a nonparametric permutation test. We 

present applications of the method in longitudinal studies of early development of brain 

shapes from a neuroimaging study.

4.1 Synthetic Tori

Test of model significance—We generated longitudinal tori comprising of 11 

“individuals”, at 3 different time points. The two radii of the tori within a group are 

generated according to the mixed-effects model in (6).

For each individual i, Xi ~ (2, 10) drawn independently, random-effects bi ~ (0, 0.4), and 

errors εi ~  (0, 0.3). The slope-intercept pair for the fixed-effects are given as: (α1R, α2R) 

= (2, 30) and (α1r, α2r) = (−1, 15), where R, r are the outer and inner radii respectively. The 

particle correspondence positions and model parameters can then be estimated as prescribed 

in Section 3. Figure 2 shows the change in shape obtained using the fixed-effects of particle 

positions. The parameter R, increases whereas r decreases, which is consistent with the slope 

parameters used in the generative model.

We evaluate the significance of the bi parameters using the nonparametric permutation test 

described in Sec. 3.3. Each of the 11 groups are assigned 3 random shapes from the total 
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pool without repetition. We generate 500 such permutations and estimate Vε(P), for each 

permutation P. Over these permutations, Vε(P) ranges from 2500 to 6500. Vε for unpermuted 

group memberships is 940. This implies a p-value ~ 0. If it was possible to explain the 

population by only using fixed-effects, the permutation of group memberships should not 

have affected Vε values significantly. This test shows that using random-effects gives 

significant reduction in Vε independent of the increase in the number of model parameters.

Test for group differences—Here, we generate two groups of 11 “individuals” each, 

with 3 time-points per individual, with Xi for each individual at 0, 0.5, 1, random effects bi ~ 

(0, 0.3), and errors εi ~ (0, 0.1). For one of the groups, the fixed-effect slope is kept at 

zero, but for the other the r fixed-effect is given a slope 3. Figure 3 shows the tori generated 

using this configuration of parameters. When looking for group differences based on 

baseline intercepts, as expected, the permutation test prescribed in Section 3.4 did not a yeild 

a significant p-value. But when comparing groups based on the slope parameter, we 

obtained a p-value ~ 0, which confirms a stark difference in group trends.

4.2 Mixed-Effects Model for Brain Structures

Test for model significance and trend variation—In this experiment, we work with 

brain structures from a developmental neuroimaging study. We have 11 subjects scanned at 

approximately (6, 12, 24) months. The scans are preprocessed and segmented to obtain the 

brain structures (cerebellum, left and right hemispheres) which are input to the optimization 

process.

The fixed effects in Fig. 4 clearly show two changes happening in the infant brain. The first 

is an elongation of both hemispheres, which can be seen as a stretching of the frontal lobe 

and narrowing of the hemisphere shapes. The second effect is the growth near the top of the 

cerebellum. These trends are qualitatively consistent with the cross-sectional results found in 

[5].

The longitudinal model can tell us more, however, than a regression model of cross-

sectional data. First, we know that these fixed effects are representative of the growth trend 

that individuals undergo on average, rather than a trend seen between multiple subjects. 

Second, and more interestingly, we can say something about the variability of these trends in 

the population. Fig. 5 encodes the variance of the random slopes at each point and is 

indicative of regions where the variation in the growth trend across individuals is high (red 

regions in Fig. 5). An example inference is that the elongating frontal lobe and expanding 

cerebellum are relatively stable across the sample (i.e. the variance of these trends is low). 

We also evaluate the significance of the bi using the nonparametric permutation test 

described in Sec. 3.3. Group memberships are permuted 500 times and Vε(P) is estimated for 

each permutation P. While Vε(P) ranges from 10000 to 17000 for the permuted sets, the 

value for the unpermuted set is 5400. This suggests a p-value ~ 0 and implies that the 

random effects play a significant role in describing the early development of the brain.

Test for differences in group trends—We also evaluate our method using a 

longitudinal database from an Autism Center of Excellence, part of the Infant Brain Imaging 
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Study (IBIS). The study consists of high-risk infants as well as controls, scanned at 

approximately (6, 12, 24) months. At 24 months, symptoms of autism spectrum disorder 

(ASD) were measured using the Autism Diagnostic Observation Schedule (ADOS). A 

positive ADOS score indicates the child has a high probability of later being diagnosed with 

autism. Finally, we have two groups: 15 high-risk subjects with positive ADOS (HR+) and 

14 low-risk subjects with negative ADOS (LR−).

Fig. 6 visualizes the group trends for the HR+ and LR− groups and clarifies that the global 

trends are similar across both groups. There are localized differences near the frontal end of 

the hemispheres and also near the cerebellum, but these are not found to be significant by 

the permutation test for group differences. The t2 statistic for differences in group trends in 

cerebellum, left hemisphere and right hemisphere independently were 6.1039, 5.155 and 

4.5693 respectively. The p–values were 0.112, 0.454 and 0.515 for the same.

5 Conclusion and Future Work

We presented a new mixed-effects shape model for analyzing longitudinal shape changes, 

which is based on a particle system representation and entropy minimization framework for 

point correspondences. We demonstrated the ability of the model to characterize both group-

level and individual-level shape trends on synthetic data and developmental brain data. As 

for future work, the current work does not handle spatial correlations between points on a 

shape. We plan to investigate this issue, possibly using a pseudolikelihood estimation of the 

covariance matrix of the shape parameters, similar to [10]. Such an estimation could 

possibly take advantage of the entropy minimization, as this tends to decrease the 

dimensionality of the covariance matrix.
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Fig. 1. 
Example of randomly-generated, synthetic longitudinal data. Data points for each 

“individual” are displayed with different symbols. The estimated mixed-effects model is 

shown with both the fixed effects, i.e., group trend (solid black line), and random effects, 

i.e., individual trends (dashed lines). The estimated linear regression model, which ignores 

correlations within individuals, is shown as a red line.
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Fig. 2. 
Visualizing fixed effects on the synthetic data
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Fig. 3. 
Visualizing the trends in the two groups created to test group differences: constant trend 

(top), trend with increasing r (bottom)
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Fig. 4. 
Visualizing the fixed-effects of brain structures (blue denotes expansion, and yellow denotes 

contraction)
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Fig. 5. 
Visualizing the random-effects of brain structures (red denotes high variance regions)
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Fig. 6. 
Variation in group trends for the HR+ (top) and LR− (bottom) groups (yellow denotes 

contraction, blue denotes expansion)
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