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The recognition of the significance of atherosclerotic plaque biology and more specifically, 

inflammation in determining the propensity of plaque to rupture has led to efforts aimed at 

detecting vessel wall inflammation through molecular imaging 1. Given their high sensitivity 

and non-invasive nature, nuclear imaging modalities are particularly suitable for vascular 

molecular imaging. This is especially true when they are combined with CT or MRI to 

localize the target vessel. Following several reports on incidental observations of 18F-FDG 

uptake in large arteries on PET studies performed for cancer staging and other 

applications 2, a landmark study by Rudd et al more than a decade ago linked carotid 

artery 18F-FDG signal to symptomatic carotid artery disease 3. Since then a large number of 

studies have been performed to evaluate 18F-FDG PET as a tool for vessel wall 

characterization. To date, arterial 18F-FDG PET signal has been linked to age 4, gender 5, 

diabetes 6, metabolic syndrome 7, history of coronary artery disease 5, Framingham risk 

score 8, symptomatic carotid disease 3, 9, distal microembolization 10, atherosclerotic plaque 

structure and morphology 5, 11, 12, systemic inflammatory disease 13, and risk of future 

cardiovascular events, as reported by several groups of investigators, including Blomberg et 

al in an earlier issue of the journal 14, 15. The proposed applications of vascular 18F-FDG 

PET include retrospective identification of culprit lesions after transient ischemic attack 9, 

tracking the effect of therapeutic interventions on plaque biology 16–18 and cardiovascular 

risk stratification 14, 15.

While vascular 18F-FDG PET is promising, there are a number of biological and technical 

issues that need further clarification prior to its use as a reliable clinical diagnostic tool 

(Table 1). As a glucose homologue, 18F-FDG is trapped in the cell upon uptake via glucose 

transporters and irreversible phosphorylation. Thus, any glucose-dependent, metabolically 

active cell can retain 18F-FDG. While macrophages are believed to be a major contributor 

to 18F-FDG uptake in atherosclerosis, vascular smooth muscle cells and endothelial cells can 

also retain 18F-FDG 19. Macrophages are a heterogeneous population of cells with distinct 

roles in inflammation and there is debate on which subset of macrophages, e.g., pro-

inflammatory M1 or regulatory M2 macrophages, retains 18F-FDG the most 20, 21. Likewise, 
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the triggers of enhanced glucose metabolism by vascular cells in vivo remain to be fully 

identified, as pro-inflammatory cytokines as well as hypoxia can each promote 18F-FDG 

uptake by vascular cells in culture 19, 22, 23. Like for any other tracer, 18F-FDG signal is the 

product of both specific and non-specific uptake in the target tissue. In the case of arteries, 

enhanced endothelial permeability associated with inflammation and non-specific binding to 

atherosclerotic plaque components can contribute to tracer accumulation in the vessel 

wall 24. Given major differences in the composition of atherosclerotic and non-

atherosclerotic vessel wall, it seems unreasonable to assume that the data obtained and 

validated in atherosclerosis are directly extrapolatable to non-atherosclerotic arteries.

The interpretation of vascular 18F-FDG PET studies is complicated by the magnitude of 

partial volume and scatter effects, in part due to the small size of the vessel wall and its close 

proximity to blood. Other factors to consider include the imaging protocol (e.g., patient 

preparation and timing of imaging), quantification methodology, inherent variability of the 

results 25, and potential biological and mechanistic contributors to 18F-FDG uptake in the 

vessel wall. The importance of patient preparation, diet and blood glucose level is well-

recognized in cardiac 18F-FDG PET studies 26. Less is known about the effect of these 

variables on 18F-FDG uptake in the vessel wall, but it is prudent to consider them in 

interpreting vascular PET studies 27, 28. The optimal timing of imaging (between 60 to 180 

minutes after tracer administration) remains a subject of debate 29. In line with the 

conclusions of Blomberg et al published in an earlier issue of the Journal 15, many 

investigators (but not all) recommend delayed imaging (at 2 to 3 hours) to reduce residual 

blood pool activity 27, 29, 30. The importance of the quantification methodology which can 

potentially introduce major errors in the results cannot be neglected. Differences in this 

respect often preclude the extrapolation of the results from one study to another (Table 2).

In the absence of an in vivo “gold standard” for measuring inflammation, validation of 18F-

FDG PET as indicator of vessel wall inflammation would require tissue inflammation to be 

quantified ex vivo in surgical or post-mortem samples and correlated with 18F-FDG signal. 

A more stringent criterion would be the demonstration of a change in in vivo signal upon 

modulation of vessel wall inflammation. Given major differences in spatial resolution 

between imaging and histology, inaccuracy in co-registering these two techniques can 

potentially introduce considerable error in such validation studies. The same potential for 

error exists in correlating in vivo and ex vivo quantification of tracer uptake. 18F-FDG 

uptake in perivascular structures such as brown fat 31 further complicates the interpretation 

of PET studies. Similarly, a potential direct inhibitory effect of therapeutic interventions 

such as statins on glycolytic metabolism and 18F-FDG uptake by macrophages 19, which 

could reduce 18F-FDG signal independent of macrophage content of the vessel wall, is 

another reasonable possibility to consider.

The link between vessel wall inflammation and 18F-FDG signal on vascular PET studies has 

been investigated in a small number of preclinical and clinical studies (Table 3). On the 

surface, the results predominantly support a linkage. However, further inquiry into these 

studies brings up a number of questions. Rudd et al 3 attributed 18F-FDG signal to vessel 

wall inflammation based on ex vivo uptake of tritiated deoxyglucose in CD68 

(macrophage)-rich segments of three carotid endarterectomy samples 3. Ogawa et al 32 
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reported a correlation between aortic wall macrophage content and 18F-FDG accumulation 

assessed by gamma-well counting in atherosclerotic rabbits. The correlation between 

aortic 18F-FDG uptake and macrophage content in atherosclerotic rabbits was confirmed in 

other studies 33, 34. A clinical study in 17 human subjects linked 18F-FDG signal (expressed 

as target-to-background ratio, TBR) on PET images acquired at 3 hours and co-registered 

with separately-acquired CT or MR images, to CD68 content of endarterectomy samples 

obtained within a month of imaging studies 35. The authors noted a weaker correlation 

between SUVmean and CD68 staining, while they found no correlation between 18F-FDG 

signal and high sensitivity CRP in this study 35. The correlation between 18F-FDG signal 

and atherosclerotic plaque macrophage content was confirmed in a subset of these subjects 

(n=10) 12. Other investigators reported a correlation between 18F-FDG signal on PET 

images acquired within 30–45 minutes and CD68 staining of endarterectomy samples 36. 

Interestingly, in this study the authors noticed a better correlation in 18F-FDG signal 

between the two carotid arteries 36. Graebe at al37 reported a correlation between CD68 

mRNA expression in endarterectomy samples and 18F-FDG signal on PET images (acquired 

at 3 hours) performed 1 day prior to endarterectomy for symptomatic carotid disease. 

Another report from the same group of investigators found a modest correlation between 

CD68 mRNA expression and 18F-FDG signal in 17 patients in a similar setting 38. It is 

unclear if any of these 17 patients were included in their original cohort of subjects. 

Menezes at al 39 reported a modest correlation between SUVmax and CD68 immunostaining 

in endarterectomy samples obtained from 21 consecutive symptomatic or asymptomatic 

subjects who underwent 18F-FDG PET (acquired at 90 minutes) prior to endarterectomy. 

However, in multivariable regression analysis 18F-FDG signal was not identified as a 

predictor of CD68 expression. Also, while in this study there was a statistically significant 

10% difference between ipsi- and conra-lateral carotid artery SUVmax, the TBR was not 

different between the two carotids. In line with these findings, a multicenter trial of 18F-

FDG PET (acquired 90 minutes after tracer administration), performed within 2 weeks of 

atherectomy for peripheral arterial disease in 30 patients with claudication, found no 

correlation between 18F-FDG signal and plaque macrophage content40. A strong correlation 

between right and left superficial femoral artery TBR in this study raises the possibility that 

a systemic factor, such as blood pool activity, could have been the main determinant of 

vascular 18F-FDG signal.

The conflicting results of these studies, combined with their small size and methodological 

differences introduce some ambiguity regarding the biological basis of 18F-FDG signal in 

atherosclerotic arteries. While a few studies have linked 18F-FDG uptake to macrophage 

density in human carotid plaque, there is no such data regarding other vascular beds. 

Furthermore, even if inflammation were found to be unequivocally the main determinant 

of 18F-FDG uptake in atherosclerosis, the same could not be assumed regarding 18F-FDG 

signal in non-atherosclerotic arteries. The variability in relative uptake of 18F-FDG in 

different vascular beds is another potential confounding factor to be considered 5. There is 

no clear basis for assuming that 18F-FDG uptake in any specific arterial bed (beyond carotid 

and coronary arteries) should reflect the risk for future cardiovascular events better than 

other vascular beds. As the imaging protocol and quantification methodology vary widely 

between different studies, the most appropriate methodology may depend on the specific 
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question to be addressed 41. To focus on imaging vascular inflammation, it is prudent to rely 

on protocols that have established a link between 18F-FDG signal and tissue inflammation. 

Ultimately, one cannot equate unequivocally any 18F-FDG signal in blood vessels with 

vessel wall inflammation.

Like any good body of scientific work, these initial studies on vascular 18F-FDG PET have 

raised promise along with many questions. While it is appealing to assume a direct 

association between 18F-FDG signal and vascular inflammation, there is a need for further 

sound validation studies before the paradigm passes to dogma. The major promise of 

molecular imaging is in addressing some of the existing diagnostic gaps in the management 

of cardiovascular patients. Focusing imaging on assessing biology rather than anatomy 

and/or physiology can be transformative. Like any new concept or technology, the success 

of molecular imaging is dependent on carefully designed, sound studies. As imaging 

investigators and cardiovascular practitioners we stride for maintaining and reinforcing the 

high standards our field is grounded upon.
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Table 1

Unresolved issues in vascular 18F-FDG PET imaging

• Biological

– Relative contribution of various vascular cell types to the signal

– Triggers of vascular cell glucose metabolism

– Role of endothelial hyper-permeability

– Uptake in perivascular structures

– Non-specific binding to plaque components

– Influence of hyperglycemia

– Effect of therapeutic interventions on glucose metabolism

• Technical

– Histological validation

– Subject preparation

– Timing of imaging

– Co-registration methodology

– Quantification methodology

– Scatter and partial volume effect

• Uncertain basis

– Variable uptake in different vascular beds

– Uptake variability over time
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Table 2

Examples of quantification methodologies used in vascular 18F-FDG PET studies

• Accumulation rate (mean decay-corrected plaque 18F-FDG concentration divided by the integral of the decay-corrected input 
function, expressed in units of sec−1) 3

• SUV (decay-corrected tissue concentration in KBq per milliliter, divided by the injected dose per body weight in KBq per gram) 33

• SUVmean 38

• SUVmax for each plaque divided by the “average of the normal vessel wall values” 36

• TBR (plaque SUVmean divided by venous blood SUVmean) 35, 41

• TBR (mean of SUVmax measured at regular intervals divided by venous blood SUVmean) 12, 37, 40, 41

SUV: standardized uptake value, TBR: target-to-background ratio
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Table 3

Studies evaluating the link between 18F-FDG PET and vascular inflammation

Type of study Timing of analysis Quantification methodology Validation technique

Rudd et 
al 3

Clinical carotid (n=3) Ex vivo: descriptive Ex vivo 3H-deoxy glucose 
uptake detected by 
autoradiography in CD68-rich 
sections of carotid 
endarterectomy samples

Ogawa et 
al 32

Pre-clinical aorta (Rabbit) 4 hours Ex vivo: differential Uptake Ratio: 
(tissue activity/tissue weight)/(injected 
radiotracer activity/animal body 
weight)

Ex vivo gamma- well counting 
vs number of macrophages on 
histological sections

Tawakol et 
al 33

Pre-clinical aorta (Rabbit) 3 hours In vivo: SUV(mean?) (decay-corrected 
tissue concentration in KBq per 
milliliter, divided by the injected dose 
per body weight in KBq per gram)
Ex vivo: % injected dose/gram

In vivo imaging or ex vivo 
gamma-well counting vs % 
area of macrophage 
immunostaining on 
histological sections

Hyafil et 
al 34

Pre-clinical aorta (Rabbit) 3 hours In vivo: SUV mean In vivo imaging vs % area of 
macrophage immunostaining 
on histological sections

Tawakol et 
al 35

Clinical carotid (n=17) 3 hours In vivo: TBR (SUV mean divided by 
venous blood SUV mean)

In vivo imaging vs % area of 
macrophage immunostaining 
on histological sections

Figueroa 
et al 12

Clinical carotid (n=10 from 
a previous study)

1.5–3 hours In vivo: TBR (SUV max measured at 5 
mm intervals along the long axis of the 
carotid artery divided by venous blood 
SUV mean)

In vivo imaging vs % or total 
area of macrophage 
immunostaining on 
histological sections

Font et 
al 36

Clinical carotid (n=15) 30–45 minutes In vivo: SUVmax for each plaque 
divided by the “average of the normal 
vessel wall values”

In vivo imaging vs % area of 
macrophage immunostaining 
on histological sections

Graebe et 
al 37

Clinical carotid (n=10) 3 hours In vivo: TBR (mean SUVmax of the 
carotid artery divided by venous blood 
SUV mean) or SUV max

In vivo imaging vs CD68 
mRNA level

Menezes 
at al 39

Clinical carotid (n=21) 90 minutes In vivo: SUVmax In vivo imaging vs % area of 
macrophage immunostaining 
on histological sections

Myers et 
al 40

Multicenter clinical PAD 
(n=30)

90 minutes In vivo: mean of max TBR (mean of 
SUVmax divided by venous blood 
SUV mean)

In vivo imaging vs CD68 
immunoassay
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