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In this minireview, we will highlight work in the last 30 years
that has clearly demonstrated that the O-GlcNAc modification
is nutrient-responsive and plays multiple roles in metabolic reg-
ulation of signaling and gene expression. Further, we will exam-
ine recent studies that have investigated the impact of
O-GlcNAc in a variety of glucose- and insulin-responsive tissues
and the roles attributed to O-GlcNAc in the induction of insulin
resistance and glucose toxicity, the hallmarks of type II diabetes
mellitus. We will also summarize potential causal roles for the
O-GlcNAc modification in complications associated with
diabetes.

Type II diabetes, also referred to as non-insulin-dependent
diabetes mellitus or adult-onset diabetes, is a metabolic disor-
der in which hyperglycemia and insulin resistance are the hall-
marks (1, 2). This disease, which afflicts over 25 million United
States citizens, is thought to result from a combination of pre-
disposing genetic traits coupled with chronic low energy
expenditure and overnutrition (1–3). Thus, type II diabetes dis-
plays traits of both an inherited as well as an acquired disease.
Insulin resistance coupled with chronic glucose toxicity are
thought to be responsible for the many complications associ-
ated with the disease (1, 2). Thus, understanding the mecha-
nisms by which tissues sense and respond to changes in glucose
levels and develop resistance to insulin-stimulated signaling is
key to developing therapeutics for this multisystem disease of
energy metabolism (Fig. 1).

The Hexosamine Biosynthetic Pathway (HBP) as a
Glucose Sensor and Modulator of Insulin Signaling

Once glucose enters a cell, it is rapidly converted to glucose
6-phosphate, which can be further utilized in multiple meta-

bolic pathways (Fig. 2A). This intermediate can be utilized for
glycogen synthesis, the pentose phosphate pathway, or con-
verted to fructose 6-phosphate. The vast majority of fructose
6-phosphate is converted to fructose 1,6-bisphosphate and thus
committed to glycolysis. However, a small percentage (2–5%) is
converted to glucosamine 6-phosphate by the rate-limiting
enzyme L-glutamine D-fructose 6-phosphate amidotransferase
(GFAT)2 to commit it to the HBP that generates UDP-GlcNAc
(4, 5). Groundbreaking work by multiple laboratories demon-
strated that the HBP was a glucose sensor and that decreasing/
increasing flux through this path could hamper or induce,
respectively, the insulin-resistant state (4, 6 –11). For example,
in adipocytes, treatment with glucosamine that feeds directly
into the HBP, via the generation of glucosamine 6-phosphate
via phosphorylation, can abrogate the need for high glucose in
the induction of insulin resistance (6). Further, overexpression
of GFAT in peripheral insulin-responsive tissues leads to an
insulin-resistant phenotype in mice (12). Pathways that utilize
UDP-GlcNAc, the end product of the HBP, have been investi-
gated as the mechanism by which the HBP acts as a nutrient
sensor and modulator of signaling.

The Regulatory O-GlcNAc Post-translational
Modification

Although UDP-GlcNAc can be used for the generation of
other sugar nucleotides and the synthesis of complex glycans
that are free or attached to proteins and lipids, this sugar nucle-
otide also serves as the donor for the O-GlcNAc modification
that was originally discovered Torres and Hart (13) in the mid-
1980s (Fig. 2B) . Unlike classical complex glycosylation, the
O-GlcNAc modification of protein serine and threonine resi-
dues occurs in the nucleus and cytoplasm, and its addition and
removal are catalyzed by nucleocytoplasmic enzymes,
O-GlcNAc transferase (OGT) and neutral �-N-acetylgluco-
saminidase (OGA), respectively (14 –18). Several excellent
recent reviews have focused on this modification, the thou-
sands of O-GlcNAc-modified proteins known, and the cycling
enzymes (14, 19 –25). Here, we will review the tissue-specific
roles for the cycling enzymes and the O-GlcNAc modification
in energy homeostasis and the type II diabetes mellitus
phenotype.

Functions for the O-GlcNAc Modification in the
Pancreatic �-Cell

The pancreas is a glucose-responsive endocrine tissue that
secretes hormones in response to glucose levels (Fig. 1). Dys-
regulation of the �-cells of the pancreas, which are responsible
for the secretion of insulin in response to hyperglycemia, is a
major hallmark of the diabetic phenotype (1, 2). The O-GlcNAc
modification of several proteins, primarily transcription fac-
tors, has been implicated in positively regulating the secretion
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FIGURE 1. Whole organism energy dynamics and the diabetic phenotype. Glucose (blue arrows) is absorbed into the bloodstream from the duodenum.
Glucose is sensed by the �-cells of the pancreas that respond by secreting insulin into the bloodstream (orange arrows). Insulin triggers adipose and muscle
cells to take glucose out of the bloodstream and promotes energy storage. Insulin also modulates adipocytokine secretion (green arrows). In the liver, insulin
promotes glucose uptake and inhibition of gluconeogenesis and promotes lipogenesis and FFA secretion (red arrows). Glucose, insulin, adipocytokines, and
FFA all act on responsive organs, including the brain, eye, heart, kidney, and circulatory system, to promote/inhibit a variety of processes and responses. In the
diabetic phenotype, all of the tissues and organs of the organism become affected due to a disconnect between sugar metabolism and insulin-dependent
signal transduction.

FIGURE 2. The hexosamine biosynthetic pathway and UDP-GlcNAc utilization. A, glucose entering a cell can be utilized in glycogen synthesis, the
pentose phosphate pathway (PPP), and glycolysis. Approximately 2–5% of entering glucose is shunted into the hexosamine biosynthetic pathway that
generates the sugar nucleotide UDP-GlcNAc, the levels of which are proportional to that of the glucose entering the cells and are elevated in diabetic
animals and patients. B, UDP-GlcNAc can be utilized for the generation of free, protein-linked, or lipid-linked complex carbohydrates or for the
generation of other sugar nucleotides, UDP-GlcNAc and CMP-Neu5Ac, in humans. UDP-GlcNAc also serves as the sugar nucleotide donor for the
OGT-catalyzed addition of O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, which can be removed by the enzymatic
action of OGA. Neu5Ac, N-acetylneuraminic acid.
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of insulin from the �-cells of the pancreas. In particular,
O-GlcNAc modification of NeuroD1, which enhances tran-
scription of the insulin gene and promotes nuclear localization
and O-GlcNAc modification of the transcription factor PDX-1,
enhances DNA binding (26, 27). However, long-term elevation
of O-GlcNAc levels via pharmacological approaches has been
associated with �-cell apoptosis, although the mechanism is
unclear but may involve the Akt pathway (28, 29). Further stud-
ies aimed at uncovering the roles of acute and chronic hyper-
glycemia that can be assigned to increases in O-GlcNAc levels
in the glucose-responsive pancreas are still required.

Functions for the O-GlcNAc Modification in Skeletal
Muscle and Adipose Tissue (Insulin-responsive Glucose
Uptake and Metabolism)

Skeletal muscle and adipose tissue are responsible for clear-
ing the majority of glucose from the bloodstream in response to
insulin (1, 2) (Fig. 1). Insulin promotes energy storage in these
tissues as well as the secretion of adipocytokines from adipose
tissue (2, 19) (Fig. 1). Pioneering studies using metabolic, phar-
macological, and genetic approaches clearly demonstrated an
important role for the HBP in peripheral insulin resistance (4,
6 –11). These studies were followed up by pharmacological and
genetic studies that suggested that elevation in the O-GlcNAc
modification leads to adipose and skeletal muscle insulin resis-
tance (30, 31). This work included demonstration that a trans-
genic mouse overexpressing OGT in skeletal muscle displayed
insulin resistance as well as hyperleptinemia (30). Cell culture
studies discovered similar insulin-resistant phenotypes upon
elevation in O-GlcNAc levels via pharmacological approaches
(31–33). Further work uncovered that multiple proteins
involved in the insulin signaling pathway were functionally
O-GlcNAc-modified (34 –38) and that the O-GlcNAc cycling
enzymes genetically interacted with components of the insulin-
like signaling pathway in the model organism Caenorhabditis
elegans (39 – 44). In addition to defects in insulin-dependent
glucose uptake and energy storage, the HBP and more specifi-
cally the O-GlcNAc modification are also functionally impli-
cated in the secretion of adipocytokines that modulate a num-
ber of energy homeostatic functions in the organism, including
feeding behavior (30, 33, 45– 47) (Fig. 1). For example, Rosset-
ti’s group (47) clearly demonstrated that leptin transcription,
expression, and secretion were regulated by the HBP, and later,
McClain et al. (30) demonstrated using genetic approaches that
this regulation was directly due to the O-GlcNAc modification.
Work by our own group using pharmacological manipulation
followed by quantitative mass spectrometry has further deter-
mined that multiple mammalian adipocytokines are regulated
by levels of the O-GlcNAc modification in adipocytes (45, 46).
Thus, multiple groups using a variety of approaches and sys-
tems have determined strong links between the O-GlcNAc
modification and peripheral insulin resistance. Work by Buse
and colleagues (48), who demonstrated that overexpression of
OGA did not ameliorate hyperglycemia/chronic insulin-in-
duced insulin resistance in cultured adipocytes, and work by
Vocadlo and colleagues (49, 50), who demonstrated that a spe-
cific inhibitor of OGA did not induce peripheral insulin resis-
tance, clearly show that the field still has much to uncover to

fully understand the role of the O-GlcNAc modification in
modulating peripheral tissue insulin responsiveness. In partic-
ular, the field needs to acknowledge and address that metabolic
treatments (for example, the addition of glucose, glucosamine,
GlcNAc, and/or glutamine), pharmacological treatments (inhi-
bition of OGT, OGA, and GFAT via inhibitors with various
mechanisms and specificities, for example), and genetic manip-
ulation (O-GlcNAc/HBP enzyme overexpression and knock-
down/knock-out) are not necessarily comparable. For example,
pharmacological inhibition of OGA potentially elevates
O-GlcNAc levels by breaking the dynamic on/off cycle, whereas
overexpression of OGT likely elevates O-GlcNAc levels by
shifting the equilibrium toward modification.

Functions for the O-GlcNAc Modification in the Liver
(Insulin-suppressed Gluconeogenesis)

The liver plays a central role in glucose homeostasis and is
insulin-responsive (Fig. 1). In addition to insulin-responsive
glucose uptake, insulin also inhibits gluconeogenesis and pro-
motes FFA secretion in the liver (1). Perhaps some of the most
compelling studies for the role of O-GlcNAc in the liver and the
diabetic phenotype were conducted by the Montiminy and
Evans groups (51, 52), who showed that overexpression of OGA
in the liver rescued circulating glucose levels in a diabetic
mouse model and that overexpression of OGT in the liver
induced insulin resistance and dyslipidemia in a normal mouse,
respectively. Elegant work by Hart and colleagues (53, 54) has
demonstrated that expression of key gluconeogenic enzymes is
regulated at the level of transcription by the O-GlcNAc modi-
fication, and this work has been recently followed up on and
extended by Yang’s group (55). O-GlcNAc modification of tran-
scription factors is also centrally involved in the regulated
expression of lipogenic enzymes (56, 57). Thus, in the liver,
metabolic regulation of gene expression via the O-GlcNAc
modification appears to be a central theme, and it has been
established in multiple systems that the O-GlcNAc modifica-
tion is a regulator of transcription (58, 59).

Functions for the O-GlcNAc Modification in
Organs/Tissues Associated with Diabetic Complications

Multiple tissues and organs are involved in the diabetic phe-
notype, including the kidney, eye, brain, heart, and vascular
system (1, 2) (Fig. 1). Retinopathy and nephropathy that lead to
blindness and kidney failure are major complications of diabe-
tes mellitus (60, 61). Insulin plays a pro-survival role in large
part by activation of the anti-apoptotic PI3K-Akt pathway (62).
Flux through the HBP and elevation in O-GlcNAc modification
of proteins have been demonstrated to attenuate this pathway
in multiple systems and thus may play a significant role in the
induction of apoptosis in these tissues (31, 34, 37, 52, 63). Alter-
natively or perhaps additively, the O-GlcNAc modification is
known to modulate NO production in endothelial cells, pro-
moting macro- and microvascular complications that may lead
to organ failure (64, 65). In alignment with the role of
O-GlcNAc in vascular regulation, several groups have demon-
strated a role for O-GlcNAc in the heart, and recent studies
have covered these findings (23, 25, 66 – 68). Diabetic car-
diomyopathy is responsible for a large number of the deaths
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associated with diabetes mellitus (69). Recent work has demon-
strated that the O-GlcNAc modification of proteins in cardiac
tissue is a mechanism for hyperglycemia/insulin-resistant-in-
duced mitochondrial dysfunction, contractile defects, and ath-
erosclerosis as well as perturbations in calcium loading and oxi-
dative stress responses (23, 25, 66 – 68). Further, OGA protein
levels and O-GlcNAc-modified proteins are increased in eryth-
rocytes of pre-diabetic and diabetic patients, paving the way for
O-GlcNAc levels being used as a biomarker for early detection
and efficacious treatment of diabetes (70, 71). Future studies are
needed to uncover the roles for O-GlcNAc in mediating glucose
toxicity and the normal physiological roles for this modification
in modulating energy utilization and responsiveness to extra-
cellular cues in organs associated with the diabetic phenotype.

Conclusions and Future Directions

As illustrated in Fig. 1, the organism as a whole must be
considered when investigating energy homeostasis and its dys-
regulation in diabetes. This is especially true for the O-GlcNAc
modification that has been increasingly implicated as a meta-
bolic sensor that regulates gene expression, i.e. an epigenetic
mark, of secreted factors. In this review, we have highlighted
several such examples, including O-GlcNAc levels regulating
insulin secretion in the pancreas, which goes on to regulate
multiple processes in other organs, and the O-GlcNAc modifi-
cation regulating insulin-dependent leptin secretion at the level
of transcription in adipose tissue, which then circulates to the
brain to regulate eating behavior (Fig. 1). Thus, a major chal-
lenge in the O-GlcNAc and diabetes field is elucidating not only
direct effects of O-GlcNAc modification on particular proteins
in specific cell types, but equally importantly, elucidating indi-
rect effects of changes in O-GlcNAc levels in one tissue having
metabolic consequences in another tissue that impact the over-
all energy dynamics and health of the entire organism.
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