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Abstract

The complex milieu of inflammatory mediators associated with many diseases is often too dilute 

to directly measure in the periphery, necessitating development of more sensitive measurements 

suitable for mechanistic studies, earlier diagnosis, guiding therapeutic decisions, and monitoring 

interventions. We previously demonstrated that plasma samples from recent-onset Type 1 diabetes 

(RO T1D) patients induce a proinflammatory transcriptional signature in freshly drawn peripheral 

blood mononuclear cells (PBMCs) relative to that of unrelated healthy controls (HC). Here, using 

cryopreserved PBMC, we analyzed larger RO T1D and HC cohorts, examined T1D progression in 

pre-onset samples, and compared the RO T1D signature to those associated with three disorders 

characterized by airway infection and inflammation. The RO T1D signature, consisting of 

interleukin-1 cytokine family members, chemokines involved in immunocyte chemotaxis, immune 

receptors, and signaling molecules, was detected during early pre-diabetes and found to resolve 

post-onset. The signatures associated with cystic fibrosis patients chronically infected with 

Pseudomonas aeruginosa, patients with confirmed bacterial pneumonia, and subjects with H1N1 

influenza all reflected immunological activation, yet each were distinct from one another and 
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negatively correlated with that of T1D. This study highlights the remarkable capacity of cells to 

serve as biosensors capable of sensitively and comprehensively differentiating immunological 

states.
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INTRODUCTION

Many diseases arise from uncontrolled inflammatory processes and become evident after the 

progression of significant tissue and organ damage. These diseases include auto-

inflammatory diseases such as Type 1 diabetes (T1D), multiple sclerosis, and rheumatoid 

arthritis, as well as bacterial and viral infections. A need remains for discovery and 

evaluation of biomarkers that can sensitively detect and differentiate inflammatory 

processes, define immunological mechanisms of action that can guide selection of 

appropriately targeted therapies, and sensitively monitor changes in the inflammatory state 

associated with disease progression or responses to therapeutic intervention. Fortunately, 

advances in genomic technologies now offer unprecedented opportunities to not only gain 

new mechanistic insights into inflammatory processes, but to improve diagnosis and 

treatment. While many studies have examined transcript levels in tissue biopsies, peripheral 

blood remains the most accessible human tissue and represents a practical, minimally 

invasive surrogate biopsy material.

The most common blood-based genomics strategy has been to directly profile transcripts of 

peripheral blood mononuclear cells (PBMCs) or purified immunocyte subsets of cases and 

controls. When applied to infectious disease, clinically useful, pathogen-specific 

transcriptional patterns have been associated with various bacterial, viral, fungal, and 

protozoan infections1, 2. These responses possess species-level or even strain-level 

specificity and arise because different microbial pathogens exhibit unique pathogen-

associated molecular patterns, which interact with specific host pattern recognition receptors 

(such as the toll-like receptors, TLRs)3, 4 to trigger different signal transduction pathways 

and unique transcriptional programs5–8. These differential responses have enabled the 

detection of specific transcriptional signatures in PBMCs from individuals harboring various 

infections including viruses9–12, Gram-negative and Gram-positive bacteria11, 13, and 

eukaryotic parasites such as Plasmodium14.

Transcriptional signatures of patient PBMCs also reflect the inflammatory mechanisms 

utilized by various autoimmune diseases15–17. These include systemic lupus erythmatosus, 

rheumatoid arthritis (where direct profiling of PBMC has been found useful for classifying 

disease and predicting response to infliximab)18–21, multiple sclerosis22–24, inflammatory 

bowel disease (where PBMC profiles have been described that distinguish Crohn’s disease 

from ulcerative colitis25), psoriasis26, dermatomyositis27, 28, and systemic onset juvenile 

idiopathic arthritis29, 30.
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A less common strategy has been to use patient serum or plasma to induce gene expression 

in healthy, unrelated third-party PBMCs. This approach, where the cells are used as 

reporters that sensitively respond to soluble disease-associated factors present in the 

periphery, has been used by Pascual et al.,29 to study the inflammatory state associated with 

systemic onset juvenile idiopathic arthritis and we have applied it to T1D31–33. We 

previously determined that culturing plasma of recent onset (RO) T1D patients with freshly 

drawn unrelated, healthy PBMCs induces a unique innate inflammatory transcriptional 

signature31. This signature includes many genes regulated by interleukin (IL)-1, a cytokine 

known to co-stimulate T cells and cause pancreatic β-cell death in vitro. The RO T1D 

signature is distinct from that induced by the plasma of unrelated healthy controls (HCs) or 

long-standing (LS) T1D patients (>10 years post-onset), suggesting that the RO T1D 

signature is induced by factors related to active autoimmunity31. In longitudinal samples 

collected from progressors to diabetes, this T1D signature was evident as much as 5 years 

prior to onset and prior to the emergence of auto-antibodies toward islet cell antigens, which 

are currently considered to be the best predictor of progression to diabetes31. Our application 

of this approach to studies of T1D in the BioBreeding rat disease model also revealed an 

onset-associated signature partially dependent on IL-1. Blocking the IL-1 receptor by 

treating BioBreeding rats with IL-1 receptor antagonist (IL-1RA) delayed onset and, in part, 

normalized the disease signature, suggesting that induced transcriptional signatures are not 

only mechanistically informative, but may possesses utility in monitoring 

immunotherapeutic intervention32.

A limitation in our past studies, as well as many other studies that have utilized cell-based 

assays, is the reliance on freshly isolated PBMCs. Despite utilizing PBMCs drawn from 

multiple healthy blood donors, we found that the plasma samples from a given subject 

cohort induced relatively homogenous profiles31 with modest donor cell-specific effects. 

Commercially available cryopreserved PBMCs are a relatively new option for cell-based 

assays. These cells are collected via aphaeresis from highly characterized blood donors, 

enabling the harvesting of billions of cells during a single draw. Rapid processing/

cryopreservation under optimized and controlled conditions results in high viability and 

retained functionality. In this report we extend our initial studies by using a cryopreserved 

PBMC of a single donor to 1) examine a larger cohort of pediatric RO T1D patients and 

unrelated HC, 2) study the development of the signature during the progression of T1D, and 

3) evaluate the disease-specificity of the technique by examining for the first time 

transcriptional signatures induced by plasma collected from patients with conditions 

characterized by pathologic pulmonary inflammation: cystic fibrosis (CF), bacterial 

pneumonia, and H1N1 influenza.

RESULTS

Cross-sectional analysis of RO T1D and unrelated HC samples

At diagnosis of T1D, an estimated 60–90% of β cell mass is either dysfunctional or 

destroyed. Upon initiation of insulin therapy 25–100% of new onset patients experience a 

transient remission with functional restoration of the residual mass, termed the “honeymoon 

period”, which lasts months to years34–37. This immunologically active time is clinically 
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significant because 1) it offers a window for therapeutic intervention aimed at preserving 

remaining β cell mass; and 2) as shown by our previous studies31, 33, it is a period where it is 

still possible to measure processes related to β cell autoimmunity. Therefore, our studies of 

plasma induced transcriptional signatures have primarily focused on the first 7 months post 

onset.

In order to reproduce and expand the observations of our initial report31, plasma drawn from 

47 RO T1D patients (mean age 9.97 ± 2.89 years, Supplemental Table 1) and 44 unrelated 

HC subjects (mean age 14.98 ± 4.13 years, Supplemental Table 1) were used to induce gene 

expression in commercially-supplied cryopreserved PBMC of a single draw of a single 

healthy blood donor (UPN727). All RO T1D subjects were positive for ≥1 autoantibody and 

to avoid inducing gene expression due to factors related to hyperglycemia, samples were 

collected after stabilization on exogenous insulin from subjects that exhibited histories of 

good glycemic control.

We identified 762 probe sets that were differentially regulated when UPN727 cells were co-

cultured with plasmas of the RO T1D or HC cohorts (|log2 ratio|>0.263, 1.2-fold; FDR<0.2; 

ANOVA p<0.036); these represented 622 unique UniGenes (Supplemental Table 2). The 

relationship of this dataset to those genes most significantly regulated following co-culture 

of plasma collected from 12 RO T1D and 12 HC subjects with fresh PBMCs from six 

healthy blood donors in our previous report31 (498 probe sets |log2 ratio|>0.5; FDR<0.2) is 

illustrated in Figure 1A. The Pearson correlation coefficient between the union of these two 

datasets is 0.59; however, if the analysis is restricted to the 63 common probe sets, the 

Pearson correlation coefficient is 0.93. Both principal component analysis (PCA; Figure 1B) 

and one-way hierarchical clustering (Figure 1C) using the 762 probes differentially 

expressed in UPN727 cells revealed heterogeneity within the RO T1D and HC cohorts. 

While the majority of individual samples within the two cohorts induced distinct signatures, 

a subset of samples did not, resulting in the overlap detected by both clustering methods.

Genes significantly over-expressed (n=186 probe sets) and under-expressed (n=576 probe 

sets) when UPN727 PBMCs were cultured with RO T1D or HC plasma were independently 

evaluated for biological pathway enrichment using DAVID to identify regulated Gene 

Ontology Biological Processes. Representative pathway terms appear in Table 1 (a complete 

list is provided in Supplemental Table 2) and selected probe sets are illustrated in Figure 1D. 

Ontological analysis of the 186 probe sets up-regulated by RO T1D plasma revealed 41 

significant Gene Ontology Biological Processes (p<0.01; FDR<0.10), including immune 

response, chemotaxis, positive regulation of cytokine production, cell surface receptor signal 

transduction, and regulation of IL-6 production. These categories included genes encoding 

immune signaling molecules and receptors including the IL-1 cytokine family members IL1, 

IL1RN, IL1R1, and IL1R2, the IL-10 family member IL24, and the chemokines CXCL1, 

CXCL2, CXCL3, and CXCL5, which are involved in neutrophil chemotaxis38. RO T1D 

plasma induced cyclooxygenase-2 or COX-2 (PTGS2) and prostaglandin E synthase 

(PTGES). Genes for several immune receptors were also significantly up-regulated by RO 

T1D plasma, including TLR2, FCAR, LILRA3, and TREM1.
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Ontological analysis of the 576 probe sets down-regulated by RO T1D plasma identified 27 

significant Gene Ontology Biological Processes (p<0.01; FDR<10%) that were functionally 

opposed to the terms enriched in the up-regulated subset, such as negative regulation of 

mononuclear cell proliferation, negative regulation of transcription, BMP signaling pathway, 

negative regulation of T cell proliferation (Table 2 and Supplemental Table 3). Relative to 

HC plasma, culture with RO T1D plasma led to the under-expression of genes such as 

KLF12, SKIL (a TGF-β-induced gene that negatively regulates TGF-β signaling), the histone 

deacetylase HDAC3, FOXP1 (a transcription factor that is important in maintaining immune 

quiescence), and ZEB2 (a human zinc finger transcription factor and transcriptional 

repressor that regulates T-cell activity). Overall, the RO T1D and HC profiles reflect 

inflammatory versus immune-regulatory processes, respectively, suggesting that RO T1D 

sera possesses higher levels of pro-inflammatory mediators such as IL-1 and lower levels of 

anti-inflammatory factors.

Finally, we employed ToppGene39, 40 to further explore the functional commonality in the 

originally reported response of multiple fresh PBMC to RO T1D and HC plasma compared 

to those of cryopreserved PBMC using the two datasets illustrated in Figure 1A. When we 

used the 498 probe sets differentially expressed in fresh cells as the training set, we detected 

431/762 (56.6%) significant (p<0.01) functionally related probe sets in cryopreserved cells. 

Overall, the cross-sectional analysis of the RO T1D and HC samples demonstrates that a 

pro-inflammatory signature is induced in cryopreserved PBMCs that is functionally 

concordant with that previously observed in fresh cells31.

Direct detection of inflammatory mediators in RO T1D and HC plasma samples

In a continuing effort to account for the induced signatures, cytokine levels were measured 

by multiplex ELISA in a subset of 17 RO T1D and 15 HC subjects examined in the 

expression studies (Table 2). Higher levels of several cytokines were detected in RO T1D 

plasma compared to HCs, including IL-1α, which is consistent with the induction of IL-1-

mediated gene expression. However, with the exception of TNFα (RO T1D: 9.3 ± 1.0 

pg/ml; HC: 6.5 ± 0.6 pg/ml; p<0.05), none of these differences reached statistical 

significance with the number of subjects analyzed. Furthermore, correlations between the 

intensity of the signature among individual samples (Figure 1B and 1C) and mediator levels, 

antibody levels, gender, age of onset, or time to post-onset sample collection could not be 

made.

Analysis of Long-Standing (LS) T1D and Pre-Diabetes

Using cryopreserved UPN727 PBMC as reporter cells, we analyzed sera of 11 LS T1D 

subjects, all of whom were >10 years post-onset; 10/11 possessed measurable titers for at 

least one islet cell auto-antibody. As reflected by PCA of the 762 probe sets differentially 

expressed in the cross-sectional RO T1D and HC samples (Figure 2A), LS T1D plasma 

induced transcription similar to that induced by HC plasma. Of the 762 probe sets 

differentially regulated between the RO T1D and HC cohorts, only 84 probe sets (11%) met 

our thresholds (|log2 ratio|>0.263, 1.2-fold; FDR<0.2) when comparing the LS T1D and HC 

groups. Consistent with our previous report31, the signature associated with RO T1D is not 

induced by samples collected from established T1D patients, supporting the hypothesis that 
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the inflammatory signature induced by RO T1D plasma arises from factors related to active 

autoimmune processes.

We also used cryopreserved UPN727 PBMC to evaluate longitudinal samples collected 

from a prospectively monitored sibling of a proband that progressed to T1D. This subject 

was diagnosed at the age of 21.7 years, and samples were collected at −5.3 years (auto-

antibody negative), −3.3 years (+1 auto-antibody), −2.4 years (+3 auto-antibodies), −1.5 

years (+3 auto-antibodies), −0.3 years (+3 auto-antibodies), and +0.3 years (+4 auto-

antibodies) relative to onset (Supplemental Table 1). The response of cryopreserved PBMCs 

to the plasma of this longitudinal series was analyzed from the perspective of probe sets 

regulated by RO T1D and HC plasma in the cross-sectional studies, and with Short Time-

Series Expression Miner (STEM), a software tool for the analysis of time-series gene 

expression data41.

Disease progression was evident in the PCA of the longitudinal plasma samples (Figure 2A). 

The relationship between the regulated genes identified in the cross-sectional analysis of RO 

T1D and HC samples (n=762 probe sets) compared to those identified by STEM analysis of 

this single longitudinal series (n=1,278 probe sets; STEM profiles with detection p <10−25 

and a minimum 1.68-fold change between any two time points) is illustrated in Figure 2B; 

the signatures share a significantly nonrandom (p<10−51, Χ2 test), commonly regulated 

intersection of 220 probe sets. The Pearson correlation coefficients (calculated using the RO 

T1D:HC log2 ratio for the cross-sectional samples and the last:first time point log2 ratio for 

the longitudinal series) for the union and intersection of these two datasets were 0.55 and 

0.78, respectively. The regulated probe sets uniquely regulated in the longitudinal and cross-

sectional analyses expectedly showed lower correlation, as 1) the inflammatory state 

measured at T1D onset differs from that at points earlier in disease progression, and 2) the 

signature of induced by samples prior to onset of T1D in the longitudinal analysis are 

distinct from the samples of unrelated HC examined in the cross-sectional analyses (Figure 

2B and Supplemental Table 2).

STEM was also employed to examine the profiles generated when these longitudinally 

collected plasma samples were previously used to induce transcription in healthy, freshly 

drawn PBMCs from a single donor31. Among the 2,319 probe sets differentially expressed 

between the analyses of the longitudinal series using fresh versus cryopreserved cells, we 

identified a shared, significantly nonrandom (p<10−57, Χ2 test), correlative (Pearson 

correlation coefficient = 0.63), commonly regulated intersection of 154 probe sets. We again 

employed ToppGene39, 40 to examine the functional similarity in the responses of fresh and 

cryopreserved PBMCs to plasma samples from the longitudinal series. Using the 1,195 

probe sets differentially expressed in fresh cells as the training set, we identified 885/1,278 

(69.3%) significant (p<0.01), functionally related probe sets among those regulated in 

cryopreserved cells.

As with fresh PBMCs31, we observed an increase in the robustness and complexity of the 

signature with disease progression (Figure 2C). Genes such as such as IL1A, IL24, IL10, 

IL1R1, and PTGS2 exhibited increased induction while others such as CCL24 and SKIL 

showed lower induction by samples collected closer to onset. Importantly, induction of 
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inflammatory genes was evident in the sample collected 5.3 years prior to onset, prior to 

autoantibody development, and overall the signature of all pre-onset samples was distinct 

from that of the mean response of the 44 unrelated healthy controls examined in the cross-

sectional analysis. Finally, we examined the mean absolute fold-change for probe sets in the 

2.5% tails of the log2 ratio distribution in the first and last samples of the series (the highest 

1,365 and lowest 1,365 expressed probe sets). We observed a difference of 0.72 ± 0.22 in 

the UPN727 cells (40% plasma) versus 0.67 ± 0.23 in fresh PBMCs from a single donor 

(20% plasma). The responsiveness of the cryopreserved UPN727 cells under these 

conditions were on a par with that of the fresh PBMCs originally used to examine this 

longitudinal series31. The longitudinal studies further highlight the functional concordance 

of the plasma-induced transcriptional signatures generated in fresh and cryopreserved 

PBMCs.

The T1D signature is distinct from signatures associated with CF colonized with Pa, 
bacterial pneumonia, and H1N1 influenza

Next, we focused on the specificity of the signature induced by T1D plasma by evaluating 

samples from other inflammatory conditions. Plasma samples from 20 non-diabetic, 

pediatric CF patients chronically colonized with Pa and 24 age-matched unrelated HCs were 

used to induce transcription in UPN727 cells at a culture concentration of 20% 

(Supplemental Table 1). A robust signature consisting of 5,000 differentially expressed 

probe sets (|log2 ratio|>0.263, 1.2-fold; FDR<0.2; 3,404 unique UniGenes) was distinct from 

that induced by RO T1D plasma (Figure 3, Supporting Information Table 2). Ontological 

analysis of the 2,139 probe sets up-regulated by CF plasma vs HC plasma revealed 101 

significantly enriched Gene Ontology Biological Processes (p<0.01; FDR<0.10); many of 

these annotations were related to immunological activation and T-cell/B-cell activation. CF 

sera induced transcription of INF regulatory factor 1 (IRF1), GIMAP1, GIMAP5, TLR10, 

IL32, CCL5, CD40, IKZF1, IKAROS family zinc finger 1 (IKZF1), IL15, and IL16. Analysis 

of the 2,861 probe sets down-regulated by CF plasma identified 238 significant Gene 

Ontology Biological Processes (p<0.01; FDR<10%). Many Biological Processes up-

regulated by T1D sera were found down regulated by CF sera (Table 1B). Accordingly, 

many IL-1 regulated genes annotated within these categories representing functions of 

immune recognition and response were found to be down regulated by CF sera, including 

PTGS2, CCL2, IRAK3, IL1B, and IL1R1 (Figure 3). Selected pathway terms appear in Table 

2B, and the complete list is provided in Supplemental Table 3.

We examined 10 previously healthy, pediatric bacterial pneumonia patients with confirmed 

bacterial infection who had been admitted to the intensive care unit; eight required 

mechanical ventilation. Of the four inflammatory diseases examined in this investigation, 

the plasma of these critically ill children (at a culture concentration of 20%) induced the 

most robust signature (relative to 18 HCs; n=8,121; pneumonia:HC |log2 ratio|>0.263; 

FDR<0.20; 4,410 up-regulated probe sets and 3,711 down-regulated probe sets; 5,650 

unique UniGenes; Supplemental Table 2). The transcriptional response of cryopreserved 

UN727 cells to sera collected from the bacterial pneumonia patients was distinct from that 

following exposure to T1D or CF sera. The ontological analysis was restricted to the 3,034 

probe sets that had pneumonia:HC |log2 ratio|>0.5 and FDR<0.20 (2,144 unique UniGenes). 
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Selected pathway terms appear in Table 1C; a complete list is provided in Supplemental 

Table 3.

Ontological analysis of the 1,515 probe sets up-regulated by plasma collected from bacterial 

pneumonia patients revealed 64 significant Gene Ontology Biological Processes (p<0.01; 

FDR<0.10), including cellular response to unfolded protein, cell cycle arrest, and positive 

regulation of T cell differentiation. Genes uniquely regulated by bacterial pneumonia patient 

plasma and annotated under these terms included DNA-damage-inducible transcript 3 

(DDIT3), selenoprotein S (SELS; involved in the endoplasmic reticulum stress response and 

mediating inflammation), and the p53 target genes Sestrin1 (SESN1), cullin 5 (CUL5; an 

inhibitor of cellular proliferation), tumor protein p53 inducible nuclear protein 1 

(TP53INP1), junction mediating and regulatory protein p53 cofactor (JMY), and others 

(Figure 3C). Ontological analysis of the down-regulated 1,519 probe sets identified 242 

significant Gene Ontology Biological Processes (p<0.01; FDR<0.10), many of which were 

related to immune response modulation, negative regulation of apoptosis, chemotaxis, and 

blood coagulation. Genes annotated within these pathways included pannexin 1 (PANX1; 

involved with IL1-β release), IL6R, CCL4, the endothelial protein C receptor (PROCR), 

protectin (CD59; a complement regulatory protein), coagulation factor V (F5), 

thrombomodulin (THBD), and others (Figure 3).

Lastly, samples collected from 5 middle-aged subjects (mean age 49.60 ± 2.07 years) before 

and during H1N1 infection were also analyzed. Analysis of cultures exposed to pre-H1N1 

versus symptomatic H1N1 plasma revealed a signature of 271 significantly regulated probe 

sets representing 182 unique UniGenes (255 over-expressed probe sets; 16 under-expressed 

probe sets; Figure 3; |log2 ratio|>0.5; paired t-test p<0.05). This signature was distinct from 

the signatures induced with plasma from RO T1D patients, CF patients colonized with Pa, 

and previously healthy patients with bacterial pneumonia. We used DAVID to identify 32 

significantly enriched annotations (p<0.01; FDR<10%). As anticipated, numerous 

Biological Processes typically viewed as host responses to infection or immune defense 

were induced by H1N1 plasma, including response to virus, defense response to virus, and 

regulation of α and γ INF production. Selected pathway terms are tabulated in Table 1D, and 

the complete list appears in Supplemental Table 3.

Notably, sera collected during H1N1 infection induced transcription of numerous IFN-

regulated genes, including INF-induced protein with tetratricopeptide repeats 1 (IFIT1), 

IFIT5, IFITM1, and IFITM3. Members of this gene family are induced in response to type I 

and type II INF, dsRNA, and endotoxin42, 43. Sera of H1N1-infected individuals induced 

expression of other IFN-regulated genes including IFI6 and MX1, and INF-stimulated 

exonuclease gene 20kDa (ISG20), which encodes an anti-viral ssRNA-specific exonuclease. 

Also induced by H1N1 sera were 2',5'-oligoadenylate synthetase 3 (OAS3) and OASL, which 

are INF-induced enzymes that bind dsRNA and polymerize ATP into 2'-5' linked oligomers 

of adenosine (pppA(2'p5'A)n). H1N1 sera also regulated numerous genes related to 

pathogen recognition, including TLR7 and TLR8, which recognize viral RNA. Interestingly, 

several genes differentially expressed in response to H1N1 sera also exhibited significant, 

opposite induction by T1D sera, including the transcription factor cAMP response element 
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modulator (CREM), IL1A, PTGS2, IL6, INHBA, and the nuclear receptor subfamily 4 group 

A member 2 (NR4A2).

Figure 3 illustrates the uniqueness of each inflammatory state and how the genes induced 

under the various conditions are regulated. Correlation coefficients between the signatures 

induced by each of the inflammatory states were calculated using the probe sets significantly 

regulated by each condition as well as the union of all significantly regulated probe sets of 

the four conditions (Table 3). The T1D signature was negatively correlated with the 

signatures of CF patients chronically colonized with Pa, bacterial pneumonia patients, and 

subjects with H1N1 influenza. The signatures associated with CF colonized with Pa 

compared to the bacterial pneumonia patients showed the highest, albeit modest, level of 

overall correlation (0.19), further demonstrating the disease-specificity of the approach.

DISCUSSION

Autoimmunity and β-cell destruction occur asymptomatically for months to years prior to 

onset of T1D, providing an excellent opportunity for early diagnosis and intervention. The 

evaluation of auto-antibody status in combination with HLA genotyping can reliably predict 

susceptibility to T1D44. However, auto-antibodies are thought to appear late during pre-

diabetes, their levels can be transient, and not all auto-antibody positive subjects progress to 

T1D onset45. Furthermore, the humoral response is considered secondary to the initiation of 

autoimmune processes and it is generally accepted that auto-antibodies are markers of β-cell 

destruction but may not directly mediate T1D development46–48. Thus, a need remains for 

the discovery and evaluation of minimally invasive biomarkers that are amenable to 

repeated measurement and capable of detecting early T1D in a mechanistically informative, 

disease-specific manner49.

A complex but dilute cytokine milieu is associated with T1D50–55. While these mediators 

are difficult to measure directly via present ELISA-based approaches, our studies have 

shown that they are sufficient to drive transcription in a reporter cell system31–33. To 

overcome the inherent limitations associated with cell-based assays that rely on freshly 

drawn responder PBMCs, we previously explored the use of lymphoid and myeloid cell 

lines as potential PBMC surrogates33. We found them able to differentially respond to RO 

T1D versus HC sera however the induced profiles of each cell line were distinct from one 

another and from fresh PBMC, and less biologically informative.

Here, we expanded the observations of our initial report31 using commercially supplied 

cryopreserved PBMCs from a single donor as the responder cell population. Such cells are 

collected in high numbers through aphaeresis and are rapidly processed to maximize post-

thaw viability. The use of these cells allows for control of HLA type, gender and immune 

reactivities, reduces data heterogeneity introduced by using responder PBMCs from multiple 

donors or draws of the same individual, eliminates the need of repeated recruitment of 

volunteer blood donors, and simplifies laboratory workflow by obviating the need for 

monocyte/lymphocyte isolation from whole blood for each assay. As a prelude to this study, 

we compared the response of cryopreserved PBMC drawn from 5 different donors to RO 

T1D and HC plasma (data not shown). While PBMCs of all the donors tested were able to 
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differentially respond to RO T1D and HC plasma, UPN727 PBMC were selected as they 

most closely mimicked the mean response of freshly isolated PBMC of multiple donors used 

previously and the highest number of cryopreserved cells were available31. We observed 

>90% post-thaw viability with UPN727 cells based upon trypan blue exclusion, and multi-

parameter flow cytometry has shown that the relative abundances of natural killer cells, 

CD8+ T cells, CD4+ T cells, B cells, and monocytes do not significantly differ from the 

normal expected ranges for fresh PBMCs (Supplemental Table 4).

When analyzing the transcription induced in UPN727 cells by plasma of 47 RO T1D and 44 

HC subjects we identified 762 significantly regulated probe sets. The analysis of these 

samples required multiple assays where good inter and intra assay reproducibility were 

observed. Specifically, in the duplicate analysis of 5 independent RO T1D and HC samples, 

we observed low mean intra-assay coefficients of variation (0.029±0.030 for the entire array 

and 0.034±0.036 for the 762 probe set RO T1D:HC signature). When analyzing the same 

sample in 5 independent assays we observed low mean inter-assay CVs (0.051±0.041 for the 

entire array and 0.095±0.062 for the 762 probe set RO T1D:HC signature). In these 

analyses, the intra and inter assay correlation coefficients for the 762 probe set RO T1D:HC 

signature was 0.94 and 0.71, respectively.

PCA and hierarchical clustering revealed heterogeneity within the RO T1D and HC cohorts 

(Figure 2). We attribute this to the possibility that greater inter-subject variability was 

captured in this analysis which possessed a larger number of subjects compared to our initial 

report31. Furthermore, some of the less distinct RO T1D signatures likely arose through 

post-onset resolution of the autoimmune response similar to that observed the LS T1D 

cohort. Ongoing studies with this bioassay show that resolution of the immune response 

occurs during the first year post-onset (data not shown).

In this study, using cryopreserved cells, we re-examined a single longitudinal series studied 

in our previous report31, confirming temporal changes in the inflammatory state preceding 

T1D onset. Furthermore, a concordant response was induced in the cryopreserved PBMCs 

(40% plasma) that exhibited an overall fold-change similar to that of freshly drawn PBMCs 

(20% plasma). The elimination of inter-individual heterogeneity is an advantage of 

longitudinal analyses compared to cross-sectional studies. This benefit is highlighted by the 

observation that, in general, for any regulated gene, the fold-change detected in the 

longitudinal study tended to be larger than that observed between cohorts in the cross-

sectional study. For example, at onset a >10-fold change in IL-6 and PTGS2 expression was 

observed in the longitudinal analysis versus a <2-fold mean change observed in the cross-

sectional study. The maximal individual fold-changes in IL-6 and PTGS2 relative to the 

mean HC response were 2.25-fold and 2.97-fold, respectively. Thus, a baseline sample 

collected before disease initiation is likely the best control sample for a given individual in 

the study of disease progression through T1D onset. Since significantly regulated genes 

identified in cross-sectional studies of samples collected at onset may not necessarily be the 

most informative early biomarkers of T1D, longitudinal studies of pre-onset samples are 

needed to identify the earliest indices of immunological activation and/or loss of immune 

regulation. The transcripts most consistently regulated from disease initiation through onset 

in most/all subjects will reflect the most common pathways associated with diabetogenesis 
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and will represent the most reliable biomarkers for predicting T1D onset. Biobanks and 

associated databases such as the TrialNet Natural History Study56 and The Environmental 

Determinants of Diabetes in the Young (TEDDY)57 will greatly facilitate such efforts. 

Importantly, our longitudinal analyses of progressors to T1D studies conducted thus far have 

identified differentially expressed genes not identified in cross-sectional studies, and vice 

versa, clearly indicating that both analysis strategies are necessary.

In our larger study sample, genes known to be influenced by IL-1 were again over-

represented in the transcriptional signatures of cells exposed to RO T1D plasma. These 

genes included IL1B, cyclooxygenase type 2 (PTGS2), prostaglandin E synthase (PTGES), 

IL-1R1, CXCL1, CXCL2, CXCL3, CXCL5, PLAUR, CREM, and others. This observation is, 

in general, consistent with the elevated plasma IL-1α levels detected in the RO T1D cohort 

by multiplex cytokine analysis (Table 2) as well as other functional genomics-based 

investigations of T1D that have implicated innate immunity and IL-1 in T1D 

pathogenesis58, 59. In addition to regulating T-cell activity, IL-1 promotes β-cell dysfunction 

through the mitogen-activated protein kinase and NFκB pathways, leading to endoplasmic 

reticulum and mitochondrial stress and cell death60–62. Blockade of the IL-1 receptor with 

IL-1RA can protect β cells from the downstream consequences of IL-1 exposure63. The 

clinical efficacy of blocking IL-1 action has been observed in many inflammatory diseases, 

including rheumatoid arthritis and Type 2 diabetes mellitus29, 64. Furthermore, genetic or 

pharmacological abrogation of IL-1 action has been reported to delay and/or reduce T1D 

incidence in rodent models32, 65, 66. These findings underlie the rationale for recent efforts to 

evaluate therapeutic targeting of IL-1 in T1D67–69, where we believe this approach may hold 

utility in monitoring such interventions and yielding additional insight.

Similar to studies that have identified disease-specific signatures from the transcriptomes of 

PBMC or immunocyte subpopulations, we find that plasma-induced transcription offers a 

mechanistically informative and disease-specific read out. Relative to T1D, the cytokine 

milieus associated with CF, bacterial pneumonia, and H1N1 drove distinct transcriptional 

programs. The innate, IL-1 related components of the T1D signature were oppositely 

regulated in these three inflammatory states and the overall signatures associated with these 

disorders negatively correlated with the T1D signature. While multiplex analysis of 

peripheral cytokines was not carried out in the samples from CF patients with chronic Pa 

colonization, bacterial pneumonia, or H1N1, the number of regulated transcripts and fold-

change in induced gene expression are consistent with these conditions being more robust 

inflammatory pathologies of larger tissues. It is important to note that although the genes 

differentially regulated among the other conditions have varying roles in pathologic 

pulmonary inflammation, as a group these genes participate in immune recognition and 

response, phagocytosis, and matrix degradation.

Overall, these studies validate the remarkable capacity of cryopreserved cells to serve as 

disease-specific biosensors that are capable of sensitively and comprehensively capturing 

the plasticity of the immune system and differentiating the diverse range of inflammatory 

processes that underlie human disease. Ongoing studies include analyses of our 

methodology to other auto-inflammatory disorders that are mechanistically more related to 
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T1D; we anticipate that these investigations will more rigorously test the disease-specificity 

of our approach within the context of autoimmunity.

MATERIALS AND METHODS

Subjects and subject characterization

T1D patients were recruited through the Diabetes Clinic at Children’s Hospital of Wisconsin 

and diabetes was defined according to World Health Organization criteria70. Samples of 

normoglycemic RO T1D patients (n=47; mean age 9.97 ± 2.89 years, mean glycosylated 

hemoglobin (HgA1c) fraction 7.47 ± 1.20%) were collected after stabilization on exogenous 

insulin 2–7 months after diagnosis. Samples from LS T1D patients (n=11; mean age 28.20 ± 

9.29 years, mean HgA1c fraction 7.91 ± 1.34%) were collected from well-controlled 

normoglycemic subjects that were ≥10 years post-onset. The recruitment criteria for 

unrelated Caucasian HCs (n=44; mean age 14.98 ± 4.13 years) included fasting blood 

glucose levels <100 mg/dl, no familial history of any autoimmune/autoinflammatory 

disorder, <25 years of age, and negativity for islet auto-antibodies at the 99th percentile71. 

All HC and T1D study subjects were free of known infection at the time of sample 

collection and had peripheral blood drawn aseptically and collected in acid citrate dextrose 

solution A or K+EDTA anti-coagulant at Children’s Hospital of Wisconsin by trained 

phlebotomists. Blood components were immediately separated by Ficoll-Histopaque (Sigma 

Aldrich, St. Louis, MO) density gradient centrifugation, and plasma was stored at −80 °C 

until use. GAD, IA2, IAA, and ZNT8 autoantibody titers were determined as described71. 

HLA-DQB1 genotyping in T1D and HC subjects was performed via direct sequencing of the 

second exon with the SeCore DQB1 Locus Sequencing Lit (Invitrogen Life Technologies, 

Grand Island, NY) per the manufacturer’s instructions. HLA-DQA1-DQB1 haplotypes were 

inferred using reported European Caucasian haplotype frequencies72. Subject characteristics 

are shown in Supplemental Table 1A.

The plasma of 20 pediatric CF patients (mean age 14.87 ± 5.54 years) and 24 age-matched, 

unrelated HCs (mean age 15.17 ± 5.25 years; Supplemental Table 1B) was aseptically 

collected in acid citrate dextrose solution A or K+EDTA anti-coagulant. The diagnosis of 

CF was documented in the medical record based on the results of the pilocarpine 

iontophoresis sweat test (sweat chloride ≥60 mEq/lL). Clinical serum marker levels and lung 

function measurements confirmed that the values were performed at baseline and not during 

a pulmonary exacerbation defined as a forced expired volume change of greater than 15% 

predicted. At the time of sample collection, all patients were screened to identify 

microbiological flora; all subjects harbored mucoid Pseudomonas aeruginosa (Pa), as Pa 

was cultured from sputum or oropharygneal swab for 6 consecutive months73, 74. All 

subjects were homozygous for the F508del CFTR mutation and were pancreatic insufficient, 

determined by stool elastase level, but none were diabetic (fasting blood glucose <120 mg/

dl). Subject characteristics appear in Supplemental Table 1B.

The plasma of 10 children (mean age 9.37 ± 6.72 years) with community-acquired 

pneumonia admitted to the Pediatric Intensive Care Unit at the Children’s Hospital of 

Wisconsin was aseptically collected in K+EDTA anticoagulant. Community-acquired 

pneumonia was defined using previously published guidelines75 and included: 1) acute 
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illness (<14 days of symptoms), 2) the presence of a new chest radiographic infiltrate or 

consolidation confirmed by a radiologist, and 3) clinical features compatible with 

pneumonia including one of the following three features: fever >37.8 °C, hypothermia <36 

°C, peripheral white blood count >10,000/µl or <4,500/µl or >15% immature neutrophils; 

plus two of the following three criteria: tachypnea (respiratory rate >2 standard deviations 

from the mean for age), dyspnea, or hypoxemia (pulse oximetry ≤94% on room air on initial 

evaluation without a known mixing heart lesion). Plasma was collected within 24 hours of 

admission to the Pediatric Intensive Care Unit and analyzed as described below. These 

children all had confirmed bacterial pneumonia; 8/10 required mechanical ventilation for 

acute respiratory failure. These subjects were compared to a cohort of unrelated HCs (mean 

age 12.92 ± 3.89 years). Subject characteristics are shown in Supplemental Table 1C.

We also examined plasma from five healthy middle-aged (mean age 49.60 ± 2.07 years), 

HLA-A2.1 blood donors. Samples were collected prior to influenza infection, and at the 

onset of flu-like symptoms, subjects were re-drawn and H1N1 status was ascertained by 

PCR-based testing of a nasal swab. The blood samples were collected as part of a protocol 

approved by the Institutional Review Board of the Blood Center of Wisconsin. The 

characteristics of these subjects appear in Supplemental Table 1D.

This study was approved by the Institutional Review Board of the Children’s Hospital of 

Wisconsin and informed consent was obtained from subjects or parents/legal guardians.

PBMC cultures and gene expression analysis

Commercial cryopreserved PBMCs from a Caucasian HLA-A2 male donor were thawed and 

washed per the manufacturer’s protocol (UPN727, Cellular Technology Ltd., Shaker 

Heights, OH). Gene expression was accomplished by culturing PBMCs at 37 °C in 5% CO2 

with either 20% or 40% of autologous, HC, RO T1D, LS T1D, longitudinal pre-T1D, CF, 

pneumonia, or H1N1 plasma. Cultures were prepared in a Costar 24-well plate (Corning) 

using 500,000 cells/well and in RPMI 1640 medium supplemented with 100 U/ml penicillin 

and 100 µg/ml streptomycin in a total volume of 500 µl. After culture (9 hours), total RNA 

was extracted using TRIzol reagent (Invitrogen Life Technologies). Using purified total 

RNA (100 ng), cRNA was synthesized and amplified/labeled using the Affymetrix Express 

Kit, then fragmented and hybridized to the GeneChip Human Genome U133 plus 2.0 array 

in accordance with the Affymetrix GeneChip expression analysis technical manual 

(Affymetrix, Santa Clara, CA). After hybridization, arrays were washed and stained with 

Affymetrix fluidics protocol FS450_0001 and scanned with a 7G Affymetrix GeneChip 

Scanner. Image data were analyzed with Affymetrix Expression Console™ 1.1.2 software 

and normalized with Robust Multichip Analysis (www.bioconductor.org) to determine 

signal log ratios.

The statistical significance of differential gene expression was determined though ANalysis 

Of VAriation (ANOVA) and false discovery rates (FDR) using Partek Genomics Suite 6.5. 

Hierarchical clustering was conducted with Genesis76. Pathway analysis was performed 

with the Database for Annotation, Visualization, and Integrated Discovery (DAVID)77, 78. 

Longitudinal samples collected from progressors to T1D were analyzed with Short Time-

series Expression Miner version 1.3.8 (STEM), software for the analysis of time-series gene 

Levy et al. Page 13

Genes Immun. Author manuscript; available in PMC 2014 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bioconductor.org


expression data (3-8 time points)41. Datasets were also analyzed with ToppGene39, 40, which 

prioritizes genes based on functional similarity using information on gene expression, 

protein domains and interactions, transcription-factor binding sites, miRNAs, ontologies, 

human disease, and mouse phenotypes, drug-gene associations, and literature co-citation. 

The data generated in this investigation are MIAME compliant79 and have been deposited in 

the NCBI Gene Expression Omnibus80, accessible through GEO Series accession numbers 

GSE35725 (T1D data), GSE35713 (CF data), GSE35716 (pneumonia data), and GSE35712 

(H1N1 data).

Direct detection of inflammatory mediators

Plasma from RO T1D and HC subjects were assayed with the BeadLyte cytokine assay kit 

(Millipore, Billerica, MA) per the manufacturer's protocol and a Bio-Plex Luminex 100 

XYP instrument. Concentrations for Eotaxin, GM-CSF, interferon (IFN) α2, IFNγ, IL-1α, 

IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, 

IL-17, IP-10, MCP-1, MIP-1a, MIP-1b, TNFα, and TNFβ were calculated with the Bio-Plex 

Manager 4.1 software; a 5-parameter curve-fitting algorithm was applied for standard curve 

calculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cross-sectional analysis of RO T1D patients identifies an inflammatory signature relative to 

unrelated HC subjects. (A) Venn diagram and one-way hierarchical clustering (probe sets 

only) for each component of the Venn diagram illustrate the relationship between the mean 

expression of probe sets regulated when fresh cells were previously cultured with plasma 

from 12 RO T1D and 12 HC subjects (498 probe sets |log2 ratio|>0.5; FDR<0.2) versus 

culturing UPN727 cells with plasma from 47 RO T1D and 44 HC subjects (n=762; (|log2 

ratio|>0.263, 1.2-fold; FDR<0.2; ANOVA p<0.036). (B) PCA using 762 differentially 
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regulated probe sets RO T1D vs HC) in cross-sectional studies. Green spheres, HCs; red 

spheres, RO T1D subjects. (C) One-way hierarchical clustering (probe sets only) of the RO 

T1D and HC expression profiles using the 762 regulated probe sets. (D) Relative expression 

levels of selected, well-annotated genes reflective of innate immune activity in RO T1D 

patients relative to HC subjects; additional well-annotated genes appear in Figure 3C. Fold 

of change is expressed relative to the mean of all samples.
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Figure 2. 
Analysis of T1D progression in Longitudinal Subject A. (A) PCA using the 762 probe sets 

regulated by RO T1D (n=47) vs HC (n=44) plasma identified in the cross-sectional studies (|

log2 ratio|>0.263; FDR<0.2). Green spheres, HC; red spheres, RO T1D; grey spheres, LS 

T1D (>10 years post-onset); blue cubes, Longitudinal Subject A series (lightest to darkest 

blue indicates sample order, −5.3, −3.3, −2.4, −1.5, −0.3, +0.3 years relative to onset, 

respectively). Arrow shows progression to RO T1D. (B) Venn diagram and one-way 

hierarchical clustering (probe sets only) for each component of the Venn diagram illustrate 
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the relationship between the probe sets identified in the STEM analysis of the Longitudinal 

Subject A series versus the cross-sectional analyses of the RO T1D and HC samples. The 

signatures share a significantly nonrandom (p<10−51, Χ2 test), commonly regulated 

intersection of 220 probe sets (Supplemental Table 2). Relative expression levels are shown 

for selected, well-annotated genes related to inflammatory processes that were significantly 

identified by the STEM analyses. Additional well-annotated genes are shown in Figure 3C.
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Figure 3. 
Distinctiveness of signatures associated with T1D, CF plus Pa colonization, and H1N1. (A) 

Venn diagram of the probe sets induced in UPN727 cells following exposure to the plasma 

from T1D patients (n=47) versus age-matched unrelated HCs (n=44; |log2 ratio|>0.263; 

FDR<0.20), CF patients harboring Pa (n=20) versus age-matched HCs (n=24; |log2 ratio|

>0.263; FDR<0.20), patients with bacterial pneumonia (n=10) versus HCs (n=18; |log2 ratio|

>0.5; FDR<0.20), and active versus pre-H1N1 infection (five subjects sampled during and 

before infection; |log2 ratio|>0.5; paired t-test p<0.05). (B) One-way hierarchical clustering 
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(probe sets only) was conducted for each component of the Venn diagram using mean 

expression values for each dataset. (C) Well-annotated, differentially expressed genes 

related to immunological activation, signal transduction, or transcriptional regulation.
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Table 1

Enrichment of gene ontology (GO) terms in differentially expressed probe sets.a

A. Probe sets regulated by RO T1D versus HC plasma

GO Identifierb Biological Process nc p value FDR (%)

↑ GO:0006955 Immune response 21 3.28E-7 5.40E-4

↑ GO:0006935 Chemotaxis 11 7.47E-7 1.22E-3

↑ GO:0001819 Positive regulation of cytokine production 7 1.10E-4 0.18

↑ GO:0009617 Response to bacterium 9 1.40E-4 0.23

↑ GO:0043405 Regulation of MAP kinase activity 7 1.08E-3 1.76

↑ GO:0007166 Cell surface receptor linked signal transduction 25 1.25E-3 2.03

↑ GO:0032680 Regulation of TNF production 4 2.29E-3 3.70

↑ GO:0032675 Regulation of IL-6 production 4 3.53E-3 5.64

↓ GO:0050672 Negative regulation of lymphocyte proliferation 6 1.31E-3 2.20

↓ GO:0016481 Negative regulation of transcription 24 1.75E-3 2.93

↓ GO:0030509 BMP signaling pathway 6 4.47E-3 7.34

↓ GO:0045892 Negative regulation of transcription, DNA-dependent 19 4.77E-3 7.81

↓ GO:0042130 Negative regulation of T cell Proliferation 5 4.92E-3 8.05

↓ GO:0016568 Chromatin modification 16 5.27E-3 8.60

B. Probe sets regulated by CF versus HC plasma

GO Identifierb Biological Process nc p value FDR (%)

↑ GO:0006955 Immune response 104 3.34E-12 6.06E-9

↑ GO:0042110 T cell activation 35 1.77E-10 3.22E-7

↑ GO:0002521 Leukocyte differentiation 34 2.83E-9 5.14E-6

↑ GO:0042113 B cell activation 17 3.33E-4 0.60

↓ GO:0009617 Response to bacterium 39 5.02E-8 9.30E-5

↓ GO:0001819 Positive regulation of cytokine production 24 9.46E-6 0.02

↓ GO:0043405 Regulation of MAP kinase activity 28 2.48E-4 0.45

↓ GO:0007166 Cell surface receptor linked signal transduction 25 1.25E-3 2.03

C. Probe sets regulated by bacterial pneumonia versus HC plasma.

GO Identifierb Biological Process nc p value FDR (%)

↑ GO:0006955 Immune response 74 6.72E-8 1.20E-4

↑ GO:0010942 Positive regulation of cell death 47 1.27E-4 0.23

↑ GO:0034620 Cellular response to unfolded protein 8 1.64E-4 0.29

↑ GO:0007050 Cell cycle arrest 16 1.36E-3 2.41

↑ GO:0045582 Positive regulation of T cell differentiation 8 2.64E-3 4.62

↓ GO:0043066 Negative regulation of apoptosis 55 3.18E-11 5.83E-8

↓ GO:0007596 Blood coagulation 22 2.26E-7 4.14E-4

↓ GO:0050715 Positive regulation of cytokine secretion 7 1.27E-3 2.31

D. Probe sets regulated by pre-H1N1 versus active H1N1 plasma

GO Identifierb Biological Process nc p value FDR (%)
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GO:0009615 Response to virus 24 3.91E-25 6.46E-22

GO:0051607 Defense response to virus 5 4.03E-05 6.64E-2

GO:0030330 DNA damage response, signal transduction by p53 class mediator 4 2.13E-3 3.45

GO:0032647 Regulation of interferon-α production 3 2.65E-3 4.29

GO:0032649 Regulation of interferon-γ production 4 3.22E-3 5.19

a
Analysis restricted to GO biological processes with ≥3 UniGenes were detected per category, p<0.01,and FDR<10%.

b
Arrow denotes up- or down-regulation. Due to the relatively low numbers of genes identified in the H1N1 studies, up- and down-regulated genes 

were not separated for analysis with DAVID.

c
Total probe sets detected.
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Table 2

Cytokine/chemokine levels in RO T1D (n=17) and unrelated HC (n=15) plasma samples.

Cytokine
RO T1D
(pg/ml)

Unrelated
HC

pg/ml
Fold

RO T1D/HC
Lower detection

limit (pg/ml)

Eotaxin 104.2 ± 10.3 79.8 ± 25.1 1.3 >3.2 pg/ml

Granulocyte/macrophage CSF 25.9 ± 9.1 7.90 ± 4.3 3.3 >3.2 pg/ml

Interferon-α2 73.9 ± 7.3 54.5 ± 7.2 1.4 >3.2 pg/ml

Interferon-γ 9.8 ± 4.7 5.5 ± 2.6 1.8 >3.2 pg/ml

IL-1a 59.8 ± 24.1 23.4 ± 11.0 2.6 >3.2 pg/ml

IL-1b 7.8 ± 2.4 6.4 ± 2.3 1.2 >3.2 pg/ml

IL-2 2.3 ± 1.2 0.8 ± 0.2 2.9 >3.2 pg/ml

IL-3 0.0 ± 0.0 0.2 ± 0.7 0.0 >3.2 pg/ml

IL-4 9.0 ± 4.0 2.1 ± 1.8 4.3 >3.2 pg/ml

IL-5 1.7 ± 0.6 0.5 ± 0.2 3.2 >3.2 pg/ml

IL-6 8.0 ± 2.9 6.2 ± 2.2 1.3 >3.2 pg/ml

IL-7 14.1 ± 2.7 10.0 ± 2.7 1.4 >3.2 pg/ml

IL-8 14.7 ± 3.4 15.4 ± 4.0 1.0 >3.2 pg/ml

IL-10 11.8 ± 2.9 11.6 ± 4.1 1.0 >3.2 pg/ml

IL-12p40 83.4 ± 22.85 58.9 ± 16.6 1.4 >3.2 pg/ml

IL-12p70 9.5 ± 6.7 1.6 ± 0.7 6.0 >3.2 pg/ml

IL-13 9.5 ± 4.7 9.5 ± 4.8 2.5 >3.2 pg/ml

IL-15 7.4 ± 2.2 7.5 ± 2.4 1.0 >3.2 pg/ml

IL-17 4.8 ± 1.6 6.8 ± 3.1 0.7 >3.2 pg/ml

IP-10 221.8 ± 26.2 242.8 ± 35.4 0.9 >3.2 pg/ml

Monocyte chemoattractant protein -1 252.8 ± 14.1 214.9 ± 22.3 1.2 >16.0 pg/ml

Macrophage inflammatory protein-1a 12.6 ± 4.0 13.0 ± 4.5 1.0 >16.0 pg/ml

Macrophage inflammatory protein-1b 27.2 ± 6.5 13.4 ± 5.3 2.0 >16.0 pg/ml

TNFa 9.3 ± 1.0 6.5 ± 0.6 1.4* >3.2 pg/ml

TNFb 30.6 ± 12.4 10.0 ± 4.5 3.1 >3.2 pg/ml

Data are means ± standard error (SE, pg/ml). Each sample was tested in duplicate using the Millipore BeadLyte cytokine assay kit.

*
p<0.05, two-tailed t-test.
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