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SUMMARY

Risk-prediction models need careful calibration to ensure they produce unbiased estimates of risk for
subjects in the underlying population given their risk-factor profiles. As subjects with extreme high or
low risk may be the most affected by knowledge of their risk estimates, checking the adequacy of risk
models at the extremes of risk is very important for clinical applications. We propose a new approach to test
model calibration targeted toward extremes of disease risk distribution where standard goodness-of-fit tests
may lack power due to sparseness of data. We construct a test statistic based on model residuals summed
over only those individuals who pass high and/or low risk thresholds and then maximize the test statistic
over different risk thresholds. We derive an asymptotic distribution for the max-test statistic based on
analytic derivation of the variance–covariance function of the underlying Gaussian process. The method is
applied to a large case–control study of breast cancer to examine joint effects of common single nucleotide
polymorphisms (SNPs) discovered through recent genome-wide association studies. The analysis clearly
indicates a non-additive effect of the SNPs on the scale of absolute risk, but an excellent fit for the linear-
logistic model even at the extremes of risks.
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1. INTRODUCTION

Many modern biomedical studies that use high-throughput technologies initially focus on discoveries of
biomarkers that are associated with specific clinical outcomes. At this step, typically, the associations of
individual biomarkers with the outcome are tested one at a time and the statistical significance of these
associations are assessed after multiple testing adjustments to minimize the chance of false-positive dis-
coveries. After the discovery of the biomarkers and possible validation in independent studies, many trans-
lational applications of the new knowledge require careful characterization of the risk of the outcome with
respect to all the discovered biomarkers simultaneously. Although development of such a multivariable
model may involve many complex intermediate steps, such as exploration of interactions and model selec-
tion, a key final step requires testing the “calibration” of the final model to ensure that it can produce
unbiased estimates of risk for the underlying population for which prediction is desired.

Various existing goodness-of-fit testing procedures can be used for testing the calibration of a risk model
in a new dataset. One can assess the significance of test statistics that are based on sums of squares of resid-
uals or other types of deviance measures that capture the departures between observed and expected out-
comes at the level of individual subjects (Windmeijer, 1990) or groups of subjects (Hosmer and Lemeshow,
2000; Tsiatis, 1980). Tests based on grouping of subjects into categories of risk, such as those defined by
deciles of risk distribution, have been popular in practice although there is substantial subjectivity in the
method due to the selection of the number and placement of the underlying risk categories.

In this report, motivated from the need for the development of polygenic risk-prediction models fol-
lowing discoveries of susceptibility single nucleotide polymorphisms (SNPs) from modern genome-wide
association studies (GWASs) (Meigs and others, 2008; Wacholder and others, 2010; Khoury and others,
2013; Chatterjee and others, 2013), we re-evaluate optimal approaches for model calibration in a setting
where the underlying risk could be defined by a combination of large number of risk markers, each with
modest effect. We observe that while many standard models, such as linear logistic, can be adequate for
describing the risk profiles of subjects in the intermediate range of risk where most of the risk distribution
is concentrated, they are likely to show departure from empirical risk near the tails of risk distribution con-
taining subjects with very high or low risks (Moonesinghe and others, 2011). Recognizing the limitation
of the standard goodness-of-fit tests that their power is driven by departure of the data from the null model
in the range of intermediate risks where most of subjects reside, in this report, we propose a complemen-
tary approach to a goodness-of-fit test that focuses more on tails of risk distribution where the departure
is more likely to be prominent.

We propose constructing goodness-of-fit statistics by summing individual level deviance statistics over
subjects whose predicted risks are above or below an upper or lower threshold, respectively. We then maxi-
mize such test statistics by varying the threshold over a set of grid points. Based on a simple characterization
of the correlation of the test statistic for different thresholds, we derive an asymptotic theory for the max-
test statistics based on Gaussian process theory. We conduct extensive simulation studies mimicking mod-
els that seem realistic for describing joint effects of SNP markers emerging from modern GWASs. We also
apply the proposed method to a large study of breast cancer involving 8035 cases and 10 525 controls from
the Breast and Prostate Cancer Cohort Consortium (BPC3) to explore the adequacy of alternative models
for describing the polygenic risk associated with 19 SNPs that have been previously associated with the
disease. These analyses reveal several strengths of the proposed methods.

2. METHODS

Let D be the binary indicator of presence, D = 1, or absence, D = 0, of a disease and let G = (G1, . . . , G p)

be a p × 1 vector denoting a subject’s genotype status for p SNPs. Consider a risk model for the disease
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given G in the general form

π(α,β) = pr(D = 1|G) = F(α + m(β; G)), (2.1)

where F−1(·) denotes a fixed link function, m(·) is a pre-specified function to reflect an assumed model
for the joint risk of a disease associated with the genotype vector G, and α and β are unknown parameters
of the model.

Here, we are interested in testing the null hypothesis that the multivariate risk of the disease given all
the SNP markers has the model form given by (2.1). Let α̂n and β̂n be estimates for α and β that can
be assumed to be consistent so that α̂n → α and β̂n → β as sample size n becomes larger. Given such
estimates, one can test the null hypothesis using a standard goodness-of-fit test of the form

Tn =
n∑

i=1

(Di − π̂i )
2

π̂i × (1 − π̂i )
,

where π̂i = πi (α̂n, β̂n) (Windmeijer, 1990). Below, we propose a modification of Tn so that the power of
the test statistics can be improved to detect departure of the null model from the true underlying model
near tails of risk distribution. In particular, we propose, for any given pair of “thresholds”, c = (cl , cu),
a test statistic of the form

Tn,c =
n∑

i=1

(Di − π̂i )
2

π̂i × (1 − π̂i )
I (π̂i ∈ R∗

c ),

where I (·) is the indicator function and R∗
c is a risk region such that R∗

c = [0, cl ] ∪ [cu, 1]. In words, Tn,c is
a sum of squared Pearson residuals over only those individuals who achieve a certain high or low threshold
for fitted disease risk. As we assume that F−1 is a monotone function of α and m(β; G), the test statistics
can be expressed equivalently as

Tn,c =
n∑

i=1

(Di − π̂i )
2

π̂i × (1 − π̂i )
I (m(β̂n; Gi ) ∈ Rc), (2.2)

where Rc ranges over (−∞, +∞) m(β̂n; G) can take.
Since we do not know an optimal value for the threshold c, we propose to maximize the normalized

Tn,c for a fixed set of grid points, T max
n = maxc |T̃n,c| where T̃n,c is the normalized Tn,c such that mean is

0 and variance is 1. In supplementary material available at Biostatistics online, we show that if we define
nc = ∑n

i=1 I (m(β̂n; Gi ) ∈ Rc), then under the null hypothesis, for any given c, n−1/2(Tn,c − nc) follows
the normal distribution whose mean is 0 and the variance can be analytically characterized (see Section 1
of supplementary material available at Biostatistics online for details). Further, for any two values of the
threshold, say c and d, the covariance between Tn,c and Tn,d can be analytically characterized.

Once the mean and the covariance of multivariate distribution of Gaussian random variables are charac-
terized, the p-value of our test, pr(T max

n � tmax
n ) where tmax

n is the observed value of T max
n can be estimated

through simulations. To compute the p-value, we generate a multivariate Gaussian random variable from
the covariance of T̃n,c and mean of zero and obtain the maximum of the absolute values of the multivariate
realization generated from the normal distribution. We then repeat the process and the p-value would be
the ratio of the cases where the maxima from the simulations are larger than or equal to tmax

n .
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2.1 Analysis of joint effects of breast cancer susceptibility SNPs

GWASs with increasing sample size are continuing to discover common SNPs associated with a variety
of complex traits and diseases, including breast cancer. Typically, for the discovery stage, the analysis has
focused on the association of the traits with each individual SNP marginally. Following discovery, a major
question is how to best characterize the joint association of the disease with multiple SNPs simultane-
ously. Although in principle a totally non-parametric approach where the probability of a disease could be
estimated for each combination of the SNPs may be desirable, in practice reliance on some kind of para-
metric model becomes necessary as the sample size becomes inevitably sparse as the number of unique
combination of risk factors become rapidly large.

We utilize data from the BPC3 (Hunter and others, 2005; Hüsing and others, 2012) to investigate the
suitability of alternative models for joint effects of a set of known susceptibility SNPs for breast cancer.
These data include 8035 cases and 10 525 controls of European ancestry from four cohort studies con-
ducted in North America and Europe. The study includes genotype data on a total of 19 SNPs although
not all subjects had data on all SNPs. As we attempted to analyze these data, we came across a number
of additional challenging methodological issues related to the choice of alternative models, missing geno-
type data and case–control sampling. In the following, we describe these additional methods that could be
relevant for other similar applications as well.

2.2 Choice of models for m(β; G)

In our analysis, we focus on two common models for describing joint effects of multiple risk factors. One
is the widely used logistic regression model where F−1(·) in (2.1) corresponds to logit link function. If
we assume a linear-logistic model, i.e. the effects of the SNPs are additive under the logit link, then the
joint odds ratio (OR) of the disease associated with multiple risk factors, i.e. the term exp(m(β; G)) in
(2.1), is given by the product of individual ORs associated with each SNP. For rare diseases, as the logit
link approximates the log-link and ORs approximate relative-risk parameters, the model is often referred
to as a “multiplicative” model because it implies a multiplicative effect of the different risk factors on the
probability of the disease itself. As the breast cancer patients in our study were all incident cases from
underlying cohorts for which the overall incident rates were low, the assumption of rare diseases is quite
reasonable in our application. For cancer applications, the multiplicative model has been shown to be
consistent with a multistage model for carcinogenesis where different risk factors act on different stages
serially (Siemiatycki and Thomas, 1981).

An alternative model, widely discussed in the epidemiologic literature (Rothman and Greenland, 1998,
Chapter 18) but not often utilized in practice, is an “additive model” that implies multiple risk factors
influence risk of the disease in an additive fashion on the scale of the probability of the disease itself.
Although there are numerical difficulties in fitting such a model due to constraints required on parameters
so that fitted probabilities remained bounded between 0 and 1, it has been shown that such models can
be a natural starting point as they correspond to independence of the biological effects of the underlying
risk factors. Further, for assessing gene-environment interaction in the context of certain public health
applications such as targeted intervention, test for departure from the additive model is of direct relevance.

Given the above background, we assessed the adequacy of multiplicative and additive models for joint
effects of the breast cancer SNPs. We assumed that each SNP genotype is coded as a dosage variable count-
ing the number of a specific allele an individual carries at the specific locus. We fit the “multiplicative”
model using standard logistic regression that includes a main-effect term for each SNP genotype variable.
As we are dealing with case–control studies, we could not fit the additive model in the absolute-risk scale,
but instead derived an alternative representation of the same model in the OR scale.
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The additive model for the risk of the disease in the underlying population given the SNP genotype data
for p loci is given by

pr(D = 1|G) = b0 +
p∑

j=1

b j G j . (2.3)

We show in supplementary material available at Biostatistics online (Section 2), under the assumption of
rare diseases, that allows us to approximate ORs by relative risks, the additive model can be expressed in
the general form (2.1)

m(β; G) = log

⎛
⎝

p∑
j=1

β j × G j + 1

⎞
⎠ .

2.3 Case–control studies and missing genotype data

In the BPC3 study, case–control samples were selected for genotyping within the respective cohort studies.
Since many biomarker-based studies employ such design, following we examine the proposed test in the
context of case–control sampling.

For testing model calibration under case–control sampling, the proposed statistic can be simply modi-
fied as

Tn,c =
n∑

i=1

(Di − π̂∗
i )2

π̂∗
i × (1 − π̂∗

i )
I (π̂∗

i ∈ Rc),

where π∗
i denotes the probability of the disease under the case–control sampling scheme, as opposed to

the underlying population. Specifically,

π∗
i = pr(Di = 1|Gi , Ri = 1) = δ1pr(Di = 1|Gi )

δ1pr(Di = 1|Gi ) + δ0 pr(Di = 0|Gi )
, δ j = pr(R = 1|D = j),

where R is the indicator of whether or not a subject has been selected in the case–control samples. For
any model that could be in the logistic form, π∗

i = exp(α∗ + m(β; G))/(1 + exp(α∗ + m(β; G))) with
α∗ = α + log(δ1/δ0) and thus the effect of sampling can be ignored as long as the model is fitted to the
case–control data with a free-intercept parameter (Prentice and Pyke, 1979). Thus, for testing of both the
multiplicative and additive models described above, which can be represented in the logistic form, the effect
of case–control sampling can be ignored for calibration of relative risks.

For fitting joint models with multiple SNPs or biomarkers, a common problem investigators often face
is that many subjects may not have complete data on all of the variables. In our breast cancer dataset, for
example, only 49% of subjects had complete genotype data for all 19 SNPs (Table 1 of supplementary
material available at Biostatistics online). We propose incorporating individuals with missing genotype
data using a modification of the test statistics in the form

Tn,c =
n∑

i=1

(Di − π̂∗
i (Gi,obs))

2

π̂∗
i (Gi,obs)(1 − π̂∗

i (Gi,obs))
I (π̂∗

i (Gi,obs) ∈ Rc),

where Gi,obs denotes the observed genotype data for the i th subject and

π̂∗
i (Gi,obs) = π̂∗

i = pr(Di = 1|Gi,obs, Ri = 1).

In supplementary material available at Biostatistics online (Section 3), we show how to compute π̂∗
i (Gi,obs)

under different modeling assumptions and approximations.
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Finally, evaluation of the test statistic requires consistent estimates of the disease-model parameter,
α and β. In the presence of missing genotype data, the test statistic also requires estimates of genotype
frequency parameters. For our application, we estimate the disease model parameters by fitting the corre-
sponding “null” model of interest to subjects who have complete genotype data for all SNPs. Similarly,
the allele frequency for each SNP was estimated using control subjects who have complete genotype data
on all SNPs and the corresponding genotype frequencies were obtained assuming Hardy–Weinberg Equi-
librium (HWE). The asymptotic theory for the test statistics incorporating subjects with missing genotype
data is described in supplementary material available at Biostatistics online (Section 4).

2.4 Simulation studies

We conducted extensive simulation studies to evaluate the validity and the power of the proposed methods.
In our simulations, we generate data on 10 or 20 SNPs, each assumed to follow HWE in the underlying
population with a minor allele frequency of 30%. We generated disease status for individuals conditional
on multivariate genotype status based on a general logistic model of the form (2.1) where F is the logit
link and the intercept parameter was chosen in such a way so that the overall probability of the disease
in the underlying population remains fixed at 5% in all different settings. To investigate type-I error of
the proposed test under the multiplicative and additive “null” models, we simulated data from models
that correspond to m(β; G) = ∑p

j=1 β j G j and m(β; G) = log
(∑p

j=1 β j G j + 1
)
, respectively, assuming

p = 10 SNPs are under investigation. In each model, the parameters were chosen so that the marginal
disease OR for each SNP is around 1.1. For evaluating power, we generated data under a “true” model that
corresponds to m(β; G) = (∑p

j=1 β j G j

)1/2
which generates a multivariate risk profile that is in between

those generated from the additive and multiplicative models (Figure 1). In each model, we allowed the
association parameters (β j ) to be constant across the SNPs and chose a value for the constant so that the
marginal disease OR for each SNP is approximately 1.15 and 1.1 under the 10-SNP (p = 10) and 20-SNP
(p = 20) models, respectively.

Fig. 1. Variation in risk by cumulative number of risk variants under alternative model for simulation: (a) 10 SNPs and
(b) 20 SNPs. The y-axis is the log OR where the reference groups were the samples whose numbers of risk alleles at
the 10 loci and the 20 loci are 6 and 12, respectively. Power was evaluated by generating data from an “alternative”
model (black line). Fitted risks under the multiplicative (red) and additive (blue) models are plotted. The distribution
of subjects by total number of risk variants is also shown (green line).
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We conducted additional studies to investigate the potential utility of the proposed test statistics as a
model selection tool. We simulated data either under the additive or the multiplicative models and then
examined how many times the test statistics (T max

n ) has a smaller value under the correct model from
which the data were simulated compared with the value of it under the alternative model. As a benchmark,
we also evaluated the performance of the standard goodness-of-fit test statistics Tn (Windmeijer, 1990) for
selection of the correct model in the same manner.

3. RESULTS

3.1 Joint risk model in BPC3 study

Our analyses include 18 560 samples from four BPC3 cohorts which had at least some subjects with
complete genotyping data on 19 known breast cancer risk SNPs (rs11249433, rs1045485, rs13387042,
rs4973768, rs10941679, rs889312, rs2046210, rs1562430, rs1011970, rs865686, rs2380205, rs10995190,
rs1250003, rs2981582, rs909116, rs614367, rs10483813, rs3803662, rs6504950) for estimation of study-
specific model parameters.

We tested the calibration for a variety of different models (Table 1). First, using only the 9098 subjects
(4168 cases and 4930 controls) who had complete genotype data, we tested for adequacy of additive and
multiplicative models. Each model was tested assuming the underlying disease-association parameters are
either homogeneous or heterogeneous across the four cohorts. For implementation of the proposed method,
we chose c = 25 or c = 100 with the grid points being defined by the combination of evenly placed upper
and lower quintiles of the risk distribution. The models for the additive effects were soundly rejected under
both homogeneous and heterogeneous effects by all different methods considered. In contrast, tests for
the multiplicative model under either homogeneous and heterogeneous effect parameters were generally
non-significant or borderline significant.

As a further exploratory analysis, we applied the non-parametric smoothing technique to inspect the
empirical relationship between disease risk and a polygenic risk score (PRS) variable that counts the
number of risk alleles carried by individuals without any regard to effect size of the individual SNPs
(Figure 2). When we compare such “empirical risk” to fitted risks obtained from a “multiplicative” and

Table 1. Statistical significance for the test of calibration of alternative models for joint effects of SNPs for
breast cancer in the BPC3 study

Multiplicative model Additive model

Analysis including subjects
Complete case analysis with missing genotypes Complete case analysis

Hom+ OR Het++ OR Hom+ OR Het++ OR Hom+ OR Het++ OR

HL test 0.11 0.87 — — 0.0003 0.01
Asymptotic c = 25 0.11 0.85 0.16 0.11 ≈ 0∗ ≈ 0∗

c = 100 0.20 0.77 0.23 0.17 ≈ 0∗ ≈ 0∗
Parametric

bootstrap
c = 25 0.07 0.70 0.14 0.12 ≈ 0∗∗ ≈ 0∗∗

c = 100 0.11 0.54 0.28 0.18 ≈ 0∗∗ ≈ 0∗∗

The proposed method is evaluated using c = 25 or c = 100 with the corresponding risk regions being defined by the combinations of
evenly placed grid points at various upper and lower quintiles of the risk distribution. 0∗ are based on 1 000 000 simulations. 0∗∗ are
based on 10 000 simulations. Hom+ OR is the analysis assuming a homogeneous OR across cohorts. Het++ OR is the analysis
assuming heterogeneous OR across cohorts.
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Fig. 2. Variation in the risk of breast cancer in the BPC3 study subjects by cumulative number of risk variants they
carried. The y-axis is the log OR where the reference group were the samples whose number of risk alleles at the 19
loci is 17, which is the observed average in the number of risk alleles at the 19 loci. Fitted risk under the multiplicative
(red) and additive (blue) models are plotted together with smoothed non-parametric estimates of risks (black). The
distribution of subjects by total number of risk variants they carry is also shown (green line).

“additive” model that assumes that the relationship between disease risk and PRS is linear in the logit or
the absolute probability scale, respectively, it is quite evident that the additive model produces much more
moderate variation of risk than the empirical risks. The fitted risks from the “multiplicative” model fol-
lowed the empirical risks quite closely for the center of risk distribution where majority of subjects resided,
but some departures from this trend are observed on both tails of the risk distribution.

Simulation studies suggested that a study with only 4000 cases and comparable number of controls
may not have adequate power to detect modest departure from non-multiplicative effects (see Table 2).
To increase the power for the test of the multiplicative model, we extended our analysis to include all
subjects 18 560 in 4 cohorts many of whom had incomplete genotype data for one or more SNPs. Even
with substantially larger sample size, the test for departure from the multiplicative model remained sta-
tistically insignificant. Finally, to explore the clinical implications for different models, we assessed the
proportion of the population that would be identified to be in a high-risk group, defined as subjects who
are at 2-fold or higher risk compared with the average risk of the population, under the two alternative
models. Assuming rare disease, we estimated these proportions empirically from the estimated risks of the
controls under the two alternative models. The analysis shows while the multiplicative model identified
1.16% of the population to be at high risk, the additive model identifies only 0.02% to be at the high-risk
group using the same threshold. Although in terms of absolute percentages both numbers are small, the
differences clearly have major implications for applications of risk models for targeted intervention and
screening.
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Table 2. Power of tests for detecting departures from multiplicative and additive models at the 5% nominal
significance level

n = 5000 n = 10 000 n = 20 000 n = 40 000

Model Power p = 10 p = 20 p = 10 p = 20 p = 10 p = 20 p = 10 p = 20

Multiplicative HL test 0.09 0.07 0.12 0.08 0.28 0.12 0.57 0.27
Windmeijer test 0.05 0.06 0.07 0.06 0.05 0.05 0.06 0.04
Proposed method

(c = 25)

0.13 0.08 0.22 0.12 0.47 0.20 0.86 0.44

Proposed method
(c = 100)

0.13 0.08 0.19 0.10 0.42 0.17 0.83 0.39

Additive HL test 0.06 0.21 0.09 0.41 0.13 0.76 0.23 0.99
Windmeijer test 0.13 0.96 0.20 0.99 0.35 1 0.62 1
Proposed method

(c = 25)

0.10 0.94 0.16 0.99 0.25 1 0.50 1

Proposed method
(c = 100)

0.10 0.94 0.14 0.99 0.23 1 0.45 1

The proposed method is evaluated using c = 25 or c = 100 with the corresponding risk regions being defined by the combinations of
evenly placed grid points at various upper and lower quintiles of the risk distribution. Results are based on 1000 simulated datasets
each involving a total of n subjects with equal number of cases and controls. In each simulation, data are generated with models
involving 10 SNPs (p = 10) or 20 SNPs (p = 20).

Table 3. Type-I error of proposed tests under additive and multiplicative “null” models

n = 5000 n = 10 000 n = 20 000 n = 40 000
Type-I error

Model rate 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Multiplicative c = 25 0.054 0.012 0.058 0.012 0.050 0.013 0.046 0.008
c = 100 0.053 0.013 0.058 0.013 0.055 0.010 0.046 0.008

Additive c = 25 0.050 0.009 0.047 0.005 0.053 0.011 0.054 0.013
c = 100 0.051 0.008 0.042 0.007 0.049 0.011 0.055 0.011

The proposed method is evaluated using c = 25 or c = 100 with the corresponding risk regions being defined by the combinations of
evenly placed grid points at various upper and lower quintiles of the risk distribution. Results are based on 1000 simulated datasets
each involving a total of n subjects with equal number of cases and controls. In each simulation, data are generated with models
involving 10 SNPs (p = 10).

3.2 Simulation studies

As seen in Table 3, the proposed methods maintain the nominal type-I error under both the multiplica-
tive and the additive null models. For evaluating power, in addition to the proposed test, we implemented
Hosmer–Lemeshow (HL) and Windmeijer tests as two possible alternatives. When the HL test was applied
throughout all the simulation studies and BPC3 data analysis, the grouping method was based on 10%
quantiles which leads to a more accurate asymptotic distribution (Hosmer and Lemeshow, 2000). Power
simulation results displayed in Table 2 suggest that substantial power gain is achievable by the proposed
method compared with both the HL and Windmeijer tests when the multiplicative model is assumed. It is
particularly striking that, for the test for departure from the multiplicative null model, the Windmeijer test
suffered from very poor power even when the sample size was as large as 40 000. The result is intuitive
given that Windmeijer test sums model residuals over all individuals diluting the signal that comes from the
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Table 4. The proportion of cases where the correct model is selected by the different goodness-of-fit
test statistics

n = 2000 n = 5000 n = 10 000

Correct Windmeijer Proposed Windmeijer Proposed Windmeijer Proposed
model test method test method test method

Multiplicative 0.558 0.472 0.568 0.530 0.697 0.617
Additive 0.495 0.639 0.527 0.744 0.503 0.842

The proposed method is evaluated using c = 100 with the corresponding risk regions being defined by the combinations of evenly
placed grid points at various upper and lower quintiles of the risk distribution. Data were generated with models involving 10 SNPs
(p = 10). Results are based on 1000 simulated data sets.

departure of the true risk from the multiplicative model only near the tails of risk distribution (see Figure 1).
The HL test performed better than Windmeijer test as it was able to separate the signals coming from differ-
ent categories of risk, but compared with the proposed method it still loses substantial power as it discards
individual level information. For testing additive null, which departed from the true risk throughout the
whole risk distribution (Figure 1), the proposed methods are much more powerful than the HL test but expe-
rience some loss of power compared with the Windmeijer test. Considering all the different scenarios, the
proposed method clearly was the most robust among all the methods considered. Finally, results in Table 4
reveal that the proposed method performs well as a model selection tool. In particular, when data were
generated under the additive model, the proposed test statistic (T max

n ) selected the correct model substan-
tially more often than the standard test statistic that corresponds to the Windmeijer procedure. When data
were generated under the multiplicative model, both methods perform comparably in selecting the correct
model.

4. DISCUSSION

Linear-logistic model is widely used in practice for analysis of binary disease outcome data. The popular-
ity of this model stems from its elegant statistical properties, and not necessarily because it corresponds
to more natural model for biological mechanisms for action of multiple risk factors of a disease. In fact,
in the epidemiologic literature, there is long-standing debate about whether an “additive” or a “multiplica-
tive” model is more appropriate as the starting point for the investigation of interaction between multiple
risk factors (Rothman and Greenland, 1998; Weinberg, 1986; Thompson, 1991; Siemiatycki and Thomas,
1981). In this context, the fact that analysis of a very large case–control study with a powerful test for
model diagnosis targeted towards extremes of risks provides strong support for “multiplicative” effects of
common SNPs of breast cancer is quite intriguing. Irrespective of their implications for mechanisms of
etiology, the results are relevant for risk prediction and stratification as the multiplicative model implies
much stronger variation of risk in the population compared with the additive and other sub-multiplicative
models. In particular, number of subjects in the population who can be identified to be at extreme risk
categories can be vastly higher under the multiplicative than the additive model.

One can use the proposed methodology to test for alternative models for multiple risk factors as well.
We, for example, investigated a model for the additive effects of the SNPs on the probit scale, also popu-
larly known the liability-threshold model in the genetics community (Zaitlen and others, 2012). We used
information about the disease rate in the underlying population for fitting the probit model to case–control
data. This analysis (results not shown) suggested that the fitted probability under the logistic and the probit
model are almost identical. Thus, these two models cannot be distinguished in the range of polygenic risk
distribution that is seen in the breast cancer dataset.
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Development of a risk-prediction model may often involve selecting the best model among possible
alternatives as opposed to testing the goodness-of-fit of a particular model. Our simulation studies show
that the T max

n statistics can be used as a powerful criterion for model selection as well when the underlying
models have a comparable number of parameters. For comparing models with varying number of param-
eters, the proposed statistic can be modified in principle to account for model complexity using penalty
terms similar to those used in popular criteria such as Akaike information criterion and Bayesian infor-
mation criterion. Future research is merited for more rigorous development of these extensions so that the
methodology can be used more widely as a model selection tool.

In conclusion, we develop a powerful approach for testing calibration of a risk model specially targeted
toward the extremes of risk distribution. The method when applied to a large case–control study of breast
cancer indicates non-additive effects of common SNPs on the absolute risk of the disease, but an excel-
lent fit for an additive model on the logistic scale. Extensive simulation studies suggest good numerical
properties of the method. As GWASs and other types of large-scale genomic studies continue to yield
new biomarkers of risks for complex diseases, the method could become a useful tool for assembling the
cumulative information into well-calibrated risk-prediction models.

5. SOFTWARE IMPLEMENTATION

Tests for calibration of the binary risk model using different goodness-of-fit statistics described here are
implemented in the R software package and are freely available for download at http://dceg.cancer.gov/
tools/analysis/cbrm.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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