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We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit
quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible
to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps.
Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when
the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic
superconducting circuit scenarios.

T
he simplest, most fundamental interaction of quantum light and quantum matter can be described by the
quantum Rabi model, consisting of the dipolar coupling of a two-level system with a single radiation mode1.
The Dicke model2 was later introduced to generalize this interaction to an ensemble of N two-level systems.

Typically, the coupling strength is small compared to the transition frequencies of the two-level system and the
radiation mode, leading to effective Jaynes-Cummings and Tavis-Cummings interactions, respectively, after
performing a rotating-wave approximation (RWA). This introduces a U(1) symmetry and integrability to the
model for any N3,4. Recently, analytical solutions for the generic quantum Rabi and Dicke models for N 5 3 were
found5,6. However, the general case for arbitrary N is still unsolved, while its direct study in a physical system
remains an outstanding challenge.

A variety of quantum platforms, such as cavity QED, trapped ions, and circuit QED, provides a natural
implementation of the Jaynes-Cummings and Tavis-Cummings models, due to the weak qubit-mode coupling
strength. When the latter is a fraction or comparable to the mode frequency, the model is said to be in the
ultrastrong coupling (USC) regime. Experimental evidence of this regime has been observed in the optical7 and
microwave domains8,9. Coupling strengths larger than the mode frequency mark the transition towards the
recently introduced deep-strong coupling (DSC) regime10. Signatures of the latter may be retrieved effectively
in different quantum systems11,12, but an experimental observation of the full quantum Rabi and Dicke models in
all parameter regimes has not yet been realized. In particular, the quantum simulation13 of the Dicke Hamiltonian
could outperform analytical and numerical methods, while enabling the simulation of engineered super-radiant
phase transitions14–16. Recently, technological improvements of controlled quantum platforms have increased the
interest in quantum simulations17–20. A digital approach to quantum simulations was put forward in Ref. 21. In
this sense, it has been analyzed how suitable versions of digital quantum simulators can be implemented with
available quantum platforms22–25. Standard digital quantum simulations focus on the efficient decomposition of
the quantum system dynamics in terms of elementary gates. In order to maximize the efficiency of the simulation,
one may analyze which is the decomposition of the dynamics in its largest realizable parts, and reduce the number
of elementary interactions in the simulation. This approach can be labeled as analog-digital quantum simulation
and corresponds to finding some terms in the simulated system that can be implemented in an analog way, e.g., to
employ a harmonic oscillator to simulate a bosonic field, while others will be carried out with a digital
decomposition.

In this article, we propose the analog-digital quantum simulation of the quantum Rabi and Dicke models in a
circuit QED setup, provided only with Jaynes-Cummings and Tavis-Cummings interactions, respectively. We
show how the rotating and counter-rotating contributions to the corresponding dynamics can be effectively
realized with digital techniques. By interleaved implementation of rotating and counter-rotating steps, the
dynamics of the quantum Rabi and Dicke models can be simulated for all parameter regimes with negligible
error. Lastly, we show how a relativistic Dirac dynamics can be retrieved in the limit where the mode frequency
cancels.
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Results
We start by considering a generic circuit QED setup consisting of a
charge-like qubit, e.g. a transmon qubit26, coupled to a microwave
resonator. The setup is well described by the Hamiltonian ( 5 1)27

H~vra{az
vq

2
szzg a{s{zasz

� �
, ð1Þ

where vr and vq are the resonator and qubit transition frequencies, g
is the resonator-qubit coupling strength, a{(a) is the creation(anni-
hilation) operator for the resonator mode, and s6 raise and lower
excitations on the qubit. The capacitive interaction in Eq. (1)
excludes excitations of the higher levels of the qubit device, because
typically the coupling g is much smaller than other transition fre-
quencies of the system. By trying to design setups with larger capa-
citive couplings, pushing them above dispersive regimes, one starts to
populate the higher levels of the transmons, producing unwanted
leakage. On the other hand, methods based on orthogonal drivings
of the qubits12,28 may increase the resonator population. Here, we
show that the dynamics of the quantum Rabi Hamiltonian

HR~vR
r a{az

vR
q

2
szzgRsx a{za

� �
ð2Þ

can be encoded in a superconducting setup provided with a Jaynes-
Cummings interaction, as in Eq. (1), using a digital expansion.

The quantum Rabi Hamiltonian in Eq. (2) can be decomposed
into two parts, HR 5 H1 1 H2, where

H1~
vR

r

2
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q
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,

H2~
vR

r

2
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v2
q
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,
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and we have defined the qubit transition frequency in the two steps
such that v1

q{v2
q~vR

q . These two interactions can be simulated in a
typical circuit QED device with fast control of the qubit transition
frequency. Starting from the qubit-resonator Hamiltonian in Eq. (1),
one can define a frame rotating at frequency ~v, in which the effective
interaction Hamiltonian becomes

~H~~Dra{az~Dqszzg a{s{zasz
� �

, ð4Þ

with ~Dr~ vr{~vð Þ and ~Dq~ vq{~v
� ��

2. Therefore, Eq. (4) is equi-
valent to H1, following a proper redefinition of the coefficients. The
counter-rotating term H2 can be simulated by applying a local qubit
rotation to ~H and a different detuning for the qubit transition fre-
quency,

e{ipsx=2 ~Heipsx=2~~Dra{a{~Dqszzg a{szzas{
� �

: ð5Þ

By choosing different qubit-resonator detuning for the two steps, ~D1
q

for the first one and ~D2
q for the rotated step, one is able to simulate the

quantum Rabi Hamiltonian, Eq. (2), via digital decomposition21, by
interleaving the simulated interactions. The frequency scheme of the
protocol is shown in Fig. 1. Standard resonant Jaynes-Cummings
interaction parts with different qubit transition frequencies are inter-
rupted by microwave pulses, in order to perform customary qubit
flips29. This sequence can be repeated according to the digital simu-
lation scheme to obtain a better approximation of the quantum Rabi
dynamics.

The simulated Rabi parameters can be obtained as a function of
the physical parameters of the setup by inverting the derivation pre-
sented above. In this way, one has that the simulated bosonic fre-
quency is related to the resonator detuning vR

r ~2~Dr , the two-level
transition frequency is related to the transmon frequency in the two
steps, vR

q ~~D1
q{

~D2
q, and the coupling to the resonator remains the

same, gR 5 g. Notice that even if the simulated two-level frequency
vR

q depends only on the frequency difference, large detunings ~D1 2ð Þ
q

will affect the total fidelity of the simulation. In fact, since the digital
error depends on the magnitude of individual commutators between
the different interaction steps, using larger detunings linearly
increases the latter, which results in fidelity loss of the simulation.
To minimize this loss, one can choose, for example, the transmon
frequency in the second step to be tuned to the rotating frame, such
that ~D2

q~0. Nevertheless, to avoid sweeping the qubit frequency
across the resonator frequency, one may choose larger detunings.
To estimate the loss of fidelity due to the digital approximation of
the simulated dynamics, we consider a protocol performed with
typical transmon qubit parameters26. We estimate a resonator fre-
quency of vr/2p 5 7.5 GHz, and a transmon-resonator coupling of
g/2p 5 100 MHz. The qubit frequency vq and the frequency of the
rotating frame ~v are varied to reach different parameter regimes.

To perform the simulation for the quantum Rabi model with
gR=2p~vR

q=2p~vR
r =2p~100 MHz, for example, one can set

v1
q=2p~7:55 GHz, v2

q=2p~7:45 GHz. In this way, one can define
an interaction picture rotating at ~v=2p~7:45 GHz to encode the
dynamics of the quantum Rabi model with minimal fidelity loss.
Considering that single-qubit rotations take approximately , 10 ns,
tens of Trotter steps could be comfortably performed within the
coherence time. Notice that, in performing the protocol, one has
to avoid populating the third level of the transmon qubit. Taking
into account transmon anharmonicities of about a 5 20.1, for
example, in this case one has third level transition frequencies of
6.795 GHz and 6.705 GHz. Therefore, given the large detuning with
the resonator, it will not be populated. Similarly, by choosing differ-
ent qubit detunings and rotating frames, one can simulate a variety
of parameter regimes, e.g. see Table I.

Discussion
In order to capture the physical realization of the simulation, we plot
in Fig. 2 the behavior of the transmon-resonator system during the
simulation protocol. We numerically integrate a master equation,
alternating steps of Jaynes-Cummings interaction with single-
qubit flip pulses. We consider _r~{i H,r½ �zkL að ÞrzCwL szð Þrz

C{L s{ð Þr, with Jaynes-Cummings terms ~H~~Dra{az~Dqszz

g a{s{zasz
� �

, alternated with qubit-flip operations Hf 5 f(t)sx,

where f(t) is a smooth function such that
ðTf

0
f tð Þdt~p=2, Tf being

the qubit bit-flip time. The quantum dynamics is affected by
Lindblad superoperators CwL(sz)r, C2L(s2)r, and kL(a)r mod-

Figure 1 | Frequency scheme of the stepwise implementation for the
quantum Rabi Hamiltonian. A transmon qubit of frequency vq is

interacting with a microwave resonator, whose transition frequency is vr.

The interactions H1,2 in Eq. (3) are simulated respectively with a Jaynes-

Cummings interaction (step 1), and another one with different detuning,

anticipated and followed by p pulses (step 2).
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elling qubit dephasing, qubit relaxation and resonator losses. We
have defined L(A)r 5 (2ArA{ 2 A{Ar 2 rA{A)/2. We set a res-
onator-qubit coupling of g/2p 5 80 MHz, and a frame rotating at the
qubit frequency, ~Dq~0, ~Dr=2p~40 MHz. We consider C2/2p 5

30 kHz, Cw/2p 5 60 kHz, and k/2p 5 100 kHz. The inset of Fig. 2
shows collapses and revivals of both the photon and spin dynamics,
which are typical signatures of the regimes of the quantum Rabi
dynamics dominated by the coupling strength. We consider pro-
totypical DSC dynamics, with vR

q ~0, and gR~vR
r . Notice that to

encode the dynamics corresponding to a certain simulated time t,
one needs the quantum simulator to run for a simulating time ~t, that
depends on the specific gate times of the experiment. We choose to
set the simulation at the time marked by the black arrow, close to the
photon population peak in the inset. A simulation with 15 digital
steps is then performed. The time for a single qubit flip pulse is set to
Tf 5 10 ns. Periodic collapses and revivals of the bosonic population
of the quantum Rabi model Æa{aæR are shown as a function of time, in
the inset. The ideal spin and bosonic populations ÆszæR and Æa{aæR,
evolving according to the quantum Rabi Hamiltonian, are shown to
be in good agreement with the simulated ones, Æszæ and Æa{aæ, at the
final simulated time. In fact, during the Jaynes-Cummings inter-
action parts, photons are pumped into the resonator. Afterwards,
before the photon population starts to decrease due to excitation
exchanges with the transmon qubit, a qubit flip further enhances
the photon production.

The simulation protocol can be performed for every time of the
dynamics, with the number of digital steps tuned to reach a satisfact-
ory simulation fidelity. We plot in Fig. 3 the fidelity F 5 jÆYSjYRæj2 as
a function of time of the simulated wavefunction YS, including res-

onator and spin degrees of freedom, versus the ideal oneYR, evolving
according to HR, as defined in Eq. (2). The fidelity is plotted for
different parameters and iteration steps. Increasing the number of
steps, the fidelity grows as expected from standard Suzuki-Lie-
Trotter expansions30. In principle, the whole protocol can accurately
access non-analytical regimes of these models, including USC and
DSC regimes.

By adding several transmon qubits to the architecture, the pre-
sented method can be extended to simulate the Dicke Hamiltonian

HD~vR
r a{az

XN

j~1

vR
q

2
sz

j z
XN

j~1

gRsx
j a{za
� �

: ð6Þ

This simulation can be efficiently implemented by means of collect-
ive qubit rotations. In fact, only collective Tavis-Cummings interac-
tions and global qubit rotations are involved. In this way, the total
time for the simulation does not scale with the size of the system N.
The Dicke model can be investigated provided enough coherence
and low-enough gate errors. Notice that this kind of quantum simu-
lation is well suited for superconducting circuits, since simultaneous
single-qubit addressing is possible. Making use of the results in Refs.
31, 32, we demonstrate that the quantum resources needed to
approximate the Dicke Hamiltonian with an error less than E scale
efficiently with the number of spins N and of excitations allowed in
the bosonic mode M. In a Dicke model simulation, one can bound
the number of gates NE necessary to achieve a certain error E in a time
t by

NEƒ

2:52k 2t vR
r MzN vR

q z2 gRj j
ffiffiffiffiffiffiffiffiffiffiffiffi
Mz1
p� �h in o1z1=2k

E1=2k
: ð7Þ

Here, we have used an upper bound for the norm of the Dicke

Hamiltonian, HRk kƒvR
r MzN vR

q z2 gR
�� �� ffiffiffiffiffiffiffiffiffiffiffiffiMz1
p� �

, where M is

a truncation on the number of bosonic excitations involved in the

Table I | Simulated quantum Rabi dynamics parameters versus fre-
quencies of the system. For all entries in the right column, the res-
onator frequency is fixed to vr/2p 5 7.5 GHz, and the coupling
gR/2p 5 100 MHz. Frequencies are shown up to a 2p factor

gR~vR
q=2~vR

r =2 ~v~7:4 GHz, v1
q{v2

q~200 MHz
gR~vR

q ~vR
r ~v~7:45 GHz, v1

q{v2
q~100 MHz

gR~2vR
q ~vR

r ~v~7:475 GHz, v1
q{v2

q~100 MHz

Figure 2 | A transmon qubit and microwave resonator simulating the
quantum Rabi Hamiltonian in the regime gR~vR

r , vR
q ~0. The ideal

dynamics, plotted in the inset, shows collapses and revivals of the photon

and qubit population. The latter are recovered via sequential qubit-

resonator interactions and qubit flips. The photon population is pumped

to the expected value at the time marked by the arrow. Note that the

simulating time ~t is different from the simulated time t.

Figure 3 | Time evolution of the fidelity F 5 | ÆYS | YRæ | 2 of state | YSæ
evolving according to the digitized protocol, to the ideal state | YRæ
evolving according to the quantum Rabi dynamics, with a)
gR~vR

r =2~vR
q=2, b) gR~vR

r ~vR
q , c) gR~2vR

r ~vR
q , and d)

gR~2vR
r ~1:5vR

q . The simulation is performed for different number n of

Trotter steps. Black curves in the insets show the overlap of the ideal

evolved state with the one at time t 5 0, | ÆYR |Y0æ | 2, initialized with a fully

excited qubit and the resonator in the vacuum state.
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dynamics. The fractal depth is set to k 5 1 in the standard Trotter
approximations. Using higher orders of fractal decompositions
would be a more involved task for implementation of digital approx-
imations in realistic devices, due to the sign inversion that appears30.
Nevertheless, unitary approximants with arbitrarily high fidelity can
be obtained even when k 5 1. The formula in Eq. (7) gives an upper
bound to the scaling of quantum resources and experimental errors
in a simulation involving several qubits. In fact, if one considers a
small error for each gate, the accumulated gate error grows linearly
with the number of gates.

Notice that the quantum dynamics of the Dirac Hamiltonian
emerges as a specific case of the quantum Rabi dynamics. For the
111 dimensional case the algebra of the Dirac spinors jYæ corre-
sponds to that of Pauli matrices, and the Dirac equation in the stand-
ard representation can be written

i
d
dt

Yj i~ mc2szzcpsx
� �

Yj i, ð8Þ

where m is the mass of the particle, c is the speed of light and p / (a
2 a{)/i is the one-dimensional momentum operator. The Dirac
Hamiltonian in Eq. (8), HD 5 mc2sz 1 cpsx, shows the same math-
ematical structure as the quantum Rabi Hamiltonian, Eq. (2), when
vR

r ~0. This condition can be achieved by choosing ~v~vr . The
analogy is complete by relating mc2 to vR

q=2, c to gR, and the
momentum to the quadrature of the microwave field, which can be
measured with current microwave technology33. Choosing an initial
state with components in both positive and negative parts of the
Dirac spectrum will allow the measurement of the Zitterbewegung34,35.
By retrieving different quadratures of the microwave field, one can
detect this oscillatory motion of the simulated particle in the absence
of forces, and the Klein paradox, where a relativistic particle can
tunnel through high-energy barriers. To detect such effects, one will
be interested in measuring either the position or the momentum of
the particle, standing for different quadratures of the microwave
field.

In conclusion, we have shown that the dynamics of the quantum
Rabi and Dicke models can be encoded in a circuit QED setup using
an analog-digital approach. These quantum simulations will contrib-
ute to the observation of quantum dynamics not accessible in current
experiments.
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