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Computerized Image Analysis for 
Identifying Triple-Negative Breast 
Cancers and Differentiating 
Them from Other Molecular 
Subtypes of Breast Cancer on 
Dynamic Contrast-enhanced MR 
Images: A Feasibility Study1

Purpose: To determine the feasibility of using a computer-aided diagnosis 
(CAD) system to differentiate among triple-negative breast cancer, 
estrogen receptor (ER)–positive cancer, human epidermal growth 
factor receptor type 2 (HER2)–positive cancer, and benign fibroad-
enoma lesions on dynamic contrast material–enhanced (DCE) mag-
netic resonance (MR) images.

Materials and 
Methods:

This is a retrospective study of prospectively acquired breast MR imag-
ing data collected from an institutional review board–approved, HIPAA-
compliant study between 2002 and 2007. Written informed consent was 
obtained from all patients. The authors collected DCE MR images from 
65 women with 76 breast lesions who had been recruited into a larger 
study of breast MR imaging. The women had triple-negative (n = 21), 
ER-positive (n = 25), HER2-positive (n = 18), or fibroadenoma (n = 12) 
lesions. All lesions were classified as Breast Imaging Reporting and Data 
System category 4 or higher on the basis of previous imaging. Images 
were subject to quantitative feature extraction, feed-forward feature se-
lection by means of linear discriminant analysis, and lesion classification 
by using a support vector machine classifier. The area under the re-
ceiver operating characteristic curve (Az) was calculated for each of five 
lesion classification tasks involving triple-negative breast cancers.

Results: For each pair-wise lesion type comparison, linear discriminant analysis 
helped identify the most discriminatory features, which in conjunction 
with a support vector machine classifier yielded an Az of 0.73 (95% 
confidence interval [CI]: 0.59, 0.87) for triple-negative cancer versus 
all non–triple-negative lesions, 0.74 (95% CI: 0.60, 0.88) for triple-
negative cancer versus ER- and HER2-positive cancer, 0.77 (95% CI: 
0.63, 0.91) for triple-negative versus ER-positive cancer, 0.74 (95% CI:  
0.58, 0.89) for triple-negative versus HER2-positive cancer, and 0.97 
(95% CI: 0.91, 1.00) for triple-negative cancer versus fibroadenoma.

Conclusion: Triple-negative cancers possess certain characteristic features on 
DCE MR images that can be captured and quantified with CAD, en-
abling good discrimination of triple-negative cancers from non–tri-
ple-negative cancers, as well as between triple-negative cancers and 
benign fibroadenomas. Such CAD algorithms may provide added 
diagnostic benefit in identifying the highly aggressive triple-negative 
cancer phenotype with DCE MR imaging in high-risk women.
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from malignant lesions (28). Textural 
kinetics features are calculated by com-
puting a series of texture features at 
each time point in the DCE MR imaging 
series. For each static texture feature, 
a statistic such as the mean or median 
feature value over all pixels within the le-
sion at each time point is calculated and 
then plotted as a function of time. The 
shape of this curve, akin to the shape 
of the signal intensity kinetic curves first 
described by Kuhl et al (29) and Kinkel 
et al (30), provides a description of tex-
tural variations as a function of contrast 
material uptake within the lesion.

We performed this study to de-
termine the feasibility of using a CAD 
system to differentiate among triple-
negative breast cancer, ER–positive 
cancer, HER2-positive cancer, and be-
nign fibroadenoma lesions at DCE MR 
imaging.

Materials and Methods

Breast MR imaging data were prospec-
tively collected in an institutional re-
view board–approved, Health Insurance 

(14), do not conform to the attributes 
commonly ascribed to malignancies in 
the Breast Imaging Reporting and Data 
System MR imaging lexicon (15). In 
fact, Uematsu et al (10) reported that 
triple-negative lesions may have mor-
phologic and kinetic features at DCE 
MR imaging that are similar to those 
of benign fibroadenomas. Recognition 
of triple-negative lesion characteris-
tics in comparison with those of other 
breast cancer subtypes at MR imaging 
may reduce the chances that the triple-
negative lesion is interpreted as having 
a benign appearance.

Computer-aided diagnosis (CAD) 
methods, which provide diagnostic in-
formation on the basis of quantitative 
descriptors of the lesion under inspec-
tion, have been proposed to reduce 
interrater variability (16,17) and to 
increase diagnostic specificity (18–22) 
at DCE MR imaging. Breast CAD so-
lutions have started to move beyond 
solely differentiating benign from malig-
nant lesions (16,23–27) to addressing 
more complex diagnostic questions. For 
instance, Bhooshan et al (25) proposed 
the use of textural, morphologic, and 
kinetic descriptors for differentiating 
ductal carcinoma in situ from invasive 
ductal carcinoma. Makkat et al (22) 
similarly proposed the use of imaging 
descriptors such as the quantification of 
tumor blood flow for differentiating be-
tween human epidermal growth factor 
receptor type 2 (HER2)–positive and 
HER2-negative tumors.

Textural kinetics are quantitative im-
aging features that describe the dynamic 
variation of textural features of breast 
lesions during contrast material uptake 
and can outperform standard morpho-
logic, static texture, and kinetic intensity 
features in the differentiation of benign 

Triple-negative breast cancer has 
recently been identified as an im-
portant subtype owing to its prev-

alence in the population (10%–20% 
of all diagnosed breast cancer [1]), 
lack of options for targeted molecular 
therapies (2), and poor prognosis (3). 
Dynamic contrast material–enhanced 
(DCE) magnetic resonance (MR) imag-
ing is sensitive for detecting triple-neg-
ative cancer (4,5) and screening BRCA 
mutation carriers (4,6–9), who often 
develop triple-negative cancer (1)—
particularly BRCA1 mutation carriers.

Studies comparing phenotypic dif-
ferences between triple-negative and 
non–triple-negative cancer on DCE MR 
images show that many triple-negative 
cancers have smooth margins, whereas 
the more common estrogen receptor 
(ER)–positive cancers have irregular 
borders (10,11). Triple-negative can-
cers also show rim enhancement at 
postcontrast T1-weighted imaging and 
central high signal intensity at T2-
weighted imaging (10,12–14). Inter-
estingly, the characteristic features of 
triple-negative cancers, as identified 
by Uematsu et al (10) and Wang et al 

Implication for Patient Care

nn A dynamic contrast material–
enhanced MR imaging signature 
for triple-negative breast cancer 
may become a useful biomarker 
of tumor response as vascular 
and other molecularly targeted 
therapies are introduced in the 
neoadjuvant setting.

Advances in Knowledge

nn Textural kinetics enabled high-
yield discrimination between tri-
ple-negative breast cancer lesions 
(n = 21) and fibroadenomas (n = 
12) that were suspicious for ma-
lignancy (area under the receiver 
operating characteristic curve 
[Az]: 0.97; 95% confidence inter-
val [CI]: 0.91, 1.00).

nn Triple-negative breast cancers 
can be differentiated from estro-
gen receptor–positive breast can-
cers (n = 25) by using a combi-
nation of quantitative features 
and a computer-aided diagnosis 
(CAD) system (Az: 0.77; 95% CI: 
0.63, 0.91).

nn Triple-negative breast cancers can 
be differentiated from human epi-
dermal growth factor receptor 2–
positive breast cancers (n = 18) 
by using a combination of quanti-
tative features and a CAD system 
(Az: 0.74; 95% CI: 0.58, 0.89).
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Abbreviations:
Az = area under the receiver operating characteristic curve
CAD = computer-aided diagnosis
CI = confidence interval
DCE = dynamic contrast material enhanced
ER = estrogen receptor
HER2 = human epidermal growth factor receptor type 2
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progesterone receptor–positive lesions 
in the HER2-positive group and 20 
progesterone receptor–positive lesions 
in the ER-positive group. One patient 
had four separate HER2-positive le-
sions, and one patient had two separate 
HER2-positive lesions; all other HER2-
positive lesions came from individual 
patients. Two patients had two separate 
triple-negative lesions; all other triple-
negative lesions came from individual 
patients. One patient had two separate 
ER-positive lesions, and one patient 
had three separate ER-positive lesions; 
all other ER-positive lesions came from 
individual patients. Clinical features are 
listed in Table 1.

MR images were obtained at either 
1.5 or 3.0 T (Sonata or Trio, respectively; 
Siemens, Malvern, Pa). Sagittal imaging 
included fat-saturated three-dimensional 
T1-weighted DCE imaging before and 
after injection of 20 mL of gadodiamide 
(Omniscan; GE Healthcare, Cork, Ire-
land). Imaging parameters for DCE MR 
imaging varied over time and magnet 
type (matrix size, 256 3 256–896 3 
896; in-plane resolution, 0.20–0.70 mm 
per pixel; section thickness, 2–5 mm; 
7–26/1.8–6.5 [repetition time msec/echo 
time msec]; flip angle, 25°–30°). DCE 
MR imaging data sets were acquired 
once before contrast material injection 
and at 90-second intervals upon injection 
of a bolus of contrast material, for a total 
imaging duration of 5–8 minutes.

tumors, which were selected at random 
from the total data set. Data from 30 of 
the patients used in the current study 
were previously reported in articles 
looking at different classification tasks 
than in the current study (28,31). Data 
from 45 of the patients used in the cur-
rent study were previously reported in 
an article describing and evaluating an 
automated tumor boundary segmen-
tation method (32). In this study, we 
examined MR imaging characteristics 
in 76 solid lesions from 65 patients for 
whom pathology results and, where 
applicable, ER, progesterone receptor, 
and HER2 results were available. Refer-
ence standard diagnosis was made with 
histopathologic examination of tissue 
obtained by using either core biopsy 
sampling or lumpectomy. Of the 76 le-
sions, 12 were benign fibroadenomas 
and 64 were invasive carcinomas. All 
of the carcinomas were immunohisto-
chemically stained for hormone recep-
tors and ERBB2 (formerly HER2/neu). 
In cases in which staining for ERBB2 
was inconclusive, amplification was con-
firmed with fluorescence in situ hybrid-
ization. Of the 64 carcinomas, 21 were 
triple-negative (ER-negative/progester-
one receptor–negative/HER2-negative) 
cancer, 18 were HER2-positive (14 
ER-negative/HER2-positive, four ER-
positive/HER2-positive) cancer, and 25 
were ER-positive (ER-positive/HER2-
negative) cancer. There were nine 

Portability and Accountability Act–com-
pliant study at the Hospital at the Uni-
versity of Pennsylvania between 2002 
and 2007. Written informed consent 
was obtained. Women without con-
traindications to MR imaging or gado-
linium who presented with either a 
suspicious breast lesion or known ma-
lignancy (Breast Imaging Reporting and 
Data System category 4 or higher) be-
fore surgery were recruited to a larger 
single-institution study of MR imaging 
in the staging, diagnosis, and screening 
of breast cancer. Women who under-
went neoadjuvant chemotherapy be-
fore surgery were excluded, as were 
women who had undergone excisional 
biopsy before entry. From this data set 
we selected women whose pathologic 
examination revealed invasive cancer. 
Subjects whose images of the index le-
sion demonstrated substantial metallic 
artifact from previous biopsy were also 
excluded. A total of 585 women were 
recruited for the study. Of those, 110 
had invasive ductal carcinoma and as-
sociated histopathologic examination 
with immunohistochemistry to confirm 
hormone receptor status. The original 
goal was to obtain 25 each of fibroad-
enoma, triple-negative, HER2-positive, 
and ER-positive lesions. In the entire 
data set, there were 21 triple-negative 
lesions, 18 unequivocal HER2-positive 
lesions, and 12 fibroadenoma lesions. 
We were able to obtain 25 ER-positive 

Table 1

Clinicopathologic Characteristics of Patient Studies

Parameter Fibroadenoma HER2-Positive Cancer ER-Positive Cancer Triple-Negative Cancer P Value

No. of patients 9 13 23 19 …
No. of lesions 12 18 25 21 …
Mean age (y)* 46 (32–60) 50 (38–63) 45 (32–70) 51 (32–68) .12
No. of premenopausal women 5 4 15 9 .18
No. of postmenopausal women 2 9 1 7 …
No. of perimenopausal women 2 0 7 3 …
Lesion diameter (mm) …
  Mean 6 standard deviation 17 6 12 29 6 24 30 6 19 26 6 17 .28
  Range 7.0–50.0 6.0–89.0 4.0–80.0 7.0–82.0 …
Proportion of 1.5-T studies 12/12 15/18 15/25 13/21 …
Proportion of 3.0-T studies 0/12 3/18 10/25 8/21 …
Lymph node–positive studies 0 1 8 3 …

* Numbers in parentheses are the range.
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Lesion Segmentation and Feature 
Extraction
A representative section, which was a 
central section of the DCE MR imag-
ing volume, was chosen by a radiologist 
who was blinded to the pathologic di-
agnosis (M.A.R., with 12 years of ex-
perience in the interpretation of breast 
MR images). The lesion boundary was 
manually delineated (M.A.R.) on the 
basis of the early postcontrast image 
that demonstrated the greatest lesion 
conspicuity from neighboring tissues. 
Morphologic features (ie, shape fea-
tures, margins) were calculated on the 
basis of this boundary (28). All other 

Table 2

Description of All Features Used to Differentiate Triple-Negative Cancer from HER2-Positive and ER-Positive Cancer and Fibroadenoma

Imaging Descriptor Lesion Feature Definition

Morphology Area overlap ratio, normalized average radial distance ratio, standard deviation of 
normalized distance ratio, variance of distance ratio, compactness, smoothness, 
margin sharpness, variance in margin sharpness

Shape (26) and margin (29) descriptors

Intensity kinetics Maximal uptake, time to peak, uptake rate, washout rate Slope-based descriptors of contrast kinetics
Textural kinetics
  First-order statistical  

  features
Mean, median, range, standard deviation Region intensity statistics derived from lesion area 

(25)
  Derivative operator  

  features
Sobel filter, Kirsch filter, x-direction gradient, y-direction gradient, magnitude of 

gradient
Edge detectors and mathematical derivative 

operators (25)
  Second-order statistical  

  features
Contrast energy, contrast inverse moment, contrast average, contrast variance, 

contrast entropy, intensity average, intensity variance, intensity entropy, entropy, 
energy, correlation, information measure 1, information measure 2

Features derived from gray-level co-occurrence 
matrices (25,33)

Static texture 
 

First-order statistical features (k = 4), derivative operator (k = 5), second-order 
statistical features (k = 13) 

Texture feature values corresponding to each of the 
22 textural kinetics features but only calculated 
at the peak contrast enhancement time point

Table 3

Az and Key Feature Set for Support Vector Machine Classification of Triple-Negative Cancers versus Other Lesion Classes

Discrimination Task A
z
* Compactness†

Static Textural Feature Textural Kinetic Feature

Intensity 
Average

Intensity 
Variance Energy

Sobel Filter  
(x Direction) Energy

Contrast  
Energy

All other lesions (n = 55) 0.73 (0.59, 0.87) Yes Yes No No Yes No No
All other cancers (n = 43) 0.74 (06.0, 0.88) No Yes No No Yes Yes No
ER-positive cancers (n = 25) 0.77 (0.63, 0.91) No Yes No No Yes No No
HER2-positive cancers (n = 28) 0.74 (0.58, 0.90) Yes No No Yes No No Yes
Fibroadenomas (n = 12) 0.97 (0.91, 1.00) No Yes Yes No No No No

Note.—”Yes” and “no” mean “selected” and “not selected” in the feature selection process.

* Numbers in parentheses are 95% CIs
† Compactness is a morphologic feature.

features (eg, static textural, intensity 
kinetics, and textural kinetics) were 
computed on the basis of the pixels en-
closed by the lesion segmentation. All 
image intensities were first rescaled 
into a common dynamic intensity range 
(0–255) before feature calculation. 
Table 2 describes the computer-extract-
ed features. All feature calculation was 
performed by using software previously 
developed in the Laboratory for Com-
putational Imaging and Bioinformatics, 
Rutgers University, and was implement-
ed by using a Matlab R 2010b platform 
(Mathworks, Natick, Mass). Lesion di-
ameter was measured (Table 3).

Morphologic features.—Six mor-
phologic features (31,34) related to the 
boundary between the lesion and the 
surrounding tissue were determined: 
(a) area overlap ratio, (b) normalized 
average radial distance ratio, (c) stan-
dard deviation of normalized distance 
ratio, (d) variance of distance ratio, 
(f) compactness, and (g) smoothness. 
These morphologic features were used 
to analyze the roundness, spiculation, 
regularity, and smoothness of the lesion 
boundary along with lesion shape. In ad-
dition, two morphologic features used 
previously for breast lesion analysis at 
DCE MR imaging (margin sharpness 
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used to discriminate between lesion 
classes: The greater the distance of a 
lesion from the hyperplane, the higher 
the likelihood that the lesion belongs 
to a particular class. As the distance 
of the objects from the decision hy-
perplane changes, the corresponding 
object-class probabilities also change. 
By varying the position of the decision 
hyperplane, classification sensitivity 
and specificity estimates at each lo-
cation are obtained, which in turn 
allows for the calculation of a re-
ceiver operating characteristic curve 
for the classifier. The support vector 
machine classifier mechanism em-
ploys a “leave-one-out” strategy, and 
the area under the receiver operating 
characteristic curve (Az) (28) for each 
of the five classification tasks (triple-
negative lesions vs all other lesions, 
triple-negative cancer vs non–triple-
negative cancer, triple-negative cancer 
vs ER-positive cancer, triple-negative 
cancer vs HER2-positive cancer, and 
triple-negative cancer vs fibroad-
enoma) was evaluated. A flowchart  
demonstrating the use of feature com-
binations for lesion class discrimina-
tion is shown in Appendix E1 (online).

Statistical Analysis
Clinical features were compared among 
the lesion subtypes by using analysis of 
variance with Bonferroni-adjusted mul-
tiple comparison (P , .05) (Table 1). 
To confirm that our classifiers and fea-
tures were insensitive to the magnetic 
strength of the imaging unit and did not 
discriminate between 1.5- and 3.0-T 
images of lesions, we tested the linear 
discriminant analysis selected with a 
paired t test (P , .05) to test the null 
hypothesis that there were no differ-
ences in feature values between mag-
net strengths. The two tests performed 
were for triple-negative versus ER-
positive cancer and triple-negative ver-
sus HER2-positive classification tasks. 
A posthoc power analysis for each of 
these t tests (P , .05) was performed. 
The triple-negative cancer versus fibro-
adenoma classification task was not 
examined in this manner because all 
fibroadenoma cases were imaged at 
1.5 T. All statistical analyses were 

and variance in margin sharpness 
[25,33]) were also extracted.

Intensity kinetics.—A total of four 
intensity kinetic features (25,33–35) 
were calculated on the basis of the sig-
nal intensity–time curve (29): maximal 
uptake, time to peak, uptake rate, and 
washout rate.

Static texture.—Static texture fea-
tures were computed from the peak 
enhancing image for each lesion as was 
done in previous studies (25,28,36). A 
set of 22 textural features was calcu-
lated for each lesion, reflecting hetero-
geneity of tissue types in a lesion on 
the basis of first-order statistics (28), 
derivative operations, and gray-level 
co-occurrence matrices (37).

Textural kinetics.—The average 
value of each of the 22 texture features 
described in the static texture section 
was plotted as a function of time. A 
third-order polynomial was then fit in 
a least-squares sense to the resulting 
curve, yielding a vector of four coeffi-
cients per kinetic textural feature (28). 
These four coefficients represent the 
corresponding textural kinetic behavior 
for each static texture feature (see Ap-
pendix E1 [online] for an example). Au-
thors S.C.A., A.M., and M.A.R. share a 
patent for the technique used to calcu-
late textural kinetics features.

Support Vector Machine Classifier
To determine quantitative imaging fea-
tures at DCE MR imaging that best 
discriminated triple-negative cancer 
from other molecular subtypes of can-
cer and from benign fibroadenomas, 
feature selection was performed in a 
feed-forward manner by using linear 
discriminant analysis (38,39). The im-
portant features identified during the 
linear discriminant analysis feature 
selection process were combined with 
equal weighting and used in conjunc-
tion with a support vector machine 
classifier (40).

The support vector machine clas-
sifier assigned a likelihood value to 
each lesion of belonging to a specific 
class by exploiting the distance of each 
lesion to the support vector machine 
decision hyperplane (40), defined as 
a multidimensional decision boundary 

implemented with software (Matlab R 
2010b; Mathworks, Natick, Mass). All 
reported confidence intervals (CIs) are 
over 95% CIs.

Results

Linear Discriminant Analysis for Feature 
Selection
The most accurate combinations of 
features as determined with the linear 
discriminant analysis classifier for dif-
ferentiating triple-negative lesions from 
fibroadenomas, ER-positive lesions, and 
HER2-positive lesions are shown in Ap-
pendix E1 (online).

Triple-negative cancer versus all 
non–triple-negative lesions.—For tri-
ple-negative cancer versus all non–tri-
ple negative lesions, the morphologic 
feature compactness and the textural 
features static intensity average and 
kinetic x-direction (anteroposterior) 
Sobel filter yielded the best discrimina-
bility in the feature selection process. 
Overall, triple-negative lesions had 
lower values of the gray-level co-oc-
currence matrix feature intensity aver-
age, which is indicative of more lesion 
heterogeneity at peak contrast relative 
to that of non–triple-negative lesions. 
Conversely, the kinetic x-direction 
Sobel filter feature set indicated that 
the triple-negative lesions steadily in-
creased in homogeneity over time, 
whereas non–triple-negative lesions 
varied more across time. In addition, 
triple-negative lesions were more com-
pact than non–triple-negative lesions.

Triple-negative cancer versus non–
triple-negative cancer.—For the triple-
negative versus non–triple-negative 
cancer task, the static texture feature 
intensity average, the kinetic texture 
feature x-direction Sobel filter, and the 
gray-level co-occurrence matrix feature 
energy were identified as the most im-
portant features. Non–triple-negative 
cancers had higher values of the gray-
level co-occurrence matrix feature in-
tensity average texture. The textural ki-
netic feature x-direction Sobel filter had 
a set of coefficient values that reflected 
greater heterogeneity in contrast mate-
rial uptake from time point to time point 
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significance was found between 1.5- and 
3.0-T features for the triple-negative 
versus ER-positive cancer classification 
task. However, posthoc power analysis 
revealed a power of 0.01–0.30, indi-
cating that although no difference was 
detected between feature values at 
the two magnet strengths, our sample 
sizes could not evaluate this question 
completely.

Triple-negative versus HER2-pos-
itive cancers.—In the differentiation 
of triple-negative cancers from HER2-
positive cancers, a combination of the 
morphologic feature compactness, the 
static texture feature energy, and the 
textural kinetics feature contrast energy 
was most relevant. The higher value 
of compactness for the triple-negative 
cancers compared with the HER2-pos-
itive cancers suggests that triple-neg-
ative cancers have smoother borders 
than HER2-positive cancers. HER2-pos-
itive cancers are more heterogeneous 
at peak contrast material uptake, as 
demonstrated by the energy values, but 
the heterogeneity of contrast material 
uptake in triple-negative cancers varies 
more as a function of time than the het-
erogeneity of contrast material uptake 
in HER2-positive cancers, as reflected 
by the textural kinetics feature contrast 
energy (Fig 3). No significant differ-
ence was found between 1.5- and 3.0-T 
features for the triple-negative versus 
HER2-positive cancer classification 
task. Posthoc power analysis revealed 
a study power of 0.14–0.18 for the 
features compared; therefore, such a 
comparison would benefit from a larger 
data set.

Performance of the Feature Set in the 
Differentiation of Lesion Classes
Among the classification tasks, we 
were best able to differentiate between 
triple-negative cancers and fibroadeno-
ma with an Az of 0.97 (95% CI: 0.91, 
1.00). None of the three fibroadenomas 
smaller than 10 mm in diameter were 
misclassified in this experiment, and 
two of three triple-negative lesions 10 
mm or less in diameter were misclas-
sified. However, the selected features 
were also able to help differentiate tri-
ple-negative cancers from ER-positive 

Triple-negative versus ER-positive 
cancers.—For the task of differentiating 
triple-negative cancers from ER-positive 
cancers, the static gray-level co-occur-
rence matrix texture feature intensity 
average and the textural kinetics fea-
ture x-direction Sobel filter were impor-
tant descriptors (Fig 2; see Appendix 
E1 [online] for associated figures). The 
coefficient values for the kinetic feature 
x-direction Sobel filter indicate that the 
degree of homogeneity varies more as 
a function of contrast material uptake 
in ER-positive cancers than in the case 
of triple-negative cancers. No statistical 

across the non–triple-negative cancers 
than in the triple-negative cancers.

Triple-negative cancer versus fibro-
adenoma.—For the triple-negative can-
cer versus fibroadenoma classification 
task, the static texture features intensity 
average and intensity variance appeared 
to have greatest relevance. Compared 
with triple-negative cancers, fibroad-
enomas had higher localized texture 
values for both intensity average and 
intensity variance, which indicates that 
triple-negative lesions were far more 
heterogeneous at peak contrast than 
were fibroadenomas (Fig 1).

Figure 1

Figure 1:  Comparison of enhanced appearance and textural features of triple-negative cancer and fibro-
adenoma. (a) Contrast-enhanced MR image (26/6.5, 30° flip angle, 1.5 T) and (b) static intensity variance 
feature map at peak enhancement in 44-year-old woman with triple-negative cancer. (c) Contrast-enhanced 
MR image (26/6.42; flip angle, 30°; 1.5 T) and (d) static intensity variance feature map at peak enhance-
ment in 51-year-old woman with fibroadenoma.
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Although other CAD analyses use 
both static textural features of lesions 
and the functional dynamic assessment 
of lesion enhancement patterns, we 
used textural kinetic features for le-
sion classification. In all classification 
tasks—except for the differentiation 
of triple-negative cancers from fibro-
adenomas—textural kinetics features 
were identified as important discrimi-
natory attributes, whereas more rou-
tine methods of analyzing dynamic 
enhancement patterns of lesions were 
not. It is possible that textural kinetics, 

findings of Schrading and Kuhl (4), who 
showed that radiologist-determined 
morphologic features did not contrib-
ute to the discernment between fibro-
adenomas and triple-negative cancers 
at DCE MR imaging. Conversely, lesion 
morphology was useful for differentiat-
ing triple-negative cancers from HER2-
positive cancer classes. This is also con-
sistent with the findings of Wang et al 
(14), who showed that triple-negative 
cancers have smooth circumscribed 
borders, whereas HER2-positive can-
cers are spiculated.

cancers (triple-negative vs ER-positive 
cancers: Az = 0.77 [95% CI: 0.63, 
0.91]; two of the three triple-negative 
cancers 10 mm and one of the four 
ER-positive lesions 10 mm were mis-
classified) and HER2-positive cancers 
(triple-negative vs HER2-positive can-
cers: Az = 0.74 [95% CI: 0.58, 0.89]; 
one of three triple-negative cancers 
10 mm and two of five HER2-positive 
lesions 10 mm were misclassified). 
Overall, we were able to differentiate 
triple-negative from non–triple-negative 
cancers with an Az of 0.74 (95% CI: 
0.60, 0.87) (Table 3).

Discussion

CAD systems, like the one presented 
herein, have the potential to provide in-
sight into the underlying tumor biology 
along with providing information about 
how a patient’s cancer may respond to 
targeted therapies (41). Although differ-
ences in lesion appearance on DCE MR 
images have been previously suggested 
in qualitative comparisons of molec-
ular subtypes of cancer (10,13,22), in 
this study we quantified imaging dif-
ferences between triple-negative and 
ER-positive cancers and triple-negative 
and HER2-positive cancers by means of 
computerized image analysis. Further-
more, this is a systematic comparison 
of triple-negative cancer and fibroad-
enoma, a common benign lesion with 
morphologic appearance and intensity 
kinetics features that resemble those of 
triple-negative cancer, confounding an 
accurate diagnosis at DCE MR imaging 
(4,10).

The particular lesion classification 
tasks were chosen on the basis of differ-
entiating triple-negative cancers from 
fibroadenomas and for relevance to in-
dividualized therapy (eg, triple-negative 
cancer compared with HER2-positive or 
ER-positive cancer). As expected, there 
was substantial overlap in the morpho-
logic features of triple-negative cancer 
and fibroadenoma. Thus, morphologic 
features were not useful for differen-
tiating between these lesions. Instead, 
static texture features were found to 
differ substantially between these two 
lesion classes. This result echoes the 

Figure 2

Figure 2:  Comparison of dynamic enhanced appearance and textural discrimination between triple-negative 
cancer (TN) in 52-year-old woman and ER-positive cancer in 55-year-old woman. (a) Normalized signal inten-
sity–time curves and (b) normalized mean x-direction Sobel filter map. Note that the two curve shapes are more 
distinct in the textural kinetic plot. Images associated with this plot can be found in Appendix E1 (online).

Figure 3

Figure 3:  Comparison of dynamic enhanced appearance and textural kinetic discrimination between 
triple-negative cancer (TN) in 38-year-old woman and HER2-positive cancer in 61-year-old woman. Graphs 
show (a) normalized mean lesion contrast energy and (b) normalized mean lesion image intensity versus 
normalized time. Note that the time course of relative signal intensities is similar, whereas the time course of 
relative contrast energy varies widely between the two tumors.
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