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SUMMARY

In a typical randomized clinical study to compare a new treatment with a control, oftentimes each study
subject may experience any of several distinct outcomes during the study period, which collectively define
the “risk–benefit” profile. To assess the effect of treatment, it is desirable to utilize the entirety of such
outcome information. The times to these events, however, may not be observed completely due to, for
example, competing risks or administrative censoring. The standard analyses based on the time to the first
event, or individual component analyses with respect to each event time, are not ideal. In this paper, we
classify each patient’s risk–benefit profile, by considering all event times during follow-up, into several
clinically meaningful ordinal categories. We first show how to make inferences for the treatment differ-
ence in a two-sample setting where categorical data are incomplete due to censoring. We then present
a systematic procedure to identify patients who would benefit from a specific treatment using baseline
covariate information. To obtain a valid and efficient system for personalized medicine, we utilize a cross-
validation method for model building and evaluation and then make inferences using the final selected
prediction procedure with an independent data set. The proposal is illustrated with the data from a clinical
trial to evaluate a beta-blocker for treating chronic heart failure patients.
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1. INTRODUCTION

Consider a randomized, comparative clinical trial in which a treatment is assessed against a control with
respect to their risk–benefit profiles. For each study patient, the outcome variables include a set of distinct
event time observations reflecting such profiles during the study period. Often these event times can-
not be observed completely due to the presence of competing risks. For example, to investigate if the
beta-blocking drug bucindolol would benefit patients with advanced chronic heart failure (HF), a clini-
cal trial, “Beta-Blocker Evaluation of Survival Trial” (BEST), was conducted (BEST, 2001). There were
2708 patients enrolled and followed for an average of 2 years. The primary endpoint of the study was the
patient’s overall survival time. The p-value based on the standard two-sample log-rank test was 0.10, with
a corresponding hazard ratio estimate of 0.90 (95% CI: 0.78–1.02), numerically favoring the beta-blocker.
Although mortality is an important endpoint, the evaluation of treatment benefit should also include mor-
bidity for chronic HF patients. One important morbidity measure is the time to hospitalization, especially
due to worsening HF, which may be censored by the patient’s death. To avoid such competing-risk prob-
lems with multiple outcomes, conventionally we consider the time to the first among several events as the
endpoint. For example, for the “BEST” study, the competing events are death and HF or non-HF hospi-
talization. With this composite endpoint, the log-rank p-value is 0.14, with a corresponding hazard ratio
estimate of 0.93 (95% CI: 0.85–1.02). Note that this type of endpoint does not fully reflect the disease
burden or progression over the patient’s follow-up, since only one event at most is utilized per patient, and
its interpretation is further complicated by combining events of differing levels of severity into a single
outcome. In Table 1, we show the frequencies of the occurrences of these component endpoints from the
study patients whose data were obtained from the National Heart, Lung, and Blood Institute (NHLBI).
Note that mortality may be classified as either cardiovascular (CV) or non-CV related. In general, it is not
expected that a beta-blocker would have any beneficial effect on non-CV outcomes. In addition, part of
any undesirable side effects of the beta-blocker may be captured by, for example, non-CV related death or
non-HF hospitalization.

For a typical CV study like BEST with multiple event time observations, conventional secondary anal-
yses for risk–benefit assessments are often conducted with respect to each individual endpoint (for exam-
ple, the time to HF hospitalization). The conclusions of such component analyses can be misleading due
to competing risks. Among other limitations, because component events are analyzed separately rather
than jointly, they ignore any relationship between the timing and occurrence of different types of events
at the patient level and cannot provide a global, clinically meaningful evaluation of the new treatment
(Claggett and others, 2013). There are novel procedures for handling multiple event time observations
proposed, for example, by Andersen and Gill (1982), Wei and others (1989), and Lin and others (2000).
In the presence of competing risks, however, the above procedures or their modifications are not entirely

Table 1. Numbers of patients experiencing specific clinical
endpoints in control and treatment groups in BEST

Outcome Control Treated

Any event 971 930
Death 448 411

CV death 388 342
Non-CV death 60 69

Any hospitalization 874 829
HF hospitalization 568 476
Non-HF hospitalization 634 619

Total patients 1353 1354

CV, cardiovascular; HF, heart failure.
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satisfactory for assessing the treatment’s overall risk and benefit (Li and Lagakos, 1998; Ghosh and Lin,
2003; Pocock and others, 2012).

In this article, we propose an ordinal categorical outcome variable which reflects the individual patient’s
morbidity, including toxicity, as well as mortality over a specific time period for evaluating and compar-
ing the treatments. For example, for the BEST study, with guidance from our cardiologist co-author, we
classified patient response, using eight ordinal categories, based on the disease burden during the first 18
months of follow-up. This time point was chosen for illustration due to the noted concerns over potentially
harmful early effects associated with initial dosing and upward titration of the study drug, and represents
the minimum anticipated follow-up time for enrolled patients according to the initial study design (BEST,
2001). We also consider analyses using the anticipated average follow-up time for the BEST study, 36
months. Category 1 is assigned if the patient has experienced neither death nor any hospitalization prior
to the time of evaluation. A patient is classified as Category 2 if he or she is alive and has experienced
only non-HF hospitalization (reflecting potential toxicity). Categories 3 and 4 denote patients who are
alive, but have experienced a single (Category 3) or recurrent (Category 4) instance of HF hospitalization.
Categories 5 through 8 are assigned to patients who died during follow-up, with a distinction made between
“early” or “late” death (i.e. before or after 12 months) as well as cause of death. The relative ordering is
as follows: late non-CV death (Category 5), late CV death (Category 6), early non-CV death (Category
7), and early CV death (Category 8). Note that some study patients might not have their entire clinical
history, until their time of death or at 18 months after randomization, available due to non-informative, or
administrative, censoring.

In the paper, we first present methods for analyzing such ordinal data, possibly incomplete due to non-
informative censoring, in a two-sample overall comparison setting. To bring the clinical trial results to the
patient’s bedside, we may utilize the patient’s baseline characteristics to perform personalized or stratified
medicine. Here, we present a systematic approach to create a scoring system using the patient’s multiple
baseline covariates and utilize this system to stratify the patients for evaluation with respect to the ordinal
categorical outcomes. More specifically, to avoid overly optimistic model selections, we first divide the
data set into two pieces. The two pieces may be obtained by splitting the entire data set randomly. With
the first piece, a cross-validation procedure is utilized to select the best scoring system among all of the
competing models of interest for ordinal categorical data. We then use the second piece (the so-called
holdout sample) to make inferences about the treatment differences over a range of the score selected from
the first stage. All proposals are illustrated with the data from the BEST study.

When there is a single baseline covariate involved Song and Pepe (2004), and Bonetti and Gelber (2004)
have proposed novel statistical procedures for identifying a subgroup of patients who would benefit from
the new treatment with respect to a single outcome. A recent paper by Janes and others (2011), based
on previous work by Huang and others (2007), and Pepe and others (2008), provides practical guidelines
for assessing the performance of individual markers for the purposes of treatment selection. By incor-
porating more than one baseline covariate, our approach is similar in spirit to Cai and others (2011) and
Li and others (2011). However, they used the data from the entire study to create a scoring system, for a sin-
gle outcome or for a single treatment group only, by fitting a prespecified model without involving model
evaluation or variable selection and then used the same data set to make inferences. Our proposal explores
so-called “personalized” treatment effects in the presence of multiple time-to-event outcomes and explores
the properties of an ordinal classification scale derived from multiple, partially censored event times.

2. TWO-SAMPLE ASSESSMENT OF TREATMENT USING INCOMPLETE CATEGORICAL DATA

For the j th patient in the i th treatment group ( j = 1, . . . , ni ; i = 1, 2), let Ti j be the time to the first
occurrence of a terminal event from among the competing risks of interest. Note that Ti j may be infinite
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if there is no terminal event. Let Ci j be the independent censoring variable for Ti j with survival function
Gi (·). Let Xi j = Ti j ∧ Ci j , the minimum of Ti j and Ci j and �i j = I (Ti j � Ci j ), where I (·) is the indicator
function. For each study patient, assume that based on his/her entire morbidity and mortality endpoint
information up to time t0, where pr(Ci j > t0) > 0, i = 1, 2, one can classify the outcome εi j as one of K
ordered categories, ordered from “best” to “worst”. Note that we do not require traditional “competing
risks” methods to account for informative censoring because we include such informative events in the
definition of the outcome categories.

Noting that a patient’s outcome status is fully observable when Ti j ∧ t0 � Ci j , the cumulative cell prob-
abilities γik = pr(εi j � k), i = 1, 2; k = 1, . . . , K , can be consistently estimated by the inverse probability
of censoring weighting (IPCW) estimator

γ̂ik =
ni∑

j=1

Wi j I (εi j � k)
/ ni∑

j=1

Wi j , (2.1)

where Wi j = I (Ti j ∧ t0 � Ci j )/Ĝi (Ti j ∧ t0) and Ĝi (·) is the Kaplan–Meier estimator for Gi (·)
(Li and others, 2011). It follows that the cell probability πik = pr(εi j = k) can be estimated by π̂ik =
γ̂ik − γ̂i,k−1, where γi,0 = 0. Note that the information regarding the events observed prior to the censoring
time is completely ignored in (2.1) and the resulting IPCW procedure may not be “efficient”. For example,
for the BEST study, a subject who experienced a single HF hospitalization prior to censoring, must have
εi j � 3 at time t0, even though the specific value of εi j at t0 may not be known due to censoring. To char-
acterize this kind of information, let Ti jk be the earliest time at which the value I (εi j � k) is determined.
For example, with the data from BEST, let T̃i j1, T̃i j2, and T̃i j3 be the first non-HF, first HF, and second HF
hospitalization times, respectively. It follows that Ti j1 = T̃i j1 ∧ Ti j2, Ti j2 = T̃i j2 ∧ Ti j3, Ti j3 = T̃i j3 ∧ Ti j4,
and Ti j4 = Ti j5 = Ti j6 = Ti j7 = Ti j ∧ t0. With this additional information, a more efficient estimator for the
γik can be obtained by replacing the weight Wi j in (2.1) with

W̃i jk = I (Ti jk � Ci j )/Ĝik(Ti jk), (2.2)

where Ĝik(·) is the Kaplan–Meier estimator for Gi (·) using paired observations {Ti jk ∧ Ci j , I (Ci j <

Ti jk)}, j = 1, . . . , ni . Note that with small sample sizes, some π̂ ’s may be negative due to random vari-
ation. In such a case, one may utilize the conventional, simple iterative pool adjacent violator algorithm
(Ayer and others, 1955). Unless otherwise specified, we employ weights W̃i jk for the remainder of the
paper.

In order to compare two treatment groups with such ordinal categorical outcomes, one may compare
the cumulative distributions γik . Let �k = γ2k − γ1k and γ̂ik be the corresponding estimators. Note that
each value �k, k = 1, . . . , K − 1, may be interpreted as the risk difference with respect to a binary
outcome in which “success” is defined by a patient experiencing (ε � k). To make inferences on the
difference of these two distribution functions, we may use bootstrapping or perturbation-resampling meth-
ods (Uno and others, 2007). Details are provided in Appendix A of supplementary material available at
Biostatistics online. For the data from BEST, let t0 = 18 months. Table 2 displays the profiles of the esti-
mated distribution functions for each treatment group γik using weights (2.2), and �k, indicating that the
beta-blocker group is better than its control counterpart with respect to each outcome.

To compare two groups with respect to ordinal categorical outcomes, a conventional way to summa-
rize the treatment difference is to use an ordinal regression model. Let τi j = 1 for patients in the active
treatment group and 0 otherwise, then this model is g(pr(εi j � k)) = αk − βτi j , where g(·) is a known,
increasing function, g : (0, 1) →R, and αk and β are unknown parameters. Even if the model is not cor-
rectly specified, a β that significantly differs from 0 can be used as evidence of the superiority of one



64 B. CLAGGETT AND OTHERS

Table 2. Estimated distribution functions for control and treated groups with BEST data
with t0 = 18 months

Control (γ̂ 1) Treated (γ̂ 2) Contrast (�̂)

Outcome category n pr(ε � k) n pr(ε � k) Est SE

1 397 0.38 442 0.41 +0.04 0.02
2 174 0.54 224 0.62 +0.08 0.02
3 120 0.66 102 0.72 +0.06 0.02
4 131 0.78 88 0.80 +0.03 0.02
5 11 0.78 17 0.82 +0.03 0.02
6 83 0.86 58 0.87 +0.01 0.01
7 24 0.87 22 0.88 +0.01 0.01
8 163 1.00 153 1.00 – –
(censored) 250 – 248 – – –

treatment relative to the other. For the present case, a negative value for β corresponds to a reduction in
overall “risk” associated with treatment. With censored observations, the treatment difference β can be
estimated by maximizing the weighted multinomial log-likelihood function:

K−1∑
k=1

∑
i j

W̃i jk[I (εi j � k) log{g−1(αk − βτi j )} + I (εi j > k) log{1 − g−1(αk − βτi j )}], (2.3)

where αK = ∞ and standard error estimates can be obtained analytically. Under mild conditions, the esti-
mator β̂ from the above model converges to a finite constant β as n → ∞ even when the model is not cor-
rectly specified (Zheng and others, 2006; Uno and others, 2007; Li and others, 2011). For the data from
BEST, when g(·) is the logit function, β̂ is −0.204 with a standard error estimate of 0.074. This indicates
that the beta-blocker indeed reduces the disease burden. Details are given in Appendix A of supplementary
material available at Biostatistics online.

Rather than using a parametric summary of the treatment difference which may not be easily inter-
pretable unless the model is correctly specified, an intuitively interpretable, non-parametric summary mea-
sure is the so-called general risk difference, which has been studied extensively as an extension of the sim-
ple risk difference for ordinal data (Agresti, 1990; Edwardes, 1995; Lui, 2002). In this setting, the general
risk difference, which is closely related to Wilcoxon’s rank-sum statistic, is D = pr(ε1 > ε2) − pr(ε1 < ε2),
where εi , i = 1, 2, is a patient response randomly chosen from treatment group i , with positive values sug-
gesting that patients receiving active treatment (i = 2) are more likely to be “healthier” than their indepen-
dent control counterparts (i = 1).

A consistent estimator for D then is D̂ = ∑K
k=2 π̂1k γ̂2,k−1 − π̂2,k γ̂1,k−1, where π̂ik = γ̂i,k − γ̂i,k−1. The

standard error estimate can be obtained by perturbation-resampling methods as in Uno and others (2007).
For the data from the BEST trial, D̂ = 0.064 with standard error estimate of 0.022, suggesting a net
6.4% probability of improved health associated with active treatment. Using this model-free summary
of the treatment difference, the beta-blocker again appears better than the control. Details are given in
Appendix A of supplementary material available at Biostatistics online. As a sensitivity analysis, we con-
sidered a condensed, five-category classification system in which recurrent HF hospitalizations are ignored
and no distinction is made between early and late death. Despite more crudely categorizing patients,
the results are quite similar, still significantly favoring the beta-blocker group: β̂ = −0.214(0.072) and
D̂ = 0.064(0.022).
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3. CONSTRUCTION AND SELECTION OF A PATIENT-LEVEL STRATIFICATION SYSTEM

Suppose that Ui is the baseline covariate vector for a subject randomly chosen from the i th treatment group
(i = 1, 2). Our goal is to make inference about the treatment difference based on ε1 and ε2, conditional
on U1 = U2 = u, any given value in the support of the covariate vector. Ideally, one would estimate this
conditional treatment difference via a non-parametric procedure. However, if the dimension of U is greater
than 1, it seems difficult, if not impossible, to do so. A practical alternative is to model the relationship
between the treatment difference and U parametrically and then evaluate the prediction performance of the
final selected model. To avoid an ‘overly optimistic’ prediction model, we split the data set into two pieces,
say, part A and part B. With the data from part A, we build various candidate models for the treatment
differences and evaluate them via a cross-validation procedure. This results in a univariate scoring system
with which to stratify the patients, referred to here as a treatment selection score. In this section, we present
the first step using the part A data, i.e. the construction and selection of the scoring system, and in the next
section, we show how to make inferences about the treatment differences based on the selected scoring
system using the part B data.

It is important to note that, to validate the scoring system, we need a model-free summary measure for
the treatment difference. For the present case with the ordinal categorical response discussed in Section 2,
the treatment contrast,

D(u) = pr(ε1 > ε2|U1 = U2 = u) − pr(ε1 < ε2|U1 = U2 = u) (3.1)

is model-free and heuristically interpretable. Note also that to obtain a coherent prediction system, it is
preferable to use the same treatment contrast measure for model building, selection and validation.

3.1 Creating treatment difference scoring systems

In order to estimate (3.1) parametrically, one can model the ordinal categorical response via two separate
ordinal regression models, that is, for each treatment i and conditional on Ui j :

gi (γik(Ui j )) = αik − β ′
i Zi j , i = 1, 2; j = 1, . . . , ni , (3.2)

where γik(Ui j ) = pr(εi � k|Ui j ), Zi j is a function of Ui j , gi (·) is a known monotone increasing function,
and αik and βi are unknown parameters. It follows that a parametric estimate D̂(u) for D(u) is given by

D̂(u) =
K∑

k=1

π̂1,k(u)γ̂2,k−1(u) − π̂2,k(u)γ̂1,k−1(u), (3.3)

where estimated probabilities γ̂ik(u) are obtained from the fitted models (3.2) and π̂i,k(u) = γ̂i,k(u) −
γ̂i,k−1(u), with γ̂i,0 = 0, i = 1, 2. Alternatively, we may use a single model

g(γik(Ui j )) = αk − β ′ Zi j − τi j (θ
′ Z∗

i j ), (3.4)

to obtain estimates γ̂ik(u), where Z∗
i j = (1, Z ′

i j )
′, and α1, . . . , αK−1, β, and θ are unknown parameters.

Models (3.2) and (3.4) may be fitted by maximizing the corresponding inverse probability weighted log-
likelihood functions with IPC weights Wi j or W̃i jk . Under mild conditions, the resulting estimators of
model parameters converge to a finite constant vector as n → ∞ even when the model (3.2) or (3.4) is not
correctly specified (Uno and others, 2007).



66 B. CLAGGETT AND OTHERS

3.2 Evaluation and selection of a final model for stratification

To choose the “best” stratification system from among all candidate working models, we evaluate the mod-
els using a cross-validation procedure. Specifically, we split the data into two parts randomly. We fit the
data from the first part with each of the working models, then use the data from the second part to evalu-
ate them based on (3.1). Unlike the one-sample risk prediction problem, most standard evaluation criteria
based on individual prediction errors are not applicable here because no measure of treatment difference is
observable at the patient level. However, a “goodness of fit” measure using the concordance between the
true, unobservable treatment difference D(u) in (3.1) and the rank of the parametric predicted treatment
difference D̂(u), say, C = Cov{H(D̂(U )), D(U )}, can be estimated consistently under the current setting,
where H(·) is the distribution function of D̂(U ) and the covariance is with respect to the random covariate
vector U . Here, C can be estimated by Ĉ = ∫ 1

0 (1 − q){D̂∗(q) − D̂}dq, where D̂∗(q) is the ICPW esti-

mator for D based on subjects with Ĥ(Di j ) > q, Ĥ(·) is the empirical cumulative distribution function

of D̂(U ). Justification of the consistency of Ĉ can be derived using similar arguments to those given by
Zhao and others (2013). Since the variances of D(U ) and H(D̂(U )) are independent of the fitted model,
the correlation ρ corresponding to C can be estimated up to a common constant across all candidate mod-
els. Therefore, to quantify the improvement of, say, Model I relative to Model II, we may take the ratio
of the resulting covariance estimates Ĉ1/Ĉ2 to estimate the ratio of the two corresponding correlation
coefficients ρ1/ρ2, to guide model selection.

We use a repeated random cross-validation procedure, in each iteration randomly dividing this part A
data set into two mutually exclusive subsets,B and E , the “model building set” and “evaluation set”, respec-
tively. For each model building procedure, we can construct a model, using only data in B to obtain D̂(·)
via (3.3), then compute all D̂(Ui j ), for all Ui j in E . We repeatedly split the training data set M times. For

each m, and for each modeling procedure, we obtain an estimate of the concordance Ĉ
(m). Lastly, we aver-

age these estimates over m = 1, . . . , M to obtain final estimates Ĉ. The modeling procedure which yields
the largest cross-validated C values will be used for the construction of our final working model. We then
refit the entire part A data set with this specific modeling procedure in order to construct the final score.

3.3 Construction and selection of scoring systems using the BEST data set

To illustrate the above model building and evaluation process with the data from BEST, we first split the
data set into parts A and B, using the first 900 (33%) patients according to their randomly assigned Study
ID number as part A and using the remaining patients as part B. Note that Shao (1993) presents theoretical
justifications for the preference of a relatively large holdout sample, and a comparatively smaller sample
size devoted to “model construction”.

Here the covariate vector Z = U consists of 16 clinically relevant covariates from Castagno and others
(2010, Table 1). These baseline variables are: age, sex, left ventricular ejection fraction (LVEF), estimated
glomerular filtration rate (eGFR) adjusted for body surface area, systolic blood pressure (SBP), class of HF
(Class III vs. Class IV), obesity (body mass index >30 vs. �30), resting heart rate, smoking status (ever vs.
never), history of hypertension, history of diabetes, ischemic HF etiology, presence of atrial fibrillation, and
race (white vs. non-white). As in Castagno and others (2010), we used 3 indicator variables to discretize
eGFR values into 4 categories, with cut-points of 45, 60, and 75.

Models (3.2) and (3.4) were utilized with the logit and complementary log–log links, g(p) =
log(p/(1 − p)), and g(p) = log(− log(1 − p)), respectively. For each of type of model, we estimated the
model parameters using IPC weights Wi j and W̃i jk . For illustration, a total of eight modeling procedures
were considered in our analysis.

To evaluate these models, we used a repeated random cross-validation procedure with 80% of the part
A data used for model building and 20% for evaluation with M = 100 iterations. In Table 3, we present
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Table 3. Multinomial model building procedures with average cross-
validated concordance values

Separate/single models Link Weighting scheme Ĉ ratio

Separate Logit Wi j (ref)
Separate Logit W̃i jk 2.81
Separate c-log–log Wi j 2.63
Separate c-log–log W̃i jk 3.16
Single Logit Wi j 0.94
Single Logit W̃i jk 2.88
Single c-log–log Wi j 2.63
Single c-log–log W̃i jk 3.23∗

∗Indicates the largest value, and therefore the selected optimal model building procedure.

Table 4. Regression coefficient estimates and standard errors (SE) from the
final working model using BEST training data with log(− log) link function

Covariate Main effects β(SE) Treatment interaction terms θ(SE)

Age −0.000 (0.006) −0.006 (0.009)
Male +0.064 (0.139) −0.095 (0.199)
LVEF −0.017 (0.008) −0.016 (0.012)
I(eGFR > 75) +0.011 (0.166) −0.470 (0.216)
I(eGFR > 60) −0.049 (0.161) −0.059 (0.238)
I(eGFR > 45) −0.692 (0.165) +0.032 (0.229)
SBP −0.014 (0.003) +0.009 (0.005)
Class IV HF +0.292 (0.196) +0.499 (0.277)
I(BMI > 30) +0.157 (0.127) +0.031 (0.193)
Ever smoker −0.090 (0.114) +0.214 (0.176)
Heart rate +0.005 (0.005) −0.011 (0.007)
History of hypertension +0.248 (0.130) −0.216 (0.180)
History of diabetes +0.251 (0.129) −0.228 (0.173)
Ischemic etiology +0.069 (0.137) +0.188 (0.183)
Atrial fibrillation +0.185 (0.181) −0.113 (0.231)
White race +0.043 (0.122) −0.145 (0.188)

these modeling procedures along with their relative concordance value, based on Ĉ with the modeling
approach of separate logistic regression models (logit link), with “complete-case” weights (Wi j ), as the
reference model.

The model found to provide the greatest concordance was the interaction model with the complementary
log–log link function fitted using W̃i jk . The resulting model and bootstrapped standard errors (SE) with
the selected best model building procedure are given in Table 4.

4. INFERENCES ABOUT THE TREATMENT DIFFERENCES USING THE HOLDOUT SAMPLE

Let d̂(u) be the observed score, obtained from the part A data set, for a patient in the part B data set with
covariates u. In this section, using the data from part B, we make inferences about the general risk difference
E(s) = pr(ε1 > ε2|d̂(u) = s) − pr(ε1 < ε2|d̂(u) = s) and the cumulative risk differences �k(s) = pr(ε2 �
k|d̂(u) = s) − pr(ε1 � k|d̂(u) = s), k = 1, . . . , K , where εi is outcome of a random patient in treatment
group i from a future population identical to the part B data. Rather than using a parametric estimate for
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these contrast measures, we use a non-parametric kernel functional estimation procedure conditional on
the treatment selection score. To this end, let the conditional cell probabilities for the ordinal response εi j

be denoted by πik(s) and cumulative probabilities by γik(s), j = 1, . . . , n∗
i . Here n∗

i is the sample size in
the i th group in the part B data set. The kernel estimators for γik(s) are

γ̂ik(s) =
⎧⎨
⎩

n∗
i∑
j

W̃i jk I (εi j � k)Khi (Vi j − s)

⎫⎬
⎭

/⎧⎨
⎩

n∗
i∑
j

W̃i jk Khi (Vi j − s)

⎫⎬
⎭ ,

where Vi j = d̂(Ui j ) and W̃i jk are their counterparts from the part B data, Khi (s) = K (s/hi )/hi , K (·) is
a smooth symmetric kernel with finite support and hi is a smoothing parameter. Lastly, πik(s) can be
estimated as π̂ik(s) = γ̂ik(s) − γ̂i,k−1(s), i = 1, 2; k = 1, . . . , K .

The resulting estimator for E(s) is Ê(s) = ∑K
k=1 π̂1,k(s)γ̂2,k−1(s) − π̂2,k(s)γ̂1,k−1(s). When hi =

O(n∗−v
i ), 1

5 < v < 1
2 , it follows from a similar argument by Li and others (2011) that π̂ik(s) converges

to πik(s) uniformly over S, which is an interval within the support of d̂(U ). Consequently, for a fixed s,
(n∗

1h1 + n∗
2h2)

1/2{�̂k(s) − �k(s)} converges in distribution to a normal with mean 0 and variance σk(s)
as n∗

i → ∞, i = 1, 2. Similarly, (n∗
1h1 + n∗

2h2)
1/2{Ê(s) − E(s)} converges in distribution to a normal

with mean 0 and variance σ(s) as n∗
i → ∞, i = 1, 2. To approximate the distributions above, we use a

perturbation-resampling method, which is similar to “wild bootstrapping” (Wu, 1986; Mammen, 1993) and
has been successfully implemented in many estimation problems (Lin and others, 1993; Cai and others,
2010). In addition, (1 − α) simultaneous confidence bands for E(s) and �k(s) over S can be obtained
accordingly. Details are provided in Appendix B of supplementary material available at Biostatistics online.

As with any non-parametric estimation problem, it is important that we choose appropriate smooth-
ing parameters in order to make inference about the treatment differences. Here, we may use the
cross-validation method aiming for maximizing the weighted multinomial log-likelihood function as in
Li and others (2011). Furthermore, to ensure the bias of the estimator is asymptotically negligible in the
above large-sample approximation, however, we slightly undersmooth the data and obtain the final smooth-
ing parameter by multiplying the cross-validation selected bandwidth with n∗−ξ

i where ξ is a small positive
number less than 0.3.

Now, we apply the final scoring system derived from the part A data set to the patients in the part B
data set mentioned in Section 3.3. We note that 63% of the estimated scores are greater than 0, indicating
a model-based anticipated treatment benefit for a majority of patients.

For all kernel estimators, we let K (·) be the standard Epanechnikov kernel, with the chosen smoothing
parameters h̃1 = 0.24, h̃2 = 0.20. The resulting estimates of the patient-specific treatment differences Ê(s),
with 0.95 pointwise and simultaneous confidence interval estimates, are displayed in Figure 1. Using the
final score derived from the model in Table 4 over the range s ∈ (−0.24, 0.39), we find Ê(s) > 0 for
s > −0.18 and Ê(s) < 0 for s < −0.18. The point and interval estimates displayed in Figure 1 are quite
informative for identifying subgroups of patients who would benefit from the beta-blocker with various
desired levels of treatment differences. In particular, patients with scores >0.09 and >0.18 are found
to experience significant treatment benefits (via the 95% confidence intervals and bands, respectively).
In Appendix C of supplementary material available at Biostatistics online, we show the corresponding
treatment differences with respect to the cumulative outcome probabilities γik(·). Note that each value
�k(s) allows for the estimation of the treatment contrast with respect to a different composite outcome.
For example, �1(s) refers to the effect of treatment on the composite outcome “any hospitalization or
death”, as in the typical time to first event analysis. It can be seen that �̂1(s) > 0 for s > 0.02 and �̂1(s) < 0
for s < 0.02, indicating that our score is also informative for identifying patients who would experience
“treatment success” with respect to this outcome as well. Furthermore, using �̂2(s) and �̂3(s), patients with
scores >0.14 and >0.16 are found to experience significant treatment benefits via the 95% simultaneous
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Fig. 1. Estimated BEST treatment effect Ê(s) using treatment selection score presented in Table 4. Solid curve repre-
sents point estimates, with 0.95 pointwise and simultaneous confidence intervals denoted by dashed lines and shaded
region, respectively.

confidence bands with respect to the desirable outcomes ε � 2 (alive with no HF hospitalization) and
ε � 3 (alive with no recurrent HF hospitalization), respectively. Finally, we note that the estimated effects
of treatment with respect to both death, �̂4(s), and early death, �̂6(s), are relatively constant across the
range of scores.

As an additional analysis, we also considered analyzing 36-month outcomes, which represents the ini-
tially planned average patient follow-up time (BEST, 2001). Despite noticeably higher rates of censoring
(and a larger standard error), the two-sample analysis finds a similarly sized benefit for the treatment
group overall. Using the same scoring system derived above to assess personalized treatment differences
at 36 months resulted in both an increase in uncertainty for patient-specific estimates as well as a noticeably
weaker association between the score and treatment effect estimates over the range of scores. As mentioned
in Section 1, it is likely that “risk–benefit” effects of treatment are more heterogeneous and/or predictable
at earlier time points in this setting, as they are associated with initial dosing procedures of the study
drug. Results for this 36-month analysis are given in Appendix D of supplementary material available at
Biostatistics online.

5. SIMULATION STUDY

In order to examine the potential benefit of including multiple clinical endpoints in comparing treatments
under practical settings, we conducted an extensive simulation study. For example, in one of the settings, we
mimic the BEST study to generate multiple event time data. Specifically, we first fit a shared frailty model,
using a parametric Weibull distribution (Rondeau and others, 2007), to the observed hospitalization data
for each group, utilizing all covariates mentioned in Section 3.3 to estimate subject-specific scale parameter
in BEST data, with a common shape parameter in each arm. For each simulated data set, we randomly
generate 2707 new sets of times to fatal and non-fatal events from Weibull distributions using patient-level
covariates drawn with replacement from the BEST study population. The Weibull shape parameters, from
fitted estimates, used in simulations were κ = 1.1 for fatal events and κ = 1.1 and 0.85 for non-fatal events
in control and active treatment groups, respectively. These models produce fatal and non-fatal events that
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Table 5. Simulation results: comparison of the usage of proposed multiple-outcome methods vs. traditional
single-outcome methods with respect to two-sample power and identification of patient-level treatment

response

Two-sample power

Incidence rate ratio Multiple events First composite event Stratification score

Log-rank Multinomial Binomial
Fatal Non-fatal D̂ (%) �̂1 (%) (%) Ĉ1 Ĉ2 Ĉ ratio

Global null 1 1 6 6 4 −0.007 −0.005 –
Scenario 1 0.95 0.89 34 24 6 0.018 0.014 1.30
Scenario 2 0.90 0.89 60 32 7 0.016 0.013 1.21
Scenario 3 0.90 0.85 69 39 16 0.016 0.013 1.22
Scenario 4 0.85 0.85 88 48 23 0.014 0.012 1.15

occur at a rate of 25.6 and 72.1 per 100 patient-years during the first 18 months after randomization in
the control group. The corresponding rates in the treatment group were 24.2 (rate ratio = 0.95) and 64.1
(rate ratio = 0.89), respectively (Scenario 1). We then considered scenarios in which the treatment effect for
death was strengthened to induce rate ratios of 0.90 (Scenarios 2 and 3) and 0.85 (Scenario 4), and similarly,
the rate ratios for non-fatal events were improved to 0.85 (Scenarios 3 and 4). We also considered a global
“null” scenario in which there was no treatment difference with respect to any outcome. We generated 200
simulated data sets for each scenario. Results corresponding to each of these scenarios are shown in Table 5.

We first compare the two-sample performance of our proposed D̂, which uses the proposed ordinal scale
incorporating the complete clinical history to evaluate patients status at t0, relative to standard procedures
which use only the time to first clinical event up to t0 based on �̂1 (corresponding to the t0-year event rate),
as well as the log-rank test. The new test based on D̂ is more powerful than the standard procedures. For
example, in Scenario 4, the new test has 88% power, compared with 48% using the t0-year event rate and
23% for the log-rank test. The log-rank test is likely to be underpowered in all settings due to violation of
the proportional hazards assumption. In order to compare the ability to appropriately identify patient-level
treatment responses and stratify patients accordingly, we compared the ordinal logistic regression model
chosen in Section 3.3 to a similar binary logistic regression model that used only the occurrence of the first
composite event Cai and others (2011). Using 10-fold cross-validation in each simulated data set, we find
that the ratio Ĉ1/Ĉ2 > 1 in each scenario, indicating the superiority of the stratification score obtained
through the usage of the ordinal regression model. The corresponding averaged curves {D̂∗(q) − D̂}, as
well as further details regarding the simulation setting, and model accuracy and classification, are provided
in Appendix E of supplementary material available at Biostatistics online.

6. REMARKS

The proposed procedures can be applied to any study with multiple endpoints which reflect a patient’s
risk–benefit profile. For example, a longitudinal trial may collect repeated measurements for an end-
point over time. The standard analysis, for example, via generalized estimating equations techniques
(Liang and Zeger, 1986) provides a treatment comparison using an overall average mean difference of a
response variable. Such a contrast may not be a sufficient summary, particularly when the temporal profile
of such repeated measures should be considered for the outcome. One may instead classify the repeated
measure profile for each patient into several clinically meaningful categories, such as those presented in
this paper for evaluating the treatment’s risk(s) and benefit(s) together.
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In this article, we focus on a single assessment of patient outcomes using clinical outcomes occurring
prior to the specific time point of interest. Future research is needed to better understand and analyze data
arising from scenarios where differences in treatment effect may be related to the choice of follow-up time
as well as baseline covariates, which may be encountered, for example, during interim monitoring of trials.
For comparing scoring systems constructed for the treatment difference, we use a concordance measure
between the observed and expected treatment differences. More research is needed to explore if other
measures, which may be more clinically interpretable, can be used for model evaluation and selection.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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