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SUMMARY

In practice, there exist many disease processes with three ordinal disease classes; i.e. the non-
diseased stage, the early disease stage and the fully diseased stage. Since early disease stage is
likely the best time window for treatment interventions, it is important to have diagnostic tests
which have good diagnostic ability to discriminate the early disease stage from the other two
stages. In this paper, we present both parametric and non-parametric approaches for confidence
interval estimation of probability of detecting early disease stage given the true classification rates
for non-diseased group and diseased group, namely, the specificity and sensitivity to full disease.
A data set on the clinical diagnosis of early stage Alzheimers disease (AD) from the
neuropsychological database at the Washington University Alzheimers Disease Research Center
(WU ADRC) is analyzed using the proposed approaches.
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1. INTRODUCTION

The methods pertaining to statistical inferences involving diagnostic accuracy in the
literature have largely focused on the cases when subjects are categorized in a binary
fashion, i.e., the non-diseased and the diseased. The primary quantities of interest are the
probabilities of an incorrect decision in the healthy population (1- specificity) and of a
correct decision in the diseased population (sensitivity), respectively. When a diagnostic test
is based on an observed variable that lies on a continuous or graded scale, an assessment of
the test can be made through the use of a Receiver Operating Characteristic (ROC) curve,
which is a plot of sensitivity against 1-specificity. For excellent reviews of statistical
methods involving ROC curves; see Shapiro [1], Zhou et al. [2] and Pepe [3].
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In reality, there exists a transitional stage (early disease stage) in many disease processes. In
other words, a disease process might involves three ordinal diagnostic stages: the normal
healthy stage without even the earliest subtle disease symptoms, the early stage of the
disease, and stage of full-blown development of the disease. For example, mild cognitive
impairment (MCI) and/or early stage Alzheimers disease (AD) is a transitional stage
between the cognitive changes of normal aging and the more serious problems. More details
can be seen from Xiong et al. [4]. To be specific, let Y1, Yo and Y3 denote the results of a
diagnostic test and let F1, F, and F3 denote the corresponding cumulative distribution
functions for healthy subjects, the subjects with early stage disease, and fully diseased
subjects, respectively. Assume the results are measured on a continuous scale and that
higher values indicate greater severity of the disease. Let P; = F1(c;), P3 = 1 — F3(c3), where
1 and cg3 are threshold values (c; < c3) for classifying a subject into the non-diseased stage
group and the fully diseased stage group, given that the subject is from these corresponding
groups, respectively. Therefore, Py is specificity and P3 is sensitivity to full disease. Then
the probability that a randomly selected subject from the early disease stage group has a test
result between c; and cg, i.e. being correctly classified, is

Py=Fy(c3) — Fy(e1)=F[F5 (1 — P3)] = B[FH(P)]. @

The P, can also be called sensitivity to early disease. As a function of P, and P3, Py =
P,(P1, P3) defines a surface in the three-dimensional space (Pq, P3, Py), i.e., the ROC
surface. The point (P, P3, P2) = (1, 1, 1) indicates the perfect discrimination ability of the
marker between three ordinal disease groups. The volume under the ROC surface (VUS)
and the partial volume under surface (PVVUS) have been widely used as quantitative indexes
of discriminating ability of a biomarker measured on a continuous scale; e.g., see Mossman
[5], Dreiseitl [6] and Heckerling [7]. Furthermore, Nakas and Yiannoutsos [8] proposed
distribution-free approaches for hypothesis testing for a single VUS and paired VUSsS;
Xiong et. al. [4] developed an asymptotic approach for confidence interval estimation of
VUS and PVUS for normally distributed data; Nakas and Alonzo [9], and Alonzo and Nakas
[10] proposed nonparametric inference procedures for diagnostic accuracy with three
disease classes under umbrella ordering; and Xiong et. al. [11] developed a large sample
approach for comparing several VUSs for normally distributed data. Most recently, Tian et
al. [12] proposed an approach based on generalized inference for confidence interval
estimation of the difference between paired VUSs and PVUSs.

The probability associated with the detection of early disease stage, Py, is especially critical
in medical sense. First, in many disease processes such as AD, early detection often means
optimum time window for therapeutic treatment due to the fact that no pharmaceutical
treatments to-date are effective for the late stage AD. Therefore, estimating the probability
that a person is at the early disease stage has direct treatment implications. Second, there are
well established and accepted criteria for differentiating normal aging (i.e., P1) and fully
developed AD (i.e., P3). However, it is far more challenging to diagnose subjects at the
earliest disease stage for clinicians because of the subtle clinical symptoms in the early stage
of many complex disease processes. An accurate estimate of P, therefore helps clinicians to
identify the best disease markers for early diagnosis. Finally, it is already a standard practice
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for clinicians to diagnose subjects into 3 groups: normal aging, early stage/very mild AD,
and fully developed AD. For disease processes with three disease stage, the specificity (Py),
the sensitivity to early disease (Py), and the sensitivity to full disease (P3) of a test or a
biomarker depend on the cut-points c; and c3 which can be chosen to be some quantile
(typically the 80th, 90th or etc) of the distribution of the test values of non-diseased subjects
and fully diseased subjects providing a fixed specificity (for example, the 80th percentile
provides a specificity of 0.8) and a fixed sensitivity to full disease. In other words, the
specification of P, and P3 only serves to set up the cutoffs ¢; and c3 for a disease marker
that can be used to diagnose subjects into three groups. Therefore, the sensitivity to early
disease (P») at a given specificity (P1) and a give sensitivity to full disease (P3) provides a
measure of the ability of a biomarker for early disease detection and can be used as another
diagnostic measure in addition to VUSand PVUS. Hence it is of paramount theoretical and
practical importance to develop inference procedures for P,. However, to the best of our
knowledge, the problem of making inference about P, given P, and P3 has not been
addressed in the literatures.

When the disease status is binary, the diagnostic accuracy of a test is usually described by its
sensitivity and specificity. For a continuous-scale test or biomarker, it is often of interest to
construct a confidence interval for the sensitivity at the cut-off that yields a predetermined
level of specificity. Towards this end, some works for estimation of sensitivity given
specificity have been done. Linnet [13] proposed both parametric and non-parametric
methods for constructing confidence intervals for the sensitivity of a test at a fixed value of
specificity, accounting for the random variation associated with the estimated cut-off point.
Platt [14] pointed out several shortcomings in Linnet [13] methods and then proposed to use
Efron’s bias-corrected acceleration (BCa) bootstrap interval. Zhou and Qin [15] proposed
two new intervals for the sensitivity of a diagnostic test at a fixed level of specificity.

The purpose of this paper is two-fold: 1) For disease processes with three disease categories,
we propose to use the sensitivity to early disease (P,) given specificity (P1) and sensitivity
to full disease (P3) as a diagnostic measure which focuses on ability of early disease
detection; 2) we examine the performance of several parametric and nonparametric
approaches for confidence interval estimation of P, given Py and P3, and then make
recommendations about what procedures are most appropriate to use under different
scenarios. This paper is organized as follows. In Section 2, the motivating example from
Washington University (WU) Alzheimers Disease Research Center (ADRC) is described. In
Section 3, the parametric confidence interval estimations for P, under either normality or
normality of transformed data are discussed. In Section 4, nonparametric confidence
intervals for P, are presented. In Section 5, we conduct simulation studies to assess the finite
sample performance of the proposed confidence intervals. In Section 6, we analyze the data
from the Alzheimer’s disease study. In Section 7, we give a summary and discussion.

2. THE DATA

Alzhermer’s Disease(AD) is one of the most common degenerative dementias for aged
people. As “baby boomers” reach retirement, AD is becoming even more prevalent, thus
resulting a major health care crisis in the United States. Because AD is irreversible, a major
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challenge is to identify individuals in the early phase of it. The sample studied here is from
the longitudinal cohort of Washington University (WU) Alzheimers Disease Research
Center (ADRC). Only individuals with dementia of Alzheimer type (DAT) were included in
the demented sample. For each subject, the severity of dementia was staged by the Clinical
Dementia Rating (CDR) according to published rules [16]. This data set includes three
diagnostic groups: non-demented (CDR 0=group D-), very mildly demented (CDR
0.5=group Dg), and mildly demented (CDR 1=group D+). There are 45, 44, and 29 subjects
in groups D-, D, D+ respectively. Besides clinical evaluation, participants also completed
standard psychometric tests. Episodic memory was assessed by the Logic Memory, Digit
Span (both forward and backward), Associate Learning sub-tests of the Wechsler Memory
Scale (WMS), and the Visual Retention Test. Three measures of semantic memory included
the Information subset of the Wechsler Adult Intelligence Scale (WAIS), the Boston
Naming Test, and word fluency for S and P. The other two tests in the psychometrics battery
were an attentional measure (WMS Mental Control) and an un-timed visuospatial measure
(Visual Retention Test). The factor scores including primary factor (called global factor), the
mental control/frontal factor, the memory-verbal/temporal factor, and the visuospatial/
parietal factor were also computed from the database. These composite factor scores reflect
the brain regions thought to contribute to performance on the measures that loaded highly on
the factors. For more details about this data set and the description of the related
psychometric tests, see Xiong et. al. [4].

The data set has been analyzed by Xiong et. al. [4] for confidence interval estimations of
VUS and PVUS. The table with summary statistics of neuropsychometric tests from this
sample is reproduced as Table 1. For Alzheimer’s disease, a major challenge lies in
identifying affected, but not yet fully demented individuals in the earliest phases of illness
when treatment can have a more profound impact on functional status and rate of cognitive
decline. Therefore, the goal of this paper is to to examine the accuracy of
neuropsychological tests in the diagnosis of early stage AD given the sensitivity to full
disease and specificity.

3. PARAMETRIC CONFIDENCE INTERVAL ESTIMATION OF P,

In this section, we first examine a generalized inference approach for confidence interval
estimation of P, for normally distributed data. For non-normal data, we propose to apply a
Box-Cox type power transformation to the data followed by a generalized inference
approach. The generalized variables and generalized pivots were introduced by Tsui and
Weerahandi [17] and Weerahandi [18]; see the book by Weerahandi [19] for a detailed
discussion. A brief summary of the core concepts is included in the Appendix. The concepts
of generalized confidence interval and generalized P-value have been successfully applied to
a variety of practical settings where standard exact solutions do not exist for confidence
intervals and hypothesis testing. It has been shown that generalized inference approaches
typically have good performance, even at small sample sizes; e.g. Weerahandi [20],
Weerahandi and Berger [21], Krishnamoorthy and Lu [22], Tian and Cappelleri [23], Tian
[24], Li, Liao and Liu [25] and Li, Liao and Liu [26].
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3.1 Under the Normal Assumptions
LetYy(=1,2,....,m), Y2 (1=1,2,...,np), and Y3; (j = 1, 2, ..., ng) denote the ny, Ny, N3
observations for the non-diseased, early stage, and diseased groups respectively. Assume

Yij( =12, ..., ny) follows normal distributions with mean y; and variance o fori =1, 2, 3.
Then P, defined in (1) can be expressed as follows:

P=o

ps — pot+® (1 — Ps)os %
g2

w1 — po+d1(P)o
1 #20 (1) 1} @
2

where @ denotes the cumulative distribution function for the standard normal variable. For

the ith group, let ¥; and S? be the sample mean and the sample variance, and let y; and 52
denote the corresponding observed values. The P, can be estimated as follows:

Py=o

52 52

~ |:?3, — ?2"'@_1(1 — ]33)83:| _® |:}_/1 — }72+(I)_1(P1)51:| @)

It is well-known that

Vi=(ni = 1)S} /oi~xn, 1.

Therefore, the generalized pivotal quantity for 57 is

(ni —1)s7 (ni—1)s}

RU?: v X%i_1 ,1=1,2,3. @
Furthermore,
V. —
Zi=— L UN(0,1),i=1,2, 3.

Vi /i
The generalized pivotal quantity of p; is

Ru,=y; — Z; /Rag/ni,i:1,2,3. (5)

The generalized pivotal quantities for normal mean and variance were first proposed in
Krishnamoorthy and Mathew [27]. Finally, the generalized pivotal quantity for P2 is

R

Rp2 =d M3 Ru2+(1)71(1 - P3)R03

R,

Rm — R#2+(I)71(P1)RU1

- ., (6)
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where Blo;= Rag fori=1,2, 3. One can easily check that Rp, is a bona fide generalized
pivot given the following holds: 1) the distributions of Rp, is independent of any unknown
parameters; and 2) the observed value of Rp, equals to P; as defined in equation (2) for

given y; and 52 (i =1, 2, 3).

Computing Algorithm—Given a normally distributed data set with n; non-diseased
subject, n, subjects at early stage of the disease, and n3 diseased subjects, the confidence
interval for P, using generalized inference approach can be obtained via the following steps:

L Fori=1,2,3, calculate y; and s2.

2. Fori= 1, 2, 3, generate independent random numbers V; from Xf%_l, then calculate

R,
3. Fori=1, 2,3, generate independent random numbers Z; from standard normal

distributions N(0, 1), and V; from Xiﬁl, then calculate Ry;.
4. Calculate Rp, as in equation (6).
5. Repeat Steps 24 for a total B = 2500 times to obtain a set of values of Rp,.

Denote Rp,(a) as the 100ath percentile of Rp, ’s. Then (Rp,(a/2);Rp,(1 — a/2)) is a two-
sided 100(1 - a)% generalized confidence interval of P,.

3.2 Without the Normal Assumptions

Most of the time the normal assumptions as given in Section 3.1 are not satisfied. For such
data, we will examine the use of the generalized inference approach to non-normal data by
first applying a Box-Cox transformation to the data and then applying the generalized
inference procedure proposed in Section 3.1. Due to the fact that ROC is invariant under
monotonic transformation, this type of approach has been found useful in the context of
ROC analysis for a wide variety of situations (e.g. Zou et al. [28]; Zou and Hall [30];
Faraggi and Reiser [29]; Fluss et al. [31]; Schisterman et al. [32], [33]; Molodianovitch et al.
[34]). By employing a similar technique, we can also show that the P, is invariant under
monotonic transformations. Let

YA-1
e { o AE0

P log(Y;), A=0

K2

groups, the loglikelihood function can be readily obtained as follows:

fori =1, 2, 3, where it is assumed that YY) ~ N (;, 0%). Based on the observations of three

ZZ[—Elog(Qﬁ) —

Y{\' — Hi

7
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The maximum likelihood estimate (MLE) of A can be obtained by maximizing the above
function. After applying the Box-Cox transformation, the generalized inference approach
proposed in Section 3.1 is applied directly to the transformed data.

4. NON-PARAMETRIC CONFIDENCE INTERVAL ESTIMATION OF P,

The parametric approaches either rely on normality assumption or require solving an
equation for Box-Cox transformation. Therefore, it is of also interest to examine the
performance of non-parametric approaches for confidence interval estimation of P,. Three
nonparametric methods using bootstrap samples will be considered. The first is bootstrap
percentile confidence interval, and the other two are based on the intervals proposed by
Agresti and Coull [36] with variance estimated from bootstrap samples.

Assume the distributions for the non-diseased group (i.e. F1) and the fully diseased group

(i.e. F3) are known. Define AJ:I[Fl—l(pl)gyzjg;lufpgn for (j=1,2, ..., np). Therefore Aj’s

are Bernoulli random variables with the successful rate
_ no
Py=P[FL(P) < Yoy < FyY(1 — Py)) Let P2=D_ .~ 4j/72 the standard (1 - a)100%

Wald interval for P, is

(Py — z1_q)2 \| P2(1 = P3)/ng, Py+21_o/2\/ P2(1 — P3)/n3)

where z;_/o stands for 100(1 — a/2)% percentile for standard normal distribution.

In reality, the true distributions F1 and F3 are unknown and therefore £,-!(P;)and

F; (1 — P3) need to be replaced by their sample estimates £, (P)and £ (1 — P;). The
estimated P, is given by
il

F—Lop < lo_p
[F] 7 (P)SY;<Fg (1 13)]. )

Py=
na

The estimated 100(1 — a)% Wald interval for Py is
(Py — 21 a2\ Pa(1 = P3)/na, Patzy o/ Pa(l — P3)/ns).

The Wald interval is known to have poor performance, especially for small sample sizes
[35].

. . . 2b
The bootstrap percentile confidence interval (BTP) use bootstrap samples to compute P, for
b =1 to 500 bootstrap iterations as follows:

(Py(a), Py(1 - ) (0

where ﬁg(a) is the 100a% percentile of the bootstrap distribution of ﬁT
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The AC interval, proposed by Agresti and Coull [36], is know to have good performance for
binomial proportions. Applying it to our settings, the 100(1 — a)% AC interval for P; is:

(152 - Zlfa/2 \/ V;WAC(ISZ)»]BQ’FZIfa/Q V VZ]ITAC(ISQ))v (11)

where
ng 2
P Zi:l[{F{1<P1>sv2isF§1<1—P3>1+Zl_“/2/2 12)
2:
n2+Z%7a/2/2
and
. Py(1—Py)
Var , . (Py)=————=. (13
ac(P)= 7 W
The estimated P2~is given by
I +22 2
152221—1 (P71 (P)<Y;<FT(1-Pg)] Zl—"‘/g/ )

712—)—2'%70(/2/2

The estimated variance VarAC(P25 can be obtained directly by substituting P2~with 132 in
equation (13).

Zhou and Qin [15] considered the non-parametric solution for estimating confidence
intervals for the sensitivity at a fixed level of specificity of a diagnostic test with binary
disease status, and proposed to use bootstrap methods to estimate the variance. This idea can
be extended to estimate non-parametric confidence interval of P, given Pz and P;. Follow

the same vein, we will use bootstrap methods to estimate the variance of 152. With the
estimated variance, we then apply Agresti and Coull’s idea to derive confidence intervals for
Ps.

Computing Algorithms

Given a data set with ny non-diseased subjects, n, subjects at early stage of the disease, and
n3 diseased subjects, three nonparametric confidence intervals for P, discussed in this
section can be obtained by the following algorithm.

For b =1 to B (it is recommended that B = 200, e.g. [15]. In this paper we use 500) bootstrap
iterations,

o Draw resamples of sizes ny, ny, and nz with replacements from the non-diseased
sample Yj;’s, the early stage sample Yy;’s, and the diseased sample Y3;’s,

respectively. Denote the bootstrap samples {Yf;-}, i=1,23j=12,..,n.

2b 2 . .
Calculate the bootstrap version of p, and pi according to (9) and (14) respectively.
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The bootstrap percentile confidence interval (BTP) in (10) can be obtained by using the
array ﬁ; (b=1,...,500).
The proposed bootstrap variance estimator of 132 is defined as:
~  boot =b ?

2 1 B
Var (Pz):mZ(Pz —Py) , (15)
b=1

—=b B 2ab
where P2=(1/B)Y " P5. Similarly as Zhou and Qin [15], we propose two Agresti and

Coull’s confidence intervals for P, given Py and P3. The first (1 — a)100% level interval,
called BTI interval, is defined as

(Py — 21_0 \ Var " (Py), Potz1_a \ Var""'(Py)) (1)

where ﬁ)Q is defined in (14). The second 100(1 — )% level interval, called BTII interval, for
P, is defined by

—=b —b
z ~A b 2 2 ~ b 2
(Py — 21_o \ Var " (Py), Pyt21_o \/ Var " (Py)). (@7

5. SIMULATION STUDIES

Simulation studies are carried out to assess the coverage probabilities of the proposed
confidence interval estimations (the generalized inference approach, the generalized
inference approach with Box-Cox transformation, the percentile bootstrap interval (BTP),
and two intervals based on Agresti and Coull’s paper, namely BTI and BTII) for P, under
different distributional assumptions: normal, beta and gamma. The AC interval proposed in
equ. (11) using estimated P2~and variance VarAC(PZS has poor coverage accuracy and
therefore is not considered here. Beta and gamma distributions are used as representatives of
non normal distributions because they are widely used in practical application and also
because they come with a variety of shapes.

To represent a wide rage of sample size settings, (nq, ny, n3) is set as (10, 10, 10), (30, 30,
30), (20, 10, 10), (30, 20, 10), (50, 30, 30) and (50, 50, 50). With a fixed 80% specificity and
a fixed 80% sensitivity to full disease, the parameters are chosen correspondingly so that P,
equals to 50%, 70%, 80% and 90% respectively. For each parameter setting, 5,000 random
samples are generated and the parametric and non-parametric confidence intervals proposed
in Sections 3 and 4 are obtained. The simulation results are presented in Tables 2—4 for the
bootstrap percentile approach (BTP), and the BTl approach and the generalized inference
approach (without or with Box-Cox transformation). The BT approach is not presented due
to the fact that it is constantly inferior to BTII approach. The coverage probabilities, the
coverage errors for lower and upper tails, i.e. the proportion of runs in which the lower (or
upper) limit of the confidence interval excluding the true P, at nominal level, and the
average lengths of proposed confidence intervals are presented.

Sat Med. Author manuscript; available in PMC 2014 December 11.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Dong et al.

Page 10

Table 2 presents simulation results under normal assumption. The bootstrap percentile
approach tends to slightly overestimate the coverage probability except it underestimates the
coverage probabilities for small sample unbalanced case as P, = 0.9; while the confidence
intervals by the BTII method are reasonably close to the nominal level for most of the
scenarios except sometimes they tend to be liberal. The generalized confidence intervals are
the most accurate despite the fact they tend to slightly underestimate the coverage
probabilities when sample sizes are small and P5 is large. Regardless of sample sizes and
true values of P,, the bootstrap percentile confidence interval has the longest length.

In Tables 3 and 4, we present simulation results at the nominal level of 95% for the beta and
gamma distributions respectively. For beta and gamma distributions, simulation study shows
the Box-Cox transferred data generally satisfies normality. Generally speaking, the Box-Cox
transformed generalized approach gives uniformly good coverage probabilities for all cases,
except that it might be slightly conservative when the sample sizes are small. The bootstrap
percentile confidence interval are generally conservative except for small sample scenarios
when P, = 0.9. The BTII approach performs well except that it tends to be liberal for small
sample scenarios when P, = 0.9. Similarly as normal cases, the bootstrap percentile
confidence intervals have the longest length.

In summary, as the normality is satisfied for either original data or the transformed data, the
parametric approaches, i.e. the generalized approach or the Box-Cox transformed
generalized approach can generally provide confidence intervals with satisfactory coverage
probabilities. Although the generalized approach is simple to use, the Box-Cox
transformation involves solving equation. On the other hand, when the normality assumption
can not be met, the BTII approach is a good choice except the scenarios with large P, and
small sample sizes, for which the bootstrap percentile approach can provide reasonable
confidence intervals.

6. EXAMPLE: REVISITED

In this section, the confidence intervals of the probabilities of detecting early AD (P,) for all
neuropsychometric tests in the data set of Alzheimer’s disease from a study at the
Washington University (WU) Alzheimer’s Disease Research Center (ADRC) are estimated
by the proposed parametric and nonparametric approaches. The details of the data set are
presented in Section 2 and the summary statistics of neuropsychometric tests by three
diagnostic groups are presented in Table 1.

A close look at the data using Shapiro-Wilk normality test shows that the frontal factor and
temporal factor satisfy normality, while parietal factor, associate learning and word fluency
satisfy normality after a Box-Cox transformation. For these variables, the generalized
inference approach or the Box-Cox transformed generalized inference are recommended.
For the rest of variables, the confidence intervals of P, can be obtained by both BTP and
BTII methods. The specificity P, and sensitivity to full disease P3 are fixed at 0.8. For
comparison purpose, the confidence intervals by all the proposed approaches are presented
in Table 5. Furthermore, for each variable, the nonparametric and parametric (with or
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without Box-Cox transformation) point estimates in (3) and (9) are calculated, and the
corresponding most appropriate point estimates are highlighted in Table 5.

From the point estimates and estimated confidence intervals, we can see that the global
factor has the best diagnostic accuracy for identifying early stage dementia, followed by
logical memory and visual retention, while word fluency and parietal factor have very poor
ability for early stage diagnosis.

7. SUMMARY AND DISCUSSION

The probability of detecting early disease stage (P,) when disease processes involve three
ordinal disease stages given sensitivity to the full disease (P3) and specificity (P;) can serve
as another diagnostic measure. This article aims to examine the performance of several
parametric and nonparametric approaches for confidence interval estimation of P, given P,
and P3 and to make recommendations about what procedures are most appropriate to use
under different scenarios. These methods can be applied to identify important makers for the
detection of early stage disease (e.g. preclinical AD) which is usually the most important
stage of the disease for intervention. As the simulations results indicate, the parametric
approaches generally perform satisfactorily. Out of non-parametric approaches, the
bootstrap percentile approach generally slightly overestimate the coverage probabilities,
while the BTII method is a good choice except the scenarios with large P,, for which the
bootstrap percentile approach can provide reasonable confidence intervals.

Based on the simulation studies, the following recommendations are made. First, if
normality is satisfied for either original or transformed data, we suggest the generalized
inference approach. This approach is easy to use, and has good coverage probability even
for small sample sizes and unbalanced sample sizes. Second, if the normality assumption is
not met, the nonparametric BTl approach works well for most scenarios; however, if the
estimated P, is large and the sample sizes are small, we recommended the use of the
bootstrap percentile approach (BTP). Furthermore, as sample sizes are = 50, the BTII
approach is recommended for normal distribution and the generalized inference approach is
recommended for Beta and Gamma distributions due to the following facts: 1) BTII
intervals have the shortest length and satisfactory coverage probabilities for normal
distribution; 2) the generalized inference approach has the best coverage probabilities and
the shortest confidence interval for Beta and Gamma.

All of the proposed approaches are simulation-based approach. The generalized inference
approach based on normality is an easy-to-use approach while the Box-Cox transformed
generalized inference approach involves solving an equation. The nonparametric approaches
are simple except that the variance is computed through bootstrap samples. A R-program is
available upon request from Itian@buffalo.edu.
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Generalized Pivots and Generalized Test variables

In the following, the basic concepts for generalized inference developed by Tsui &
Weerahandi [17] and Weerahandi [18] are described.

Suppose that Y = (Y1, Yo, ..., Yy)’ form a random sample from a distribution which depends
on the parameters 0 = (, v) where 1 is the parameter of interest and v/ is a vector of
nuisance parameters. A generalized pivot R(Y; y, v, v), where y is a observed value of Y, for
interval estimation defined in Weerahandi [18], has the following two properties:

1. R(Y;y, v, v) has a distribution free of unknown parameters.
2. The value of R(y; y, w, v) is .

Let that R, be the 100ath percentile of R. Then R, becomes the 100(1 — )% lower bound
for vy and (Ry/2, Ri—q/2) becomes a 100(1 — a)% two-sided generalized confidence interval
for y.

Now consider testing Hg : w =g vs. Hq : w > yg where vy is a specified quantity. A
generalized test variable of the form T(Y; y, v, v), where y is an observed value of Y, is
chosen to satisfy the following three conditions (Tsui & Weerahandi [17]) :

1. For fixed y, the distribution of T(Y; y, v, v) is free of the vector of nuisance
parameters v.

2. Thevalue of T(Y;y, v, v) at Y =y is free of any unknown parameters.

3. For fixed yand v, and for all t, Pr[T(Y; vy, v, v) > 1] is either an increasing or a
decreasing function of .

A generalized extreme region is defined as C=[Y : T(Y;y, v, v) 2 T(y; ¥, w, V)] if T(Y; Y, v,
v) is stochastically increasing in . If T(Y; y, v, v) is stochastically decreasing in v, a
generalized extreme region is defined as C = [Y : T(Y; y, w, v) < T(Y; ¥, v, v)]. Then the
generalized P-value is defined as P(Clyyg).
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Means (standard deviations) of neuropsychometric tests from the WU ADRC sample

Table 1

Variable CDRO(n=45) CDRO0.5(n=44) CDR 1 (n=29)
Global factor 0.569(0.888)  -1.622(1.722)  —4.199(1.699)
Frontal factor 2.866(1.777) 0.373(2.212)  -2.682(2.067)
Parietal factor 1.803(1.295)  -0.241(2.051)  —2.377(2.549)
Temporal factor 4.085(2.249)  -0.986(3.315)  -5.855(3.223)
Associate Learning 0.741(0.890) -0.579(0.888) -1.501(0.871)
Logical Memory 0.730(0.848)  -0.858(0.895)  -1.766(0.402)
Digit Span Forward 0.579(0.806)  -0.212(0.892)  -1.210(1.127)
Digit Span Backward 0.546(0.923)  -0.400(0.853)  —1.824(1.410)
Visual Retention (10s)  0.636(0.879)  -0.821(1.099)  -1.658(0.773)
Information 0.631(0.844) —0.607(1.080) -2.302(1.139)
Word Fluency 0.729(1.178)  -0.255(0.981)  —1.438(0.883)
Mental Control 0.463(0.612)  -0.374(1.197)  -1.715(1.130)
Boston Naming 0.588(0.531) —0.497(1.635) -3.072(2.148)
Visual Retention (copy)  0.202(0.667) —-0.551(1.864) -1.769(2.398)
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