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Both the four-parameter logistic (4PL) and the five-parameter logistic (5PL) models are
widely used in nonlinear calibration. In this paper, we study the choice between 5PL and
4PL both by the accuracy and precision of the estimated concentrations and by the power to
detect an association between a binary disease outcome and the estimated concentrations.
Our results show that when the true curve is symmetric around its inflection point, the
efficiency loss from using 5PL is negligible under the prevalent experimental design. When
the true curve is asymmetric, 4PL may sometimes offer better performance due to bias-
variance trade-off. We provide a practical guideline for choosing between 5PL and 4PL and
illustrate its application with a real dataset from the HIV Vaccine Trials Network
laboratory.
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1. INTRODUCTION

Measuring the concentration of a substance accurately is an essential part of many
biomedical studies. Oftentimes, the measurement is carried out via a calibration experi-
ment, wherein a standard sample containing a known concentration of the substance to be
measured is diluted multiple times at the same dilution ratio, and experimental outcomes
are acquired at each dilution. At the same time, the experimental outcomes are also taken
for the clinical samples of interest. For example, a modern assay for quantifying proteins
in a clinical sample is the multiplex bead array (MBA) assay. A typical run of the MBA
assay is conducted on 96-well plates with some wells containing serial dilutions of
standard samples, whose concentrations are known, and some wells containing clinical
samples, whose concentration estimates are of interest.

To estimate the substance concentrations in the clinical samples, the concentration–
response relation first has to be established using the standard samples. Many methods
have been proposed for fitting concentration–response or dose–response curves, including
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parametric, semiparametric (Nottingham and Birch, 2000; Yuan and Yin, 2011), nonpara-
metric (Bornkamp and Ickstadt, 2009), and model averaging methods (Faes et al., 2007;
Morales et al., 2006). For nonlinear calibration problems, the parametric methods based
on logistic curves are the most studied and are widely available in many commercial
curve-fitting software, e.g., MasterPlex, Bio-Plex, GraphPad Prism, and StatLIA. The
four-parameter logistic (4PL) model was introduced by D.J. Finney in 1970 (as mentioned
in Rodbard and Frazier, 1975), and the extension to a five-parameter logistic (5PL) model
followed a few years later (Prentice, 1976; Rodbard et al., 1978; Finney, 1979). The 5PL
model adds a fifth parameter to the model to allow the sigmoid curve to be asymmetric
around its inflection point. It is worth mentioning that the first appearance of asymmetric
logistic models dates back to Richards (1959) in the experimental botany literature.

Given a dataset of the standard samples to fit a logistic concentration–response
curve, often there are two model choices to make. The first is to choose an appropriate
mean model between 4PL and 5PL, and the other is to choose proper outcome transfor-
mation and/or variance models to account for the heterogeneity of variance in assay
responses. With regard to the latter, the power variance function is well accepted
(Finney, 1976; Davidian et al., 1988). In this paper we will focus on the mean model
choice problem. In the literature, there has been only one study so far to the best of our
knowledge: Gottschalk and Dunn (2005), which compared the two models by the relative
bias of concentration estimates and concluded that 5PL performed better than 4PL when
the true curve was asymmetric. However, the variability of the estimated concentrations
was not taken into consideration in the comparison.

The rest of the paper are organized as follows: In Section 2, we carry out a
simulation study to compare the calibration performance of 4PL and 5PL using two
criteria. In Section 3, we study the impact of the calibration model choice on the power
of detecting the association between a binary disease outcome and the estimated concen-
trations. In Section 4, we use a real data example to illustrate how to choose between 5PL
and 4PL in practice. We end with a discussion in Section 5.

2. CALIBRATION PERFORMANCE

We assume the following model for assay responses:

Y ¼ FθðtÞ þ ε;

ε , Nð0; σ2Þ; (1)

FθðtÞ ¼ cþ d � c

f1þ uðtÞgf : (2)

Here Y is the assay response measured for a standard sample with log concentration t, ε is
a Gaussian noise, and FθðtÞ is a 5PL model with parameter θ. θ is a vector of length 5.
The parameters c and d are the lower asymptote and upper asymptote, respectively. The
parameter f is the asymmetry parameter. When f = 1, the curve is symmetric around its
inflection point and 5PL becomes 4PL. Log concentrations affect the outcome only
through u (t), which can be parameterized in several ways:
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logfuðt; b; eÞg ¼ bt � b logðeÞ; (3)

logfuðt; g; h; f Þg ¼ � log f � ðt � gÞð1þ f �1Þfþ1h=ðd � cÞ; (4)

logfuðt; �; b; f Þg ¼ log ð21=f � 1Þ � ðt � log �Þð�bÞ; (5)

logfuðt; �; h; f Þg ¼ log ð21=f � 1Þ � ðt � log �Þð1þ f �1Þfþ1h=ðd � cÞ; (6)

(3) is perhaps the most widely used parameterization. It has a simple form and can be
easier to work with when deriving analytical formulae, but the parameters b and e do
not have good interpretations. (4) is the g–h or Richard parameterization (Fong et al.,
2012; Richards, 1959). It looks complicated, but g is the inflection point of the logistic
curve and h is the slope at the inflection point. The relationship between the first
two parameterization is g ¼ logðeÞ � b�1 logðf Þ and h ¼ �bðd � cÞð1þ f �1Þ�ðfþ1Þ. (5)
is a parameterization formally introduced by Liao and Liu (2009). It depends on � ,
the mid-point or median effective dose (ED50), and b. � can be expressed as

� ¼ g � logff ð21=f � 1Þgð1þ f �1Þ�ðfþ1Þðd � cÞ=h. (6) is a new parameterization,
which depends on � and h. We will refer to this parameterization as the �–h
parameterization. The advantage of the �–h parameterization is that it allows us to
relatively easily generate a set of logistic curves that differ in their degrees of
asymmetry, but share the same basic characteristics within a fixed window of log
concentrations.

We study the bias and variance of unknown sample concentration estimates
through a simulation study. Data are simulated from (1) and (6) with c = 4.37, d =
10.24, � = 82.0, h = {2.23,2.03,1.83,1.43,1.43,1.43}, f 2 f0:1; 0:2; 0:4; 1; 1:6; 3:2; 12g,
and σ 2 f0:04; 0:08; 0:12; 0:16; 0:2g. The values for c, d, � are based on an arbitrarily
chosen concentration–response curve observed in the HIV Vaccine Trials Network
(HVTN) laboratory, while the set of values for f and σ are chosen to reflect the range
of parameters observed. The seven curves are plotted in Fig. 1. We refer to an
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Figure 1 Left: Seven logistic curves studied in Section 2. The vertical line intersects each curve at the mid-
point. Middle and right: Differences in ABC and MSE (4PL–5PL) as a function of f and σ. Positive values are in
favor of 5PL.
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asymmetric curve with f > 1 as right skewed, and to an asymmetric curve with f < 1 as
left skewed. As shown in the left panel of Fig. 1, the left skewed curves are mostly
located to the left of the 4PL curve and the right skewed curves are mostly located to
the right of the 4PL curve. In addition, if we treat the logistic curve as a probability
distribution function and differentiate with respect to t to obtain the probability density
function (pdf), the pdf corresponding to a curve with f > 1 appears right skewed while
the pdf corresponding to a curve with f < 1 appears left skewed.

From each standard curve, 20 standard samples are simulated at 10 unique t ranging
from tmax ¼ logð104Þ to tmin ¼ logð0:51Þ at threefold dilutions. Two replicates are simu-
lated at unique t. Corresponding to each set of standard samples, we also simulate 50
unknown samples with log concentrations ranging uniformly from tmin to tmax. There is
only a single replicate for each unknown sample, because in real experiments, resource
limitations often mean that we have no choice but to forgo replications of the unknown
samples. The potential effect of having more than one replicate for each unknown sample
can be studied indirectly in our simulation setup by comparing different values of σ. For
each combination of f and σ, 2000 replicates of the simulation experiments are performed.

Let θ0 denote the true parameters of a concentration–response curve, and let F0

denote the true concentration–response function. We will use the maximum likelihood
method to estimate the parameters of the logistic model using the R packages nCal (Fong
et al., 2013) and drc (Ritz and Streibig, 2005). Let θ̂ denote the parameter estimate, and let
Fθ̂ denote the estimated concentration–response function. The estimates of the log con-
centrations of the unknown samples can be found by inverting the logistic function and
choosing a reasonable log concentration estimate whenever the unknown sample’s experi-
mental outcome lies outside of the range of the estimated asymptotes, e.g.,

t̂ðy; θ̂Þ ¼
tmin � logð2Þ if y < ĉ
F�1
θ̂

ðyÞ if ĉ � y � d̂

tmax if y > d̂

8<
: (7)

Here we let the concentration estimate be half of the smallest standard sample concentra-
tion whenever y is less than the estimated lower asymptote (Hornung and Reed, 1990) and
let the concentration estimate be the largest standard sample concentration whenever y is
greater than the estimated upper asymptote.

Denote the true log concentration by t0. Suppose ĉ � y � d̂. The variance of t̂ðy; θ̂Þ
under the 5PL working model can be decomposed into two terms using the bivariate delta
method:

Var t̂ðy; θ̂Þ� � � σ2

k

@

@y
t̂ðy0; θ0Þ

� �2

þ @

@θ̂
t̂ðy0; θ0Þ

� �T

Var θ̂
� � @

@θ̂
t̂ðy0; θ0Þ

� �
; (8)

where k is the number of replicates for the unknown samples and equals 1 in the current
simulation setup and y0 = F0 (t0). The first term assumes the curve can be estimated
perfectly and is driven by the variability in the observed outcome from the unknown
samples alone. The second term assumes the unknown sample can be measured perfectly
and is driven by the variability in the curve estimate alone. The variance of t̂ðy; θ̂Þ under
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the 4PL working model can be decomposed into two terms reflecting uncertainty in y and

θ̂ in a way similar to (8), but with θ 0 replaced by the limit of θ̂.
To compare the performance of 5PL and 4PL, we first consider an area-between-

curve (ABC) criterion defined as follows:

ABC ¼ 1

d0 � c0

ðd0
c0

Eĵtðu; θ̂Þ � F�1
0 ðuÞjdu: (9)

Here c0 and d0 denote the true lower and upper asymptotes, respectively. The expectation
is taken over the uncertainty in θ̂ and can be estimated by taking the average over the
simulation samples. ABC has two interpretations. The first gives rise to its name.
As illustrated by Supplementary Materials Fig. 1, ABC is proportional to the area between
the estimated curve and the true curve between c0 and d0, thus it is a one-number
summary of how well the curve is estimated. ABC also has the interpretation as
the mean absolute deviation in log concentration estimates of unknown samples when
(i) σ = 0 and (ii) Y is uniformly distributed between c0 and d0.

In the middle panel of Fig. 1, we plot the differences in ABC between 4PL and 5PL as
functions of f under different levels of σ. The results, also summarized in Supplementary
Materials Table 1, show that overall 5PL performs better than 4PL. While 4PL has a slightly
smaller ABC when the underlying curve is very close to being symmetric, it shows a greater
disadvantage when the underlying curve is more asymmetric. The disadvantage of 4PL
increases as the asymmetry increases as well as when the experimental noise σ increases.

The comparison by the ABC criterion does not take into account the variability of
the unknown sample measurements, and it can be viewed as focusing on how well we
estimate the curve. To better study the quality of the estimated concentrations, we consider
a mean squared error (MSE) criterion S defined as follows:

Table 1 Powers of the logistic regression study under three selected values of f, four selected values of σ, and
three predictor distributions from Section 3

σ

Low Predictor distribution medium High

t0 t̂4PL t̂5PL y t0 t̂4PL t̂5PL y t0 t̂4PL t̂5PL y

Symmetric (f = 1)
0.01 0.56 0.55 0.55 0.28 0.42 0.42 0.42 0.38 0.39 0.39 0.39 0.26
0.04 0.56 0.53 0.53 0.28 0.42 0.42 0.42 0.38 0.39 0.38 0.38 0.26
0.08 0.56 0.49 0.49 0.27 0.42 0.42 0.42 0.38 0.39 0.37 0.36 0.26
0.20 0.56 0.38 0.37 0.26 0.42 0.41 0.41 0.38 0.39 0.30 0.29 0.25

Left skewed (f = 0.2)
0.01 0.69 0.66 0.68 0.41 0.81 0.80 0.81 0.75 0.79 0.75 0.77 0.47
0.04 0.69 0.65 0.68 0.41 0.81 0.80 0.81 0.75 0.79 0.71 0.68 0.47
0.08 0.69 0.63 0.65 0.40 0.81 0.79 0.81 0.76 0.79 0.66 0.59 0.47
0.20 0.69 0.53 0.55 0.38 0.81 0.78 0.79 0.75 0.79 0.54 0.43 0.45

Right skewed (f = 12)
0.01 0.96 0.68 0.69 0.10 0.82 0.82 0.82 0.65 0.79 0.76 0.80 0.20
0.04 0.96 0.52 0.44 0.11 0.82 0.81 0.82 0.65 0.79 0.71 0.74 0.20
0.08 0.96 0.36 0.31 0.11 0.82 0.81 0.80 0.64 0.79 0.61 0.64 0.19
0.20 0.96 0.17 0.16 0.10 0.82 0.74 0.74 0.62 0.79 0.35 0.36 0.17
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S ¼
X
t

EY jt t̂ Y ; θ̂
� �� t

�� ��2: (10)

The summation of t is with regard to 50 unknown samples whose log concentrations are
distributed uniformly between tmin and tmax. Results are summarized in the right panel of
Fig. 1 and in Supplementary Materials Table 1.

Reversing the conclusion drawn from looking at the ABC criterion, 4PL performs
overall better than 5PL by the MSE criterion except when f = 0.4 and the advantage of
4PL appears to increase as the asymmetry gets stronger. These results are surprising at the
first look, but can be understood with the help of Fig. 2. In this figure, the lower portion of
a right skewed concentration–response curve is shown. The circle represents an observed
response from an unknown sample with true log concentration t0; t̂5PL and t̂4PL are the
estimated concentrations for the unknown sample based on the 5PL fit and the 4PL fit,
respectively. The fitted 5PL curve tracks the truth better than the fitted 4PL curve, as
expected; but t̂4PL is closer to t0 than t̂5PL. The apparent paradox is caused by the fact that
the 4PL fitted curve has a steeper slope in this region. That results in a smaller
@ t̂ðy0; θ0Þ=@y in (8), hence a reduced variability of the estimated concentrations.

In this section, we assume that the unknown samples log concentrations are
uniformly distributed between the minimum and maximum standard samples
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concentrations. In practice, this is rarely the case. In the next section, we will examine in
more detail how the calibration model choice may vary depending on the distribution of
the unknown samples log concentrations.

3. POWER TO DETECT ASSOCIATION IN LOGISTIC REGRESSION

Nonlinear calibration produces the estimated concentrations of a substance in the
samples of interest. In public health studies, these estimated concentrations are often
studied as a potential biomarker associated with diseases. In this section, we investigate
the impact of the mean model choice in nonlinear calibration on the power to detect the
association between a binary disease outcome and a substance in a logistic regression
framework.

Each simulated dataset is composed of 250 clinical samples. For each sample, we
simulate a binary disease outcome variable from a Bernoulli model with mean
1=f1þ expð�αþ βtÞg, where t is the true log concentration of an analyte of interest.
The regression coefficients α and β are listed in Supplementary Materials Table 3, and
they are chosen so that the power of rejecting β = 0 using concentration estimates is
between 40% and 80%. Different from Section 2 where we assume a uniform distribution
for the unknown samples log concentrations, here we investigate three different predictor
distributions: low, medium, and high (Fig. 3). Each predictor distribution is an equal
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978 CUMBERLAND ET AL.



mixture of two normal distributions. The 2.5% and 97.5% quantiles of the three distribu-
tions are (–0.66, 2.90), (2.57, 5.83), and (5.67, 8.72) respectively.

We assume the 250 unknown samples need to be assayed in 5 batches, with each
batch having its own standard samples. The standard curve parameters vary slightly across
batches on the asymptotes only. Three values of f are considered: a symmetric curve with
f = 1, a left skewed curve with 0.2, and a right skewed curve with f = 12. The full
parameters are shown in the Supplementary Materials Table 2. From each standard curve,
as in Section 2, 20 standard samples are simulated at 10 distinct t ranging from tmax = log
(104) to tmin = log (0.51) at threefold dilutions with two replicates per unique t. In
addition, we consider four levels of experimental noise: σ = 0.01, 0.04, 0.08, and 0.2.

The calibration performance of both the 5PL and 4PL models are examined across
different true log concentrations in Fig. 4. For each f, one set of simulated standard
samples are shown in the left panel, along with the true curve and the fitted curves. In the
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Figure 4 Results from Section 3 simulation studies. Left: Example datasets with fitted and true standard curves
at σ = 0.08. Middle: Bias squared and variance of the estimated log concentrations as functions of true log
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middle panel, the bias and variance are plotted as functions of the true log concentrations.
To make the bias and variance more comparable, we show bias squared instead of bias. In
the right panel, the MSEs are plotted as functions of the true log concentrations. Also
shown are the average MSE for uniformly distributed true log concentrations.

For each simulation dataset, we obtain two sets of concentration estimates. We then
regress the binary outcome variable on each set of concentration estimates using logistic
regression. We also regress the binary outcome variable on the true log concentration as
well as on y, the assay response variable. The simulation results from 2000 replications are
shown in Table 1.

When the true curve is symmetric, there is barely any difference in calibration
performance and in power between the 4PL concentration estimates and the 5PL con-
centration estimates. In addition, there is little loss of power compared to using the true
log concentrations in the association study. But there is loss of power if the assay response
variable is used directly in regression.

When the true curve is left skewed and the true log concentrations are simulated from
the distribution with the medium range, Table 1 shows that there is little difference in power
between 4PL and 5PL. Correspondingly, we see from Fig. 4(b) that the accuracy and
precision of 4PL and 5PL concentration estimates are similar in this range. When the true
log concentrations are simulated from the high predictor distribution, 4PL outperforms 5PL
by 3–11% in power when σ > 0.01. In Fig. 4(b), we see that in this range the 4PL
concentration estimates have a smaller MSE than the 5PL driven by a smaller variance.
When σ = 0.01, 5PL performs better by 2%, presumably because the bias is more important
in this case. For the low predictor distribution, 5PL outperforms 4PL by 2–3%. In Fig. 4(b),
we see that in this range, the 5PL concentration estimates have a smaller MSE than 4PL.

When the true curve is right skewed, the comparison is a mirror image of the
comparison under the left skewed curve. Again, there is little difference between 4PL and
5PL under the medium predictor distribution. For the low predictor distribution, 4PL
outperforms 5PL by 2–8% when σ > 0.01. In Fig. 4(c), we see that in this range the 4PL
concentration estimates are less variable and have a lower MSE. When σ = 0.01, 5PL
performs better by 1%. For the high predictor distribution, 5PL outperforms 4PL by
1–4%. In Fig. 4(c), we see that in this range the 5PL concentration estimates have a
smaller MSE than 4PL.

The results in this section suggest that whether to choose 5PL or 4PL depends
mostly on the shape of the concentration–response curve and the distribution of the true
log concentrations. When the true log concentrations are not located in a flat region of the
standard curve, 5PL generally performs better than 4PL; but when they do, 4PL may
outperform 5PL due to bias-variance trade-off. Because in the real-life situation, we often
try to design a calibration experiment to avoid having the true log concentrations located
in a flat region of the standard curve, we suggest to use the 5PL model as the default
choice in real data analysis. If the 5PL fitted curve is rather asymmetric and the estimated
concentrations of the substance in the clinical samples are located in a flat region of the
curve, we recommend to also estimate the concentrations using the 4PL model. In the next
section, we illustrate the application of this model choice procedure with a real dataset.

4. DATA ILLUSTRATION

In this section, we use real data from the HVTN laboratory to illustrate how to
choose between 5PL and 4PL for nonlinear calibration. The left panel of Fig. 5 shows a
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run of the MBA assay measuring the concentrations of the cytokine TNF-β. There are 20
standard samples located at 10 standard concentrations. The fitted 5PL curve is left
skewed, and starts to plateau near the maximum standard concentration. But whereas
the fitted 5PL standard curve is almost flat between the two most concentrated standard
sample in Fig. 4(b), here the fitted 5PL function still curves in that region. Hence we
would choose to only do the default 5PL fit and not try the 4PL fit for this run of standard
samples.

Over a period of time, 26 runs of the MBA assay for measuring TNF-β concentra-
tions were collected. This gives us an opportunity to validate our model choice. For each
of the 26 × 20 standard samples in this dataset, we estimate its concentration using its
observed outcome, in conjunction with the standard curve estimated from the other 19
standard samples in that specific run. We then compute the bias squared, variance, and
MSE of the 52 estimated log concentrations at each of the 10 standard log concentrations.
The results are plotted on the middle and right panels of Fig. 5, using the y-axis scale as in
Fig. 4(b) for an easy reference to the results in Section 3. The results show that in the
range of the standard concentrations of this dataset, the difference between 5PL and 4PL
fits is relatively small with 5PL performing slightly better.

5. DISCUSSION

In this article we investigate the model choice between the 4- and 5-parameter
logistic models for fitting concentration–response curves. Our Monte Carlo studies
assume a 10-point standard curve with two replicates at each dilution. Our results show
that the 5PL model is preferred if the estimated curve is of most interest. When concen-
tration estimates matter more, due to the bias-variance trade-off, there are some conditions
under which the 5PL model performs better and there are some conditions under which
the 4PL model performs better. Based on these results, we conclude that the 5PL model is
a good default model to use in nonlinear calibration. However, when the estimated
concentrations of the substance in the clinical samples are concentrated in a flat part of
the fitted 5PL curve, it may be worth the extra efforts to also estimate the concentrations
using the 4PL model. If the goal of the study is to identify association between a binary
disease outcome and a substance, this second set of estimated concentrations can be used
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Figure 5 Results from Section 4 real data illustration. Left: A representative dataset with fitted standard curves,

f̂ ¼ 0:2; σ̂ ¼ 0:11. Middle: Bias squared and variance of the estimated log concentrations as functions of true log
concentrations; var stands for variance, and bias sq stands for bias squared. Right: MSE as functions of true log
concentrations. The horizontal lines are average MSE across 10 standard log concentrations.
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in a sensitivity study to see if it may be more strongly associated with the disease
outcome.

Numerical stability is a factor that can impact the choice between 4PL and 5PL in
practice besides analytical considerations. The numerical problem of fitting a 5PL model
has been well documented (Seber and Wild, 1989; Ratkowsky, 1990, 1986). From our
experience, this problem can be alleviated to a degree by allowing the optimization
routine to try several methods when choosing the initial values, e.g., as implemented in
the R package nCal (Fong et al., 2013). That our Monte Carlo studies use no knowledge
about the simulation truth in the optimization process suggests the algorithm implemented
therein is suitable for practical use.
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