
Parametric and non-parametric confidence intervals of the 
probability of identifying early disease stage given sensitivity to 
full disease and specificity with three ordinal diagnostic groups

Tuochuan Dong1, Lili Tian1,*, Alan Hutson1, and Chengjie Xiong2

1Department of Biostatistics, University at Buffalo, Buffalo, NY 14214, USA

2Division of Biostatistics, Washington University at St. Louis, Buffalo, St. Louis, MO 63110, USA

SUMMARY

In practice, there exist many disease processes with three ordinal disease classes; i.e. the non-

diseased stage, the early disease stage and the fully diseased stage. Since early disease stage is 

likely the best time window for treatment interventions, it is important to have diagnostic tests 

which have good diagnostic ability to discriminate the early disease stage from the other two 

stages. In this paper, we present both parametric and non-parametric approaches for confidence 

interval estimation of probability of detecting early disease stage given the true classification rates 

for non-diseased group and diseased group, namely, the specificity and sensitivity to full disease. 

A data set on the clinical diagnosis of early stage Alzheimers disease (AD) from the 

neuropsychological database at the Washington University Alzheimers Disease Research Center 

(WU ADRC) is analyzed using the proposed approaches.
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1. INTRODUCTION

The methods pertaining to statistical inferences involving diagnostic accuracy in the 

literature have largely focused on the cases when subjects are categorized in a binary 

fashion, i.e., the non-diseased and the diseased. The primary quantities of interest are the 

probabilities of an incorrect decision in the healthy population (1- specificity) and of a 

correct decision in the diseased population (sensitivity), respectively. When a diagnostic test 

is based on an observed variable that lies on a continuous or graded scale, an assessment of 

the test can be made through the use of a Receiver Operating Characteristic (ROC) curve, 

which is a plot of sensitivity against 1-specificity. For excellent reviews of statistical 

methods involving ROC curves; see Shapiro [1], Zhou et al. [2] and Pepe [3].
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In reality, there exists a transitional stage (early disease stage) in many disease processes. In 

other words, a disease process might involves three ordinal diagnostic stages: the normal 

healthy stage without even the earliest subtle disease symptoms, the early stage of the 

disease, and stage of full-blown development of the disease. For example, mild cognitive 

impairment (MCI) and/or early stage Alzheimers disease (AD) is a transitional stage 

between the cognitive changes of normal aging and the more serious problems. More details 

can be seen from Xiong et al. [4]. To be specific, let Y1, Y2 and Y3 denote the results of a 

diagnostic test and let F1, F2 and F3 denote the corresponding cumulative distribution 

functions for healthy subjects, the subjects with early stage disease, and fully diseased 

subjects, respectively. Assume the results are measured on a continuous scale and that 

higher values indicate greater severity of the disease. Let P1 = F1(c1), P3 = 1 − F3(c3), where 

c1 and c3 are threshold values (c1 < c3) for classifying a subject into the non-diseased stage 

group and the fully diseased stage group, given that the subject is from these corresponding 

groups, respectively. Therefore, P1 is specificity and P3 is sensitivity to full disease. Then 

the probability that a randomly selected subject from the early disease stage group has a test 

result between c1 and c3, i.e. being correctly classified, is

(1)

The P2 can also be called sensitivity to early disease. As a function of P1 and P3, P2 = 

P2(P1, P3) defines a surface in the three-dimensional space (P1, P3, P2), i.e., the ROC 

surface. The point (P1, P3, P2) = (1, 1, 1) indicates the perfect discrimination ability of the 

marker between three ordinal disease groups. The volume under the ROC surface (VUS) 

and the partial volume under surface (PVUS) have been widely used as quantitative indexes 

of discriminating ability of a biomarker measured on a continuous scale; e.g., see Mossman 

[5], Dreiseitl [6] and Heckerling [7]. Furthermore, Nakas and Yiannoutsos [8] proposed 

distribution-free approaches for hypothesis testing for a single VUS and paired VUSs; 

Xiong et. al. [4] developed an asymptotic approach for confidence interval estimation of 

VUS and PVUS for normally distributed data; Nakas and Alonzo [9], and Alonzo and Nakas 

[10] proposed nonparametric inference procedures for diagnostic accuracy with three 

disease classes under umbrella ordering; and Xiong et. al. [11] developed a large sample 

approach for comparing several VUSs for normally distributed data. Most recently, Tian et 

al. [12] proposed an approach based on generalized inference for confidence interval 

estimation of the difference between paired VUSs and PVUSs.

The probability associated with the detection of early disease stage, P2, is especially critical 

in medical sense. First, in many disease processes such as AD, early detection often means 

optimum time window for therapeutic treatment due to the fact that no pharmaceutical 

treatments to-date are effective for the late stage AD. Therefore, estimating the probability 

that a person is at the early disease stage has direct treatment implications. Second, there are 

well established and accepted criteria for differentiating normal aging (i.e., P1) and fully 

developed AD (i.e., P3). However, it is far more challenging to diagnose subjects at the 

earliest disease stage for clinicians because of the subtle clinical symptoms in the early stage 

of many complex disease processes. An accurate estimate of P2 therefore helps clinicians to 

identify the best disease markers for early diagnosis. Finally, it is already a standard practice 
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for clinicians to diagnose subjects into 3 groups: normal aging, early stage/very mild AD, 

and fully developed AD. For disease processes with three disease stage, the specificity (P1), 

the sensitivity to early disease (P2), and the sensitivity to full disease (P3) of a test or a 

biomarker depend on the cut-points c1 and c3 which can be chosen to be some quantile 

(typically the 80th, 90th or etc) of the distribution of the test values of non-diseased subjects 

and fully diseased subjects providing a fixed specificity (for example, the 80th percentile 

provides a specificity of 0.8) and a fixed sensitivity to full disease. In other words, the 

specification of P1 and P3 only serves to set up the cutoffs c1 and c3 for a disease marker 

that can be used to diagnose subjects into three groups. Therefore, the sensitivity to early 

disease (P2) at a given specificity (P1) and a give sensitivity to full disease (P3) provides a 

measure of the ability of a biomarker for early disease detection and can be used as another 

diagnostic measure in addition to VUS and PVUS. Hence it is of paramount theoretical and 

practical importance to develop inference procedures for P2. However, to the best of our 

knowledge, the problem of making inference about P2 given P1 and P3 has not been 

addressed in the literatures.

When the disease status is binary, the diagnostic accuracy of a test is usually described by its 

sensitivity and specificity. For a continuous-scale test or biomarker, it is often of interest to 

construct a confidence interval for the sensitivity at the cut-off that yields a predetermined 

level of specificity. Towards this end, some works for estimation of sensitivity given 

specificity have been done. Linnet [13] proposed both parametric and non-parametric 

methods for constructing confidence intervals for the sensitivity of a test at a fixed value of 

specificity, accounting for the random variation associated with the estimated cut-off point. 

Platt [14] pointed out several shortcomings in Linnet [13] methods and then proposed to use 

Efron’s bias-corrected acceleration (BCa) bootstrap interval. Zhou and Qin [15] proposed 

two new intervals for the sensitivity of a diagnostic test at a fixed level of specificity.

The purpose of this paper is two-fold: 1) For disease processes with three disease categories, 

we propose to use the sensitivity to early disease (P2) given specificity (P1) and sensitivity 

to full disease (P3) as a diagnostic measure which focuses on ability of early disease 

detection; 2) we examine the performance of several parametric and nonparametric 

approaches for confidence interval estimation of P2 given P1 and P3, and then make 

recommendations about what procedures are most appropriate to use under different 

scenarios. This paper is organized as follows. In Section 2, the motivating example from 

Washington University (WU) Alzheimers Disease Research Center (ADRC) is described. In 

Section 3, the parametric confidence interval estimations for P2 under either normality or 

normality of transformed data are discussed. In Section 4, nonparametric confidence 

intervals for P2 are presented. In Section 5, we conduct simulation studies to assess the finite 

sample performance of the proposed confidence intervals. In Section 6, we analyze the data 

from the Alzheimer’s disease study. In Section 7, we give a summary and discussion.

2. THE DATA

Alzhermer’s Disease(AD) is one of the most common degenerative dementias for aged 

people. As “baby boomers” reach retirement, AD is becoming even more prevalent, thus 

resulting a major health care crisis in the United States. Because AD is irreversible, a major 
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challenge is to identify individuals in the early phase of it. The sample studied here is from 

the longitudinal cohort of Washington University (WU) Alzheimers Disease Research 

Center (ADRC). Only individuals with dementia of Alzheimer type (DAT) were included in 

the demented sample. For each subject, the severity of dementia was staged by the Clinical 

Dementia Rating (CDR) according to published rules [16]. This data set includes three 

diagnostic groups: non-demented (CDR 0=group D−), very mildly demented (CDR 

0.5=group D0), and mildly demented (CDR 1=group D+). There are 45, 44, and 29 subjects 

in groups D−, D0, D+ respectively. Besides clinical evaluation, participants also completed 

standard psychometric tests. Episodic memory was assessed by the Logic Memory, Digit 

Span (both forward and backward), Associate Learning sub-tests of the Wechsler Memory 

Scale (WMS), and the Visual Retention Test. Three measures of semantic memory included 

the Information subset of the Wechsler Adult Intelligence Scale (WAIS), the Boston 

Naming Test, and word fluency for S and P. The other two tests in the psychometrics battery 

were an attentional measure (WMS Mental Control) and an un-timed visuospatial measure 

(Visual Retention Test). The factor scores including primary factor (called global factor), the 

mental control/frontal factor, the memory-verbal/temporal factor, and the visuospatial/

parietal factor were also computed from the database. These composite factor scores reflect 

the brain regions thought to contribute to performance on the measures that loaded highly on 

the factors. For more details about this data set and the description of the related 

psychometric tests, see Xiong et. al. [4].

The data set has been analyzed by Xiong et. al. [4] for confidence interval estimations of 

VUS and PVUS. The table with summary statistics of neuropsychometric tests from this 

sample is reproduced as Table 1. For Alzheimer’s disease, a major challenge lies in 

identifying affected, but not yet fully demented individuals in the earliest phases of illness 

when treatment can have a more profound impact on functional status and rate of cognitive 

decline. Therefore, the goal of this paper is to to examine the accuracy of 

neuropsychological tests in the diagnosis of early stage AD given the sensitivity to full 

disease and specificity.

3. PARAMETRIC CONFIDENCE INTERVAL ESTIMATION OF P2

In this section, we first examine a generalized inference approach for confidence interval 

estimation of P2 for normally distributed data. For non-normal data, we propose to apply a 

Box-Cox type power transformation to the data followed by a generalized inference 

approach. The generalized variables and generalized pivots were introduced by Tsui and 

Weerahandi [17] and Weerahandi [18]; see the book by Weerahandi [19] for a detailed 

discussion. A brief summary of the core concepts is included in the Appendix. The concepts 

of generalized confidence interval and generalized P-value have been successfully applied to 

a variety of practical settings where standard exact solutions do not exist for confidence 

intervals and hypothesis testing. It has been shown that generalized inference approaches 

typically have good performance, even at small sample sizes; e.g. Weerahandi [20], 

Weerahandi and Berger [21], Krishnamoorthy and Lu [22], Tian and Cappelleri [23], Tian 

[24], Li, Liao and Liu [25] and Li, Liao and Liu [26].
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3.1 Under the Normal Assumptions

Let Y1j (j = 1, 2, …, n1), Y2j (j = 1, 2, …, n2), and Y3j (j = 1, 2, …, n3) denote the n1, n2, n3 

observations for the non-diseased, early stage, and diseased groups respectively. Assume 

Yij(j = 1, 2, …, ni) follows normal distributions with mean μi and variance  for i = 1, 2, 3. 

Then P2 defined in (1) can be expressed as follows:

(2)

where Φ denotes the cumulative distribution function for the standard normal variable. For 

the ith group, let Ȳi and  be the sample mean and the sample variance, and let ȳi and 

denote the corresponding observed values. The P2 can be estimated as follows:

(3)

It is well-known that

Therefore, the generalized pivotal quantity for  is

(4)

Furthermore,

The generalized pivotal quantity of μi is

(5)

The generalized pivotal quantities for normal mean and variance were first proposed in 

Krishnamoorthy and Mathew [27]. Finally, the generalized pivotal quantity for P2 is

(6)
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where  for i = 1, 2, 3. One can easily check that RP2 is a bona fide generalized 

pivot given the following holds: 1) the distributions of RP2 is independent of any unknown 

parameters; and 2) the observed value of RP2 equals to P2 as defined in equation (2) for 

given ȳi and  (i = 1, 2, 3).

Computing Algorithm—Given a normally distributed data set with n1 non-diseased 

subject, n2 subjects at early stage of the disease, and n3 diseased subjects, the confidence 

interval for P2 using generalized inference approach can be obtained via the following steps:

1. For i = 1, 2, 3, calculate ȳi and .

2. For i = 1, 2, 3, generate independent random numbers Vi from , then calculate 

.

3. For i = 1, 2, 3, generate independent random numbers Zi from standard normal 

distributions N(0, 1), and Vi from , then calculate Rμi.

4. Calculate RP2 as in equation (6).

5. Repeat Steps 2–4 for a total B = 2500 times to obtain a set of values of RP2.

Denote RP2(α) as the 100αth percentile of RP2 ’s. Then (RP2(α/2);RP2(1 − α/2)) is a two-

sided 100(1 − α)% generalized confidence interval of P2.

3.2 Without the Normal Assumptions

Most of the time the normal assumptions as given in Section 3.1 are not satisfied. For such 

data, we will examine the use of the generalized inference approach to non-normal data by 

first applying a Box-Cox transformation to the data and then applying the generalized 

inference procedure proposed in Section 3.1. Due to the fact that ROC is invariant under 

monotonic transformation, this type of approach has been found useful in the context of 

ROC analysis for a wide variety of situations (e.g. Zou et al. [28]; Zou and Hall [30]; 

Faraggi and Reiser [29]; Fluss et al. [31]; Schisterman et al. [32], [33]; Molodianovitch et al. 

[34]). By employing a similar technique, we can also show that the P2 is invariant under 

monotonic transformations. Let

(7)

for i = 1, 2, 3, where it is assumed that . Based on the observations of three 

groups, the loglikelihood function can be readily obtained as follows:

(8)
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The maximum likelihood estimate (MLE) of λ can be obtained by maximizing the above 

function. After applying the Box-Cox transformation, the generalized inference approach 

proposed in Section 3.1 is applied directly to the transformed data.

4. NON-PARAMETRIC CONFIDENCE INTERVAL ESTIMATION OF P2

The parametric approaches either rely on normality assumption or require solving an 

equation for Box-Cox transformation. Therefore, it is of also interest to examine the 

performance of non-parametric approaches for confidence interval estimation of P2. Three 

nonparametric methods using bootstrap samples will be considered. The first is bootstrap 

percentile confidence interval, and the other two are based on the intervals proposed by 

Agresti and Coull [36] with variance estimated from bootstrap samples.

Assume the distributions for the non-diseased group (i.e. F1) and the fully diseased group 

(i.e. F3) are known. Define  for (j = 1, 2, …, n2). Therefore Aj’s 

are Bernoulli random variables with the successful rate 

. Let , the standard (1 − α)100% 

Wald interval for P2 is

where z1−α/2 stands for 100(1 − α/2)% percentile for standard normal distribution.

In reality, the true distributions F1 and F3 are unknown and therefore  and 

 need to be replaced by their sample estimates  and . The 

estimated P̂
2 is given by

(9)

The estimated 100(1 − α)% Wald interval for P2 is

The Wald interval is known to have poor performance, especially for small sample sizes 

[35].

The bootstrap percentile confidence interval (BTP) use bootstrap samples to compute  for 

b = 1 to 500 bootstrap iterations as follows:

(10)

where  is the 100α% percentile of the bootstrap distribution of .
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The AC interval, proposed by Agresti and Coull [36], is know to have good performance for 

binomial proportions. Applying it to our settings, the 100(1 − α)% AC interval for P2 is:

(11)

where

(12)

and

(13)

The estimated P̃
2 is given by

(14)

The estimated variance VarAC(P̃
2) can be obtained directly by substituting P̃

2 with  in 

equation (13).

Zhou and Qin [15] considered the non-parametric solution for estimating confidence 

intervals for the sensitivity at a fixed level of specificity of a diagnostic test with binary 

disease status, and proposed to use bootstrap methods to estimate the variance. This idea can 

be extended to estimate non-parametric confidence interval of P2 given P3 and P1. Follow 

the same vein, we will use bootstrap methods to estimate the variance of . With the 

estimated variance, we then apply Agresti and Coull’s idea to derive confidence intervals for 

P2.

Computing Algorithms

Given a data set with n1 non-diseased subjects, n2 subjects at early stage of the disease, and 

n3 diseased subjects, three nonparametric confidence intervals for P2 discussed in this 

section can be obtained by the following algorithm.

For b = 1 to B (it is recommended that B ≥ 200, e.g. [15]. In this paper we use 500) bootstrap 

iterations,

• Draw resamples of sizes n1, n2, and n3 with replacements from the non-diseased 

sample Y1j’s, the early stage sample Y2j’s, and the diseased sample Y3j’s, 

respectively. Denote the bootstrap samples , i = 1, 2, 3, j = 1, 2, …, ni.

•
Calculate the bootstrap version of  and  according to (9) and (14) respectively.
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The bootstrap percentile confidence interval (BTP) in (10) can be obtained by using the 

array  (b = 1, …, 500).

The proposed bootstrap variance estimator of  is defined as:

(15)

where . Similarly as Zhou and Qin [15], we propose two Agresti and 

Coull’s confidence intervals for P2 given P1 and P3. The first (1 − α)100% level interval, 

called BTI interval, is defined as

(16)

where  is defined in (14). The second 100(1 − α)% level interval, called BTII interval, for 

P2 is defined by

(17)

5. SIMULATION STUDIES

Simulation studies are carried out to assess the coverage probabilities of the proposed 

confidence interval estimations (the generalized inference approach, the generalized 

inference approach with Box-Cox transformation, the percentile bootstrap interval (BTP), 

and two intervals based on Agresti and Coull’s paper, namely BTI and BTII) for P2 under 

different distributional assumptions: normal, beta and gamma. The AC interval proposed in 

equ. (11) using estimated P̃
2 and variance VarAC(P̃

2) has poor coverage accuracy and 

therefore is not considered here. Beta and gamma distributions are used as representatives of 

non normal distributions because they are widely used in practical application and also 

because they come with a variety of shapes.

To represent a wide rage of sample size settings, (n1, n2, n3) is set as (10, 10, 10), (30, 30, 

30), (20, 10, 10), (30, 20, 10), (50, 30, 30) and (50, 50, 50). With a fixed 80% specificity and 

a fixed 80% sensitivity to full disease, the parameters are chosen correspondingly so that P2 

equals to 50%, 70%, 80% and 90% respectively. For each parameter setting, 5,000 random 

samples are generated and the parametric and non-parametric confidence intervals proposed 

in Sections 3 and 4 are obtained. The simulation results are presented in Tables 2–4 for the 

bootstrap percentile approach (BTP), and the BTII approach and the generalized inference 

approach (without or with Box-Cox transformation). The BTI approach is not presented due 

to the fact that it is constantly inferior to BTII approach. The coverage probabilities, the 

coverage errors for lower and upper tails, i.e. the proportion of runs in which the lower (or 

upper) limit of the confidence interval excluding the true P2 at nominal level, and the 

average lengths of proposed confidence intervals are presented.
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Table 2 presents simulation results under normal assumption. The bootstrap percentile 

approach tends to slightly overestimate the coverage probability except it underestimates the 

coverage probabilities for small sample unbalanced case as P2 = 0.9; while the confidence 

intervals by the BTII method are reasonably close to the nominal level for most of the 

scenarios except sometimes they tend to be liberal. The generalized confidence intervals are 

the most accurate despite the fact they tend to slightly underestimate the coverage 

probabilities when sample sizes are small and P2 is large. Regardless of sample sizes and 

true values of P2, the bootstrap percentile confidence interval has the longest length.

In Tables 3 and 4, we present simulation results at the nominal level of 95% for the beta and 

gamma distributions respectively. For beta and gamma distributions, simulation study shows 

the Box-Cox transferred data generally satisfies normality. Generally speaking, the Box-Cox 

transformed generalized approach gives uniformly good coverage probabilities for all cases, 

except that it might be slightly conservative when the sample sizes are small. The bootstrap 

percentile confidence interval are generally conservative except for small sample scenarios 

when P2 = 0.9. The BTII approach performs well except that it tends to be liberal for small 

sample scenarios when P2 = 0.9. Similarly as normal cases, the bootstrap percentile 

confidence intervals have the longest length.

In summary, as the normality is satisfied for either original data or the transformed data, the 

parametric approaches, i.e. the generalized approach or the Box-Cox transformed 

generalized approach can generally provide confidence intervals with satisfactory coverage 

probabilities. Although the generalized approach is simple to use, the Box-Cox 

transformation involves solving equation. On the other hand, when the normality assumption 

can not be met, the BTII approach is a good choice except the scenarios with large P2 and 

small sample sizes, for which the bootstrap percentile approach can provide reasonable 

confidence intervals.

6. EXAMPLE: REVISITED

In this section, the confidence intervals of the probabilities of detecting early AD (P2) for all 

neuropsychometric tests in the data set of Alzheimer’s disease from a study at the 

Washington University (WU) Alzheimer’s Disease Research Center (ADRC) are estimated 

by the proposed parametric and nonparametric approaches. The details of the data set are 

presented in Section 2 and the summary statistics of neuropsychometric tests by three 

diagnostic groups are presented in Table 1.

A close look at the data using Shapiro-Wilk normality test shows that the frontal factor and 

temporal factor satisfy normality, while parietal factor, associate learning and word fluency 

satisfy normality after a Box-Cox transformation. For these variables, the generalized 

inference approach or the Box-Cox transformed generalized inference are recommended. 

For the rest of variables, the confidence intervals of P2 can be obtained by both BTP and 

BTII methods. The specificity P1 and sensitivity to full disease P3 are fixed at 0.8. For 

comparison purpose, the confidence intervals by all the proposed approaches are presented 

in Table 5. Furthermore, for each variable, the nonparametric and parametric (with or 
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without Box-Cox transformation) point estimates in (3) and (9) are calculated, and the 

corresponding most appropriate point estimates are highlighted in Table 5.

From the point estimates and estimated confidence intervals, we can see that the global 

factor has the best diagnostic accuracy for identifying early stage dementia, followed by 

logical memory and visual retention, while word fluency and parietal factor have very poor 

ability for early stage diagnosis.

7. SUMMARY AND DISCUSSION

The probability of detecting early disease stage (P2) when disease processes involve three 

ordinal disease stages given sensitivity to the full disease (P3) and specificity (P1) can serve 

as another diagnostic measure. This article aims to examine the performance of several 

parametric and nonparametric approaches for confidence interval estimation of P2 given P1 

and P3 and to make recommendations about what procedures are most appropriate to use 

under different scenarios. These methods can be applied to identify important makers for the 

detection of early stage disease (e.g. preclinical AD) which is usually the most important 

stage of the disease for intervention. As the simulations results indicate, the parametric 

approaches generally perform satisfactorily. Out of non-parametric approaches, the 

bootstrap percentile approach generally slightly overestimate the coverage probabilities, 

while the BTII method is a good choice except the scenarios with large P2, for which the 

bootstrap percentile approach can provide reasonable confidence intervals.

Based on the simulation studies, the following recommendations are made. First, if 

normality is satisfied for either original or transformed data, we suggest the generalized 

inference approach. This approach is easy to use, and has good coverage probability even 

for small sample sizes and unbalanced sample sizes. Second, if the normality assumption is 

not met, the nonparametric BTII approach works well for most scenarios; however, if the 

estimated P2 is large and the sample sizes are small, we recommended the use of the 

bootstrap percentile approach (BTP). Furthermore, as sample sizes are ≥ 50, the BTII 

approach is recommended for normal distribution and the generalized inference approach is 

recommended for Beta and Gamma distributions due to the following facts: 1) BTII 

intervals have the shortest length and satisfactory coverage probabilities for normal 

distribution; 2) the generalized inference approach has the best coverage probabilities and 

the shortest confidence interval for Beta and Gamma.

All of the proposed approaches are simulation-based approach. The generalized inference 

approach based on normality is an easy-to-use approach while the Box-Cox transformed 

generalized inference approach involves solving an equation. The nonparametric approaches 

are simple except that the variance is computed through bootstrap samples. A R-program is 

available upon request from ltian@buffalo.edu.
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Appendix

Generalized Pivots and Generalized Test variables

In the following, the basic concepts for generalized inference developed by Tsui & 

Weerahandi [17] and Weerahandi [18] are described.

Suppose that Y = (Y1, Y2, …, Yn)′ form a random sample from a distribution which depends 

on the parameters θ = (ψ, ν) where ψ is the parameter of interest and ν′ is a vector of 

nuisance parameters. A generalized pivot R(Y; y, ψ, ν), where y is a observed value of Y, for 

interval estimation defined in Weerahandi [18], has the following two properties:

1. R(Y; y, ψ, ν) has a distribution free of unknown parameters.

2. The value of R(y; y, ψ, ν) is ψ.

Let that Rα be the 100αth percentile of R. Then Rα becomes the 100(1 − α)% lower bound 

for ψ and (Rα/2, R1−α/2) becomes a 100(1 − α)% two-sided generalized confidence interval 

for ψ.

Now consider testing H0 : ψ = ψ0 vs. H1 : ψ > ψ0 where ψ0 is a specified quantity. A 

generalized test variable of the form T(Y; y, ψ, ν), where y is an observed value of Y, is 

chosen to satisfy the following three conditions (Tsui & Weerahandi [17]) :

1. For fixed y, the distribution of T(Y; y, ψ, ν) is free of the vector of nuisance 

parameters ν.

2. The value of T(Y; y, ψ, ν) at Y = y is free of any unknown parameters.

3. For fixed y and ν, and for all t, Pr[T(Y; y, ψ, ν) > t] is either an increasing or a 

decreasing function of ψ.

A generalized extreme region is defined as C = [Y : T(Y; y, ψ, ν) ≥ T(y; y, ψ, ν)] if T(Y; y, ψ, 

ν) is stochastically increasing in ψ. If T(Y; y, ψ, ν) is stochastically decreasing in ψ, a 

generalized extreme region is defined as C = [Y : T(Y; y, ψ, ν) ≤ T(y; y, ψ, ν)]. Then the 

generalized P-value is defined as P(C|ψ0).
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Table 1

Means (standard deviations) of neuropsychometric tests from the WU ADRC sample

Variable CDR 0 (n=45) CDR 0.5 (n=44) CDR 1 (n=29)

Global factor 0.569(0.888) −1.622(1.722) −4.199(1.699)

Frontal factor 2.866(1.777) 0.373(2.212) −2.682(2.067)

Parietal factor 1.803(1.295) −0.241(2.051) −2.377(2.549)

Temporal factor 4.085(2.249) −0.986(3.315) −5.855(3.223)

Associate Learning 0.741(0.890) −0.579(0.888) −1.501(0.871)

Logical Memory 0.730(0.848) −0.858(0.895) −1.766(0.402)

Digit Span Forward 0.579(0.806) −0.212(0.892) −1.210(1.127)

Digit Span Backward 0.546(0.923) −0.400(0.853) −1.824(1.410)

Visual Retention (10 s) 0.636(0.879) −0.821(1.099) −1.658(0.773)

Information 0.631(0.844) −0.607(1.080) −2.302(1.139)

Word Fluency 0.729(1.178) −0.255(0.981) −1.438(0.883)

Mental Control 0.463(0.612) −0.374(1.197) −1.715(1.130)

Boston Naming 0.588(0.531) −0.497(1.635) −3.072(2.148)

Visual Retention (copy) 0.202(0.667) −0.551(1.864) −1.769(2.398)
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