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Purpose: To derive quantitative image features from magnetic res-
onance (MR) images that characterize the radiographic 
phenotype of glioblastoma multiforme (GBM) lesions and 
to create radiogenomic maps associating these features 
with various molecular data.

Materials and 
Methods:

Clinical, molecular, and MR imaging data for GBMs in 55 
patients were obtained from the Cancer Genome Atlas 
and the Cancer Imaging Archive after local ethics com-
mittee and institutional review board approval. Regions of 
interest (ROIs) corresponding to enhancing necrotic por-
tions of tumor and peritumoral edema were drawn, and 
quantitative image features were derived from these ROIs. 
Robust quantitative image features were defined on the 
basis of an intraclass correlation coefficient of 0.6 for a 
digital algorithmic modification and a test-retest analysis. 
The robust features were visualized by using hierarchic 
clustering and were correlated with survival by using Cox 
proportional hazards modeling. Next, these robust image 
features were correlated with manual radiologist annota-
tions from the Visually Accessible Rembrandt Images (VA-
SARI) feature set and GBM molecular subgroups by using 
nonparametric statistical tests. A bioinformatic algorithm 
was used to create gene expression modules, defined as 
a set of coexpressed genes together with a multivariate 
model of cancer driver genes predictive of the module’s 
expression pattern. Modules were correlated with robust 
image features by using the Spearman correlation test to 
create radiogenomic maps and to link robust image fea-
tures with molecular pathways.

Results: Eighteen image features passed the robustness analysis and 
were further analyzed for the three types of ROIs, for a to-
tal of 54 image features. Three enhancement features were 
significantly correlated with survival, 77 significant corre-
lations were found between robust quantitative features 
and the VASARI feature set, and seven image features were 
correlated with molecular subgroups (P , .05 for all). A 
radiogenomics map was created to link image features with 
gene expression modules and allowed linkage of 56% (30 of 
54) of the image features with biologic processes.

Conclusion: Radiogenomic approaches in GBM have the potential to 
predict clinical and molecular characteristics of tumors 
noninvasively.
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quantitative image features from MR im-
ages that characterize the radiographic 
phenotype of GBM lesions and to create 
radiogenomic maps associating these 
features with various molecular data.

Materials and Methods

Image Selection and Annotation 
Processing
We obtained clinical, molecular, and MR 
imaging GBM data from TCGA and the 
Cancer Imaging Archive after local ethics 
committee and institutional review board 
approval. The MR image data sets were 
downloaded from the Cancer Imaging 
Archive in July 2012 (www.cancerimag-
ingarchive.net) and originated from four 
centers (Henry Ford Hospital, Univer-
sity of California San Francisco, M.D. 
Anderson Cancer Center, and Emory 
University). We extracted the imaging 
protocol descriptions from the Digital 
Imaging and Communications in Medi-
cine, or DICOM, header and standard-
ized the annotations for the axial images. 
The inclusion criteria for this study were 
presurgical axial T1-weighted images 

computational methods can be used to 
generate quantitative image features. 
Previously, we developed a quantitative 
image feature pipeline to extract quan-
titative image features from computed 
tomographic (CT) and positron emis-
sion tomographic/CT data in non–small 
cell lung cancer and correlated these 
features with matched gene expression 
(6,7). Here, we extend these quantita-
tive image features to GBM and mag-
netic resonance (MR) images. Addi-
tionally, we propose the derivation of 
quantitative image features for three dis-
tinct regions of interest (ROIs): necrosis 
and enhancement ROIs on T1-weighted 
postcontrast images and an edema ROI 
on T2-weighted fluid-attenuated inver-
sion recovery (FLAIR) images.

We also propose to take advantage 
of the extensive molecular character-
ization, including gene expression, copy 
number, and DNA methylation status, 
available for the tumors in patients 
with GBM in the Cancer Genome At-
las (TCGA) by using a comprehensive 
integration strategy called Amaretto to 
summarize the molecular data as gene 
expression modules (8,9). A module is 
defined as a set of coexpressed genes 
together with a multivariate model of 
cancer driver genes predictive of the 
module’s expression pattern. The can-
cer driver genes are chosen on the 
basis of strong statistical evidence of 
genomic or epigenomic alterations. By 
correlating quantitative image features 
with Amaretto modules, we create rich-
er hypotheses of how gene expression 
patterns are driving the morphologic 
manifestations captured by quantitative 
image features.

In this study, we applied these two 
approaches to create radiogenomic 
maps in patients with GBM and to detail 
the insights they provide about under-
lying biologic mechanisms. In summary, 
the purpose of this study was to derive 

G lioblastoma multiforme (GBM) 
is the most frequent primary 
malignant brain tumor in adults. 

Despite decades of research and multi-
modality treatment with microsurgical 
resection followed by chemotherapy 
and radiation therapy, mean survival 
time is only 12–14 months (1). Geno-
mic characterization has recently im-
proved the clinical assessment of GBM 
with the description of distinct molecu-
lar gene expression profiles, underlying 
genomic abnormalities, and epigenetic 
modifications (2–5). The development 
of a radiogenomic map—a link be-
tween image features and underlying 
molecular data—holds the potential to 
address the clinical need for surrogate 
biomarkers that accurately predict un-
derlying tumor biology and therapy re-
sponse in GBM.

Our work focuses on extending ra-
diogenomic analysis of GBM in two 
ways: Adding computational approaches 
to extract quantitative image features 
and utilizing integrated bioinformat-
ics analysis that incorporates multiple 
modes of molecular data. In addition to 
manually annotated semantic features, 

Implication for Patient Care

 n Radiogenomic mapping in 
patients with GBM provides the 
potential for noninvasive assess-
ment of underlying molecular 
processes in a tumor.

Advances in Knowledge

 n Computational approaches 
allowed the extraction of 18 
robust quantitative image fea-
tures for each region of interest 
on MR images that captured 
meaningful properties of glioblas-
toma multiforme (GBM) tumors.

 n Three, 77, and seven robust 
quantitative image features 
were correlated with survival, 
the Visually Accessible Rem-
brandt Images features, and 
molecular subgroups, respec-
tively (P , .05).

 n Robust quantitative image fea-
tures can be used to build radi-
ogenomic maps of GBM and 
allow the association of radio-
graphic phenotype with under-
lying key biologic pathways for 
56% (30 of 54) of the robust 
quantitative image features 
through a bioinformatics data 
integration algorithm.
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modules were represented by the mean 
expression of the genes in each module 
and were subsequently associated with 
the image features by using the Spear-
man correlation test, thereby creating a 
prognostic radiogenomic map for necro-
sis, enhancement, and edema ROIs.

Associating Quantitative Image Features 
with Molecular Pathways
We associated image features with 
molecular pathways by using the Am-
aretto modules as an intermediate (Fig 
E1 [online]). We started with the radi-
ogenomic maps for necrosis, enhance-
ment, and edema, providing an image 
feature–versus-module map. Next, we 
annotated all modules by using gene en-
richment analysis, resulting in a mod-
ule-versus-pathway association map 
(see below). Both association maps 
were defined by P values. We trans-
formed these P values by taking their 
negative natural logarithms. Next, we 
used the matrix product of both matri-
ces, creating an image feature–versus-
pathway map (Fig E1 [online]). The 
matrix multiplication takes into account 
the multivariate association between an 
image feature and the modules and the 
association between a pathway and all 
modules. To evaluate the enrichment of 
Amaretto modules with biologic path-
ways, we used the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) path-
way database (12).

Statistical Analysis
We used the previously described 10 
scenarios of digital algorithmic modifi-
cation on all ROIs and assessed image 
feature robustness using the intraclass 
correlation coefficient (ICC) (13). Ro-
bust features were defined on the basis 
of an ICC of 0.6 for both the digital algo-
rithmic modification and the test-retest 
analysis. We used hierarchic clustering 
with the Euclidean distance metric and 
average linkage to visualize the corre-
lation structure of the robust quanti-
tative image features. Next, we used 
Cox proportional hazards modeling to 
investigate univariate relationships be-
tween quantitative image features (n = 
55), gene expression modules (n = 426), 
and overall survival (survival R package, 

each point on the outline along the 
horizontal and vertical axes by a zero-
mean random number with a 0.1-pixel 
standard deviation; (f) same as e with 
a 0.5-pixel standard deviation; (g) com-
bining modifications a, c, and e; (h) 
combining modifications b, d, and f; (i) 
enlarging by 1 pixel along radial lines; 
and (j) shrinking by 1 pixel along radial 
lines. Next, we performed a test-retest 
analysis based on 21 cases. For each of 
these cases, ROIs were drawn twice, 
either in the same imaging section (n 
= 18) or in a neighboring section (n = 
3), and were subjected to the quantita-
tive image feature pipeline to generate 
quantitative image features.

Genomic Data Integration with Amaretto
All patients had extensive molecular data 
available in TCGA. We used Amaretto 
(8,9) to integrate gene expression, DNA 
methylation, and copy number data into 
gene expression modules, thereby cre-
ating 100 coexpressed gene expression 
modules. Amaretto is a two-step algo-
rithm that we previously used to link 
gene expression modules with ovarian 
cancer subtypes (9). The first step of 
Amaretto identifies cancer driver genes 
by modeling the relationship between 
genomic and transcriptomic data on an 
individual-gene basis. The second step 
uses the cancer driver genes identified 
from the first step and takes a global ap-
proach by dissecting global gene expres-
sion data into modules of coexpressed 
genes. After model building, each mod-
ule has an associated gene regulatory 
program that connects the cancer driver 
genes from the first step with their 
downstream targets. This gene regula-
tory program is modeled by using linear 
regression with elastic net regularization 
(11). Next, we selected modules that 
were significantly correlated with over-
all survival across all 426 TCGA cases 
(P , .05); this resulted in 35 modules. 
TCGA contains more cases than just 
those cases with imaging data, allowing 
us to indirectly infer the potential sur-
vival relationships of quantitative image 
features by correlating them with surviv-
al-correlated modules and thus focusing 
only on gene expression modules that 
are prognostic. The survival-correlated 

obtained before and after the adminis-
tration of gadolinium-based contrast ma-
terial, T2-weighted FLAIR images, and 
treatment-naive gene expression data. 
We included 55 of 75 patients. Eleven 
patients were excluded because MR im-
ages were obtained after surgery, and 
nine patients were excluded because 
no gene expression data were available. 
Next, a board-certified neuroradiologist 
(L.A.M., with 5 years of experience) 
outlined ROIs in two dimensions on the 
single imaging section that had the larg-
est volume of tumor corresponding to 
the enhanced (“enhancement ROI”) and 
necrotic (“necrotic ROI”) tumor portions 
on T1-weighted postcontrast images by 
using the electronic Physician Annota-
tion Device (ePAD), an Osirix plug-in 
allowing annotation of ROIs (10). ROIs 
were confirmed by an expert board-cer-
tified neurosurgeon (A.S.A., with 5 years 
of experience in neuroimaging and neu-
rosurgical oncology). Enhancement was 
confirmed by comparison with the T1-
weighted precontrast images. The signal 
abnormality seen on the T2-weighted 
FLAIR image was similarly outlined and 
defined as the “edema ROI,” which in-
cluded both peritumoral edema and any 
nonenhancing tumor. These ROIs were 
then used to compute features that char-
acterized the intensities within the ROIs, 
the sharpness of lesion boundaries, and 
the boundary shapes, as previously de-
scribed (6). We used our quantitative 
image feature pipeline to generate 79 
computational image features for each 
of 321 regions corresponding to 55 pa-
tients, including multiple ROIs in cases 
of multicentric or multifocal GBM. Im-
age features for multicentric or multifo-
cal cases where averaged for each type 
of ROI.

Image Feature Robustness Analysis
We estimated the robustness of the 
image features in two ways: digital al-
gorithmic modification and test-retest 
analysis. For the digital algorithmic 
modification, we investigated the effect 
of variations in the ROIs by modify-
ing the ROIs as follows: (a) horizontal 
translation by 2 pixels; (b) horizontal 
and vertical translation by 2 pixels; (c) 
1° rotation; (d) 5° rotation; (e) moving 
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hazard ratio, 0.48). Figure 1 shows ex-
amples of necrosis and enhancement 
ROIs in three different patients and 
displays the most extreme cases cor-
responding to the highest and lowest 
values for the irregularity of the border 
of the enhancement ROI. We could not 
study recurrence-free survival because 
of the limited number of patients with 
this outcome.

Next, we found 77 significant cor-
relations between quantitative features 
and the VASARI feature set, a commu-
nity-developed visual guide to help stan-
dardize the assessment of GBM (Table 
E3 [online]). For example, the VASARI 
feature “well-defined enhancing margin” 
is correlated with several quantitative 
image features, including the variance 
of the intensity of the necrosis and en-
hancement ROIs and the enhancement 
edge sharpness. Similarly, the VASARI 
feature “ependymal extension” is cor-
related with two enhancement features 
that define the maximum intensity dif-
ference between the inside and the out-
side of the enhancement ROI. Edema 
edge sharpness features, on the other 
hand, are correlated with the VASARI 
features “proportion of edema” and 
“proportion of necrosis.” For example, 
when the average intensity difference 
between the inside and the outside 
of the edema ROI is low, most cases 
have less edema (<5%) than when it 
is high. Similarly, the VASARI feature 

features where the mean edema in-
tensity was highly correlated with the 
edge sharpness intensity difference (r 
= 0.81, P , .001). Overall, the correla-
tion structure between the quantitative 
image features showed that, although 
clusters of correlated features exist, the 
quantitative image features captured 
unique characteristics of the lesion’s ra-
diologic phenotype.

Correlation of Quantitative Image 
Features with Survival, VASARI Features, 
and Molecular Subtypes
We investigated the correlation of ro-
bust quantitative image features with 
overall and progression-free survival 
and found three significant correlations 
for enhancement image features (P , 
.05; false discovery rate, ,0.05; Table 
E2 [online]). For example, the variance 
of the radial distance signal of the en-
hancement ROI was the feature most 
highly correlated with overall survival (P 
= .017; hazard ratio, 0.67). This feature 
characterizes the irregularity of the bor-
der of the ROI, and a low value was cor-
related with good prognosis. Next, the 
edge sharpness of the enhancement was 
correlated with overall survival, with 
a smooth edge being characteristic of 
poor prognosis compared with a sharp 
edge (P = .023; hazard ratio, 1.43). Sim-
ilarly, a low value for the blurriness of 
the edge sharpness was correlated with 
good progression-free survival (P = .028; 

version 2.36–10). Hazard ratios were 
used to report the direction of the sur-
vival effect, and the Wald test was used 
to determine the significance of Cox 
models. We applied the false discovery 
rate to correct for multiple hypothesis 
testing (14). Next, we used the Wilcoxon 
rank sum test to correlate quantitative 
image features with Visually Accessible 
Rembrandt Images (VASARI) features 
and with the GBM molecular subtypes. 
We used a hypergeometric test to check 
for enrichment of each KEGG pathway 
and all modules and corrected for mul-
tiple hypothesis testing using the false 
discovery rate (14).

Results

Quantitative Image Features 
Characterizing Necrotic, Enhancing, and 
Edema ROIs in GBM
Eighteen features had an ICC of 0.6 on 
the basis of digital algorithmic modifica-
tion and the test-retest analysis (Table 
E1 [online]). Histogram and edge 
sharpness had high ICCs and were thus 
more robust to algorithmic and test-
retest variation, whereas edge shape 
features had low ICCs and were less 
robust. We visualized the correlation 
structure between the robust quanti-
tative image features using hierarchi-
cal clustering (Fig E2 [online]). This 
showed a cluster of correlated edema 

Figure 1

Figure 1: Example axial T1-weighted postcontrast MR images show necrosis and enhancement ROIs.
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processes. WWTR1 is markedly hyper-
methylated and GAP43 is markedly de-
leted, suggesting that when both genes 
are switched off, sharp necrosis bound-
aries are created. GAP43 is associated 
with growth in neuronal development, 
and WWTR1 has been shown to be an 
oncogene in colorectal cancer cells that 
inhibits proliferation (15). Module 20 is 
further enriched with genes located in 
the cell membrane and genes in the IL4 
pathway involved in T-cell differentia-
tion and proliferation.

Radiogenomic Maps Associate 
Quantitative Image Features with Biologic 
Processes and Pathways
Although direct correlation of quan-
titative image features and modules 
provides insight into molecular biology, 
we also indirectly correlated each im-
age feature with biologic pathways by 
leveraging the modules (Fig E1 [online]; 
see Materials and Methods). We were 
able to link 56% (30 of 54) of the image 
features with biologic processes (Fig E5 

426 patients in TCGA. Figure E3 (on-
line) shows the gene expression mod-
ules together with important biologic 
pathway annotations for key modules. 
Next, we created radiogenomic maps 
by correlating only prognostic mod-
ules with quantitative image features. 
Figure 3 displays the radiogenomic 
maps between the necrosis quantitative 
image features and 35 prognostic mod-
ules separately for all ROIs. Figure E4 
(online) illustrates the remaining radi-
ogenomic maps for enhancement and 
edema. Each map shows several signifi-
cant associations between modules and 
image features.

For example, we observed an anti-
correlation between module 20 and the 
edge sharpness of the necrosis (Fig 4).  
Module 20 is highly expressed when 
the necrotic portion of the tumor has 
a blurry edge, whereas its expression is 
low when a tumor has a sharp necrosis 
edge. Module 20 is defined by GAP43 
and WWTR1 as regulators, suggesting 
that these two genes are driving necrosis 

“proportion of necrosis” is correlated 
with a high kurtosis of the edema in-
tensity histogram, corresponding to a 
homogeneous edema ROI. Overall, we 
found a significant correlation with 12 
distinct VASARI features. All signifi-
cant associations between quantitative 
image features and VASARI image fea-
tures are reported in Table E3 (online).

Next, we investigated correlations 
of quantitative image features with 
molecular subtypes and important mo-
lecular aberrations. TCGA described 
four molecular subtypes on the basis 
of gene expression analysis: classic, 
neural, proneural, and mesenchymal 
(2). We found that four features had 
a correlation with the TCGA molecular 
subgroups (P , .05). The mesenchymal 
subtype was correlated with one edema 
feature: the minimum intensity. The 
classic subtype was correlated with one 
necrosis and two edema image features 
related to edge sharpness and intensity. 
More specifically, edema ROIs in classic 
tumors have lower intensity than those 
in mesenchymal tumors (Fig 2).

Radiogenomic Map with Quantitative 
Image Features Revealed Novel 
Associations
We used Amaretto to build 100 gene 
expression modules based on data in 

Figure 2

Figure 2: Boxplots show edema minimum histogram 
intensity and edema edge shape variability according to 
their differences within GBM molecular subgroups. The 
scales for both image features were standardized to 
have a mean of 0 and a standard deviation of 1.

Figure 3

Figure 3: Radiogenomic maps for necrosis features. Image features are in rows and modules are in columns. 
Each colored square = significant correlation between an image feature and a module. The association high-
lighted in blue in the necrosis map is presented in Figure 4. min = Minimum, RDS = radial distance signal.
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provide enormous opportunities for 
the continued development of radioge-
nomic analytic techniques. For GBM, 
the TCGA glioma phenotype group 
has the most comprehensive data set, 
ranging from preoperative MR images 
to molecular analyses of resected tissue 
(20–23). A panel of eight neuroradiolo-
gists from multiple institutions has an-
notated a subset of the MR images by 
using the VASARI feature set (24), com-
prising 30 distinct manually annotated 
semantic features that describe GBM 
(20). Additionally, studies in other co-
horts (17,25,26) have shown that mo-
lecular aberrations are associated with 
morphologic changes detectable on MR 
images and suggest that meaningful as-
sociations can be made between MR 
images and molecular data.

The radiogenomic analyses demon-
strated here extend previous radioge-
nomic work and are easily extendible. 
Quantitative image features have been 
successfully applied in non–small cell 
lung cancer, hepatocellular carcinoma, 
and now GBM. New features can be 
added to the computational pipeline 
and immediately assessed for prog-
nostic relevance and molecular corre-
lates. Additionally, Amaretto provides 
a framework to map image features to 
molecular data by integrating several 
molecular data sets in a comprehensive 
model.

Our study had limitations; the most 
important of these was that ROIs were 
manually annotated in a single section 
that contained the largest cross sec-
tion of the lesion. Manually annotating 
ROIs is a tedious process. This process 
can be facilitated by using a dedicated 
software platform such as ePad (10) 
but introduces potential reader vari-
ability. By evaluating the robustness 
of quantitative image features to ROI 
definition and limiting our analysis to 
the most robust features, we mitigated 
this concern to some extent. We are 
actively developing semiautomatic ap-
proaches for outlining necrosis, en-
hancement, and edema ROIs in three 
dimensions to overcome this limita-
tion. More importantly, this initial set 
of manually drawn ROIs allowed us 
and will allow others the possibility 

power of creating radiogenomic maps 
using Amaretto and using the gene ex-
pression modules to indirectly associate 
image features with underlying biologic 
processes. Our results demonstrate that 
building radiogenomic maps with quan-
titative image features and Amaretto is 
a promising complementary strategy to-
ward noninvasive management of GBM.

The potential of radiogenomic maps 
was first demonstrated in hepatocellu-
lar carcinoma by Segal et al (16) and 
in GBM by Diehn et al (17). More 
recently, an editorial in Radiology re-
viewed recent efforts and concluded 
that “future research engagement will 
be most productive if it focuses on pop-
ulating a three-domain Venn diagram 
intersection made up of genetics, clin-
ical data, and imaging features” (18). 
A major enabling effort, TCGA focuses 
on extensively characterizing and mak-
ing publicly available the molecular 
properties of several cancers, includ-
ing GBM (19). At the same time, the 
Cancer Imaging Archive effort is un-
derway to gather the medical images in 
these and other patients. These efforts 

[online]). For example, the variance of 
the edema intensity was related to the 
KEGG cell cycle pathway. Similarly, im-
age features related to edge sharpness 
were enriched with the KEGG focal 
adhesion pathway. The focal adhesion 
pathway involves genes related to cell 
motility, proliferation, and invasion. In 
normal tissues, genes in this pathway 
form the contact point with the extra-
cellular matrix, and, when aberrantly 
regulated, this may lead to invasion and 
metastasis. Overall, we found several 
associations between image features 
and pathways, providing a rich resource 
for future experimental validation (Fig 
E5 [online]).

Discussion

In this study, we have shown explor-
atory results of two extensions to radi-
ogenomic analysis of GBM cases from 
TCGA. We demonstrated the use of 
quantitative image features in GBM and 
reported significant correlations with 
survival, VASARI image features, and 
molecular data. We also showed the 

Figure 4

Figure 4: Association between module 20 and the LAIIR2-var feature, defined as the variance of the ne-
crosis edge shape. Top: Cancer driver genes of module 20. Red = high expression, green = low expression. 
Second-from-top: Expression of the genes in module 20. Second-from-bottom: LAIIR2-var feature. Black = 
high variance, white = low variance. Bottom: Boxplot of the LAIIR2-var feature for high versus low variance of 
the LAIIR2-var feature, corresponding to high or low expression of the module genes, respectively.
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