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indexed, http://f1000r.es/4bu]
Sreeram Ramagopalan,  Radek Wasiak, Andrew P. Cox
Evidera, London, W6 8DL, UK

Abstract
 Multiple sclerosis (MS) is a common complex disorder, with newBackground:

treatment options emerging each year. Social media is being increasingly used
to investigate opinions about drugs, diseases and procedures. In this
descriptive exploratory study, we sought to investigate opinions about currently
available MS treatments.

 The Twitter resource Topsy was searched for tweets mentioning theMethods:
following MS treatments: Aubagio, Avonex, Betaferon or Betaseron, Copaxone,
Extavia, Gilenya, Lemtrada, Novantrone, Rebif, Tysabri and Tecfidera between
1 Jan 2006 to 31 Jul 2014. Tweets were normalised and sentiment analysis
performed.

In total, there were 60037 unique tweets mentioning an MS treatment.Results: 
About half of the tweets contained non-neutral sentiment. Mean sentiment
scores were different for treatments ranging from -0.191to 0.282 when
investigating all tweets. These differences in sentiment scores between
treatments were statistically significant (P<0.001). Sentiment scores tended to
be higher for oral MS treatments than injectable treatments.

 Many tweets about MS treatments have a non-neutralConclusions:
sentiment. The analysis of social media appears to be a potential avenue for
exploring patient opinion about MS treatments.
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Introduction
The analysis of social media is becoming a powerful tool that 
is being used increasingly to answer research questions across 
numerous areas including disease spatio-temporal epidemiology 
and drug adverse events1–3. Key stake-holders in the pharmaceuti-
cal industry, including patients, physicians, regulatory authorities 
and pharmaceutical companies, are increasingly using web tech-
nologies such as social media, blogs and forums to generate and 
access opinions and real-world evidence of potentially medically 
important issues. This content serves as an important source of 
on-line medical opinions, information and sentiments relating to 
particular drugs and events. The underlying assumption is that with 
access to such information, a patient will be able to make more 
informed decisions about drugs, diseases, procedures and health-
care providers.

Multiple sclerosis (MS) is a chronic, neurodegenerative autoim-
mune disorder of the central nervous system (CNS). With a preva-
lence of one per 800 in North America and Northern Europe, MS is 
the most common acquired neurological disorder in young adults4. 
About 85% of patients present initially with relapsing-remitting 
MS (RRMS), characterized by recurrent episodes of neurological 
dysfunction interspersed with periods of lack of apparent disease 
activity4.

At present, there are nine disease modifying therapies (DMTs) 
approved by the US Food and Drug Administration (FDA) and 10 
DMTs approved by the European Medicines Agency (EMA) for 
the treatment of RRMS, with new treatment options emerging each 
year. Approved treatments include interferons (Avonex, Betaferon, 
Betaseron, Extavia, Rebif), glatiramer acetate (Copaxone), natali-
zumab (Tysabri), and, more recently, the oral treatments teriflu-
nomide (Aubagio), fingolimod (Gilenya), and dimethyl fumarate 
(Tecfidera). In this study, we explored whether we could analyse 
social media to help gauge patient sentiment about treatments using 
MS as an example. We used the popular social media site Twitter 
(http://twitter.com) to explore the reporting of patient sentiment and 
emotions about MS treatments.

Methods
Data
The Twitter resource, Topsy (http://topsy.com/), which houses all 
tweets made since 2006, was searched for the following brand 
names of MS treatments: Aubagio, Avonex, Betaferon or Betaseron, 
Copaxone, Extavia, Gilenya, Lemtrada, Novantrone, Rebif, Tysabri 
and Tecfidera using a daily search-time window (i.e. searching for 
tweets made every day), and specifying the English language. Brand 
names were used as we thought this would be more likely to reflect 
patient tweets and further the generic name for some MS treatments 
are not specific MS treatments. All dates from 1 Jan 2006 to 31 Jul 
2014 were searched. For days in which there were more than 1000 
tweets satisfying the search criteria, an hourly search-time window 
was applied for that day, to enable all available tweets to be found 
(the resource limits searches to 1000 results).

Tweets were downloaded in Extensible Markup Language (XML) 
format from topsy.com using the application program interface, 
otterapi (https://code.google.com/p/otterapi/).

Data filtering
Tweets were subsequently filtered to generate datasets for analysis:

1. A unique dataset was generated from the “highlight” data class; 
thus, removing all directly copied retweets. This was performed so 
that sentiment analysis could be performed on unique tweets and 
not bias analyses by having several copies of the same tweet.

All subsequent filtering was case-insensitive.

2. The unique dataset from (1) was filtered to remove items relating 
to company share prices/stockmarket news.

This was achieved by removing all tweets that contained:

a) “market_jp”, “thestreet”, “rtebusiness”, “pharma”, or “pharm-
sales” in the “permalink” dataclass,

or

b) “bloomberg”, “forbes”, “dow jones”, “financial times”, “stockpickr”, 
“marketwatch”, “business:”, “profit”, “shares”, or “sec” in the 
“highlight” data class. This filter was performed as we wanted to 
identify patient opinion about MS treatments and not stock mar-
ket related tweets. This filter did retain tweets containing company 
names, some of which were stock/share price related but some 
tweets containing company names were from patients.

3. The dataset from (2) was further filtered to remove items that 
mentioned the manufacturing companies by name: tweets were 
removed if they contained any of the following:

“novartis”, ”elan”, ”biogen”, ”merck”, ”bayer”, ”genzyme”, ”sanofi”, 
”teva”, or “serono”. This filter was stringent and removed the 
majority of stock/share related tweets, but also removed some 
patient tweets.

Normalisation
Because of the short nature of tweets, typographical errors, ad-hoc 
abbreviations, phonetic substitutions, ungrammatical structures and 
emoticons are common, causing problems for text processing tools. 
Tokenisation and normalisation to make better sense of the tweet 
texts was achieved using TwitIE (http://gate.ac.uk/sale/ranlp2013/
twitie/twitie-ranlp2013.pdf?m=1). Normalisation did not remove or 
alter any of the drug names.

Sentiment and word frequency analysis
Tweets were grouped into sequential monthly time periods for sen-
timent analysis using the twitteR R package (https://github.com/
geoffjentry/twitteR/) and Jeffrey Breen’s sentiment analysis code 
(https://github.com/jeffreybreen/twitter-sentiment-analysis-tuto-
rial-201107; a tutorial can be found at: http://www.inside-r.org/howto/
mining-twitter-airline-consumer-sentiment). Word frequency anal-
ysis in tweets was performed using TagCrowd (http://tagcrowd.com). 
TagCrowd uses language-specific lists of common words which are 
removed from analysis.

Statistical analysis
Using lists of 2006 positive and 4783 negative words (http://www.
cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon), the senti-
ment score for any tweet is calculated as follows:
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Sentiment score = number of positive words - number of negative 
words

If the sentiment score > 0, this means that the sentence has an over-
all ‘positive opinion’, if the sentiment score < 0, this means that the 
sentence has an overall ‘negative opinion’, if the sentiment score=0, 
then the sentence is considered to be a ‘neutral opinion’. Senti-
ment scores were summed for all tweets for each MS treatment, and 

means calculated. Mean sentiment scores were compared across 
treatments using the Kruskal-Wallis test. Statistical analysis was 
performed using R version 3.1.1 and p values less 0.05 were con-
sidered significant.

Results
In total, there were 60037 unique tweets mentioning an MS treat-
ment. The number of tweets by month is shown in Figure 1. Tweets 

Figure 1. Number of tweets by month for each treatment.
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for Tysabri started the earliest (January 2008) and Aubagio the latest 
(February 2009). When removing tweets that included share/stock 
information there were 56708 unique tweets and when removing 
tweets that included share/stock information or company names 
there were 41690 unique tweets.

The number of tweets by treatment, overall and when remov-
ing tweets that included share/stock information and/or company 
names is shown in Table 1. Tysabri had the largest number of tweets 
(n=14542, all tweets; n=10984 after filtering for company names 
and stock/share tweets) and Novantrone had the lowest (n=110, all 
tweets; n=109 after filtering for company names and stock/share 
tweets), both before and after filtering.

The sentiment score analysis of all normalised tweets, normalised 
tweets excluding those that contained share/stock information 
and normalised tweets excluding those that contained share/stock 
information and company names are shown in Table 2, Table 3 and 
Table 4. About half of all tweets in all analyses had a neutral senti-
ment (43–61%, all tweet data; 45–57% after filtering for company 
names and stock/share tweet data). Tweets for drugs that contained 
sentiment were more likely to be positive sentiment, apart from 
tweets for Novantrone and Tysabri (23–33% for drugs apart from 
Novantrone (16%), all tweet data; 24–31% for drugs apart from 
Novantrone (17%) and Tysabri (28%), after filtering for company 
names and stock/share tweet data).

Summing sentiment scores for all tweets showed positive overall 
sentiment scores for all drugs apart from Novantrone (all analyses) 
and Tysabri (only after filtering for company names and stock/share 
tweet data). Gilenya had the highest summed sentiment score in  

all analyses. Boxplots of sentiment scores of all normalised tweets, 
normalised tweets excluding those that contained share/stock infor-
mation and normalised tweets excluding those that contained share/
stock information and company names are shown in Figure 2, Figure 3  
and Figure 4. The mean sentiment score ranged from -0.191 to 
0.282 (all tweet data); and -0.193 to 0.247 (after filtering for com-
pany names and stock/share tweet data). Novantrone always had 
the lowest mean sentiment score. Tecfidera had the highest mean 
score in the all tweet data, and Aubagio had the highest mean score 
in the filtered for company names and stock/share tweet data. The 
mean sentiment scores were different in all analyses (P<0.001 in 
the all tweet data, filtered for stock/share tweet data and filtered for 
company names and stock/share tweet data).

Most common words in tweets for treatments were investigated. 
Example word clouds for the 50 most common words (excluding com-
monly used English words and drug names) in all normalised tweets 
for Avonex, Rebif and Tysabri are shown in Figure 5, Figure 6 and 
Figure 7. Of note is the frequency of ‘flu’ and ‘injection’ in Avonex 
and Rebif tweets and ‘infusion’ and ‘pml’ in Tysabri tweets.

Discussion
We present here, to the best of our knowledge, the first analysis of 
social media for MS treatments. A significant proportion of tweets 
did contain non-neutral sentiment about MS treatments, and the dis-
tribution of sentiment score was different between treatments. Thus 
it appears that Twitter can be a potential resource to understand 
patient opinion about MS treatments. When looking at frequency 
of words, notably ‘flu’ and ‘injection’ were in the 50 most common 
words in tweets about Rebif and Avonex and ‘infusion’ and ‘pml’ 
in the 50 most common words in tweets about Tysabri. Flu-like 

Figure 2. Boxplots of sentiment scores for all normalised tweets.
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Figure 3. Boxplots of sentiment scores of all normalised tweets with tweets containing share/stock information excluded.

Figure 4. Boxplots of sentiment scores of all normalised tweets with tweets containing share/stock information and company names 
excluded.
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summed sentiment score in all analysis. This may reflect a well 
known patient preference for oral therapies as compared to inject-
ible treatments6,7. Further work is needed to explore tweets in detail 
to see if the higher mean sentiment scores are related to positive 
tweets about the fact that these drugs are to be taken orally.

There are a number of limitations to this study. We are using auto-
mated tools to assign sentiment to tweet content- these tools will 
not recognise the intricacies of human language e.g. the context 
of the tweet and sarcasm for example. Further, whilst we tried to 
normalise tweets, the diversity of twitter slang will mean that abbre-
viations may not be recognised. We may have underestimated the 
number of tweets as we used brand names to identify drugs. Any 
tweets using the generic name or shortened versions will be missed. 
Whilst we tried to focus on tweets from patients, it is inevitable that 
business related tweets will have been included in our analysis and 
some patient tweets lost during filtering. It is also possible that not 
all tweets were delivered to us by the Twitter interface, although 
that is not possible to verify.

Our findings and any interpretation should be regarded as specula-
tive and exploratory. The results represent what can be potentially 
done relatively quickly and easily using data from Twitter. More 
rigorous analytical methods can be applied for more specific ques-
tions (e.g. the analysis of adverse events). It is clear from this study 
that tweets are written about MS treatments and many of these have 
a non-neutral sentiment. Further work is needed to look at these 
tweets in detail to further understand patient opinion about MS 
treatments.
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symptoms are well known side-effects of the injectible treatments 
Rebif and Avonex and progressive multifocal leukoencephalopathy 
or ‘pml’, is a well-known risk for patients taking the intravenously 
infused Tysabri5. This provides some sort of face validity for our 
results reflecting real specific tweets about MS treatments.

Interestingly, the oral MS treatments- Gilenya, Aubagio and Tecfidera 
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