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Abstract
Hyperuricemia have been thought to be caused by the 
ingestion of large amounts of purines, and prevention 
or treatment of hyperuricemia has intended to prevent 
gout. Xanthine dehydrogenase/xanthine oxidase (XDH/
XO) is rate-limiting enzyme of uric acid generation, and 
allopurinol was developed as a uric acid (UA) genera-
tion inhibitor in the 1950s and has been routinely used 
for gout prevention since then. Serum UA levels are an 
important risk factor of disease progression for various 
diseases, including those related to lifestyle. Recently, 
other UA generation inhibitors such as febuxostat and 
topiroxostat were launched. The emergence of these 
novel medications has promoted new research in the 
field. Lifestyle-related diseases, such as metabolic syn-
drome or type 2 diabetes mellitus, often have a com-
mon pathological foundation. As such, hyperuricemia 
is often present among these patients. Many in vitro 
and animal studies have implicated inflammation and 
oxidative stress in UA metabolism and vascular injury 
because XDH/XO act as one of the major source of 
reactive oxygen species Many studies on UA levels 
and associated diseases implicate involvement of UA 
generation in disease onset and/or progression. Inter-
ventional studies for UA generation, not UA excretion 
revealed XDH/XO can be the therapeutic target for 

vascular injury and renal dysfunction. In this review, 
the relationship between UA metabolism and diabetic 
complications is highlighted.
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Core tip: Uric acid (UA) is derived from essential me-
tabolism, and UA metabolism is becoming a novel risk 
and interventional factor of lifestyle-related diseases 
in this obesity-prone era. The relationship between UA 
metabolism and diabetic complications is highlighted in 
this review and supposed molecular mechanisms are 
mentioned.
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URIC ACID METABOLISM
Gout, which is caused by increased serum uric acid (SUA) 
levels, is becoming one of  the most prevalent lifestyle-
related diseases. According to the National Livelihood 
Survey in Japan, 874000 people go to hospital for gout 
in 2004. This constitutes an increase of  3.4 times com-
pared with 1986. Higher prevalence of  metabolic syn-
drome (MetS) is one possible cause for this increase in 
gout cases, as both the reduced excretion and increased 
production of  UA have been suggested to be associated 
with MetS. Increased visceral adiposity also causes MetS. 
In mice, evidence exists that UA is secreted from bloated 
adipocytes[1]. No studies in humans have confirmed this 
finding yet.
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Uric acid (UA) (2,6,8-trihydroxypurine, C5H4N4O3) 
is a purine derivative. UA metabolism is a type of  nucleic 
acid metabolism metabolizing purine and its derivatives 
(adenine, and guanine). Phosphorus oxidation of  ad-
enine and guanine (resulting in ATP and GTP) and UA 
production are essential for many physiological func-
tions. For example, high fructose consumption cause 
hyperuricemia.

FACTORS THAT DEFINE SERUM URIC 
ACID LEVELS
SUA levels are determined by a balance between UA 
production and excretion. At present, no method for 
detecting the UA production rate is available in humans. 
Instead, UA production are indirectly speculated through 
SUA level and urine excretion. The rate-limiting step of  
UA production is an enzymatic reaction of  the xanthine 
dehydrogenase/xanthine oxidase (XDH/XO) enzyme 
that oxidizes hypoxanthine-xanthine into UA. Human 
XDH/XO was cloned in 1993 by Richard[2]. It is ex-
pressed in the liver and small intestine of  XDH/XO-rich 
parenchyma cells[3] and is thought to be the major source 
for SUA. The enzyme is also expressed in adipose tissue, 
the vascular endothelium, and macrophages, all of  which 
are implicated in lifestyle-related diseases[4]. The UA pro-
duction rate is based on the amount of  substrate and/or 
XO activity. Since the generation of  reactive oxygen spe-
cies (ROS) depends on XO activity, XO is one of  the 
major sources of  oxidative stress in cells along with nico-
tinamide adenine dinucleotide phosphate oxidase, myelo-
peroxidase, lipoxygenase, and nitric oxide synthase[5]. 

The kidney is an important regulator of  circulating 
UA levels and is responsible for 60%-70% of  total body 
UA excretion[6]. The remaining UA is secreted into the in-
testine, followed by bacterial uricolysis[6]. UA excretion in 
the kidney consists of  urate secretion and reabsorption, 
and earlier research suggests the involvement of  hyper-
filtration[7]. UA apical transporters [uric acid transporter 
1, organic anion transporter 4 (OAT4), OAT10, sodium-
coupled monocarboxylate transporters 1/2, and Na+-di-
carboxylate cotransporter (NaDC1)], which are expressed 
in the nephron lumen are implicated in the reabsorption 
process. The role of  basolateral transporters in proximal 
tubular cell is not clarified except for glucose transporter 
type 9 (GLUT9). During the secretion process, UA is 
transported into proximal tubular cells via OAT1/3 
and/or NaDC3 and then secreted by human uric acid 
transporter, Na+-phosphate cotransporter (NPT), ATP-
binding cassette sub-family G member 2 (ABCG2), and/
or ATP-binding cassette sub-family C member 4. Ninety 
percent of  UA filtered by the kidney is reabsorbed[6]. In 
the intestine, ABCG2 is responsible for about 50% of  
UA efflux[8-10].

There are many studies about genetic variations ex-
hibiting hyperuricemia. Among genes introduced above, 
variants of  GLUT9 (SLC2A9)[11,12], NPT (SLC17A1)[13], 

ABCG2 (BCRP) variant[14], are well established and 
proved to be important in hyperuricemia as a result of  
decreased extra-renal urate excretion. Genome-wide asso-
ciation study is applied for detecting loci affecting serum 
UA level. Recent report identified 18 new loci (18 new re-
gions in or near TRIM46, INHBB, SFMBT1, TMEM171, 
VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, 
ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, 
ACVR1B-ACVRL1 and B3GNT4) associated UA con-
centrations[15]. Not only transporters, but also transcrip-
tional factors, signaling receptors, enzymes are involved 
in serum UA level.

UA LEVELS IN TYPE 2 DIABETES 
MELLITUS AND METS
Table 1 shows association between life-style related dis-
eases and UA metabolism[16-24]. Distinguishing cause and 
effect is difficult; some diseases raise SUA level, but UA 
affect disease onset or progression.

In patients with diabetes, the SUA level is low due to 
increased urate clearance[20,25]. In these patients, hypouri-
cemia is associated with glycosuria[26], decreased metabolic 
control, hyperfiltration, and a late onset of  disease, while 
elevated SUA is a feature of  hyperinsulinemia or insulin 
resistance[7]. Type 2 diabetes mellitus (T2DM) is a risk fac-
tor for nephrolithiasis and has been associated with UA 
stones[27]. It has been suggested that patients with UA 
stones, especially if  overweight, should be screened for 
T2DM or MetS[28]. The rate of  obesity is increasing in Asia 
as well as in Western countries[29], and hyperuricemia will 
increase in patients with T2DM. Novel class of  anti-diabet-
ic agent, sodium glucose cotransporter 2 inhibitor lowers 
serum uric acid through alteration of  uric acid transport 
activity in renal tubule by increased glycosuria[21,30].

T2DM ONSET AND UA LEVELS
Besides age, race, family history of  diabetes, body mass 
index (BMI), glucose intolerance, and MetS, SUA levels 
have been suggested to be associated with T2DM risk[31]. 
If  elevated SUA levels play a causal role in T2DM, SUA 
might also indirectly affect the prevalence of  diabetic 
complications. The diabetogenic action of  UA was re-
ported in 1950[32]; however, its physiological mechanism 
is not yet known. SUA levels affect insulin resistance[19] 
and show a significant correlation with risk factors for 
MetS (high BMI, blood pressure, fasting plasma glucose, 
and triglyceride levels) and low HDL cholesterol val-
ues[19,31,33,34]. Moreover, high SUA levels were shown to 
predict MetS in a Japanese cohort[35]. We previously re-
ported an association between inflammation, macrophage 
activation, and SUA production via XDH/XO activation 
in an animal model[36]. In summary, a link between SUA 
and insulin resistance has repeatedly been shown, and UA 
itself  reportedly plays an important role in the exacerba-
tion of  insulin resistance[37]. 

Kushiyama A et al . Uric acid metabolism and diabetic complications

788 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com



DIABETIC COMPLICATIONS AND UA 
LEVELS
SUA independently predicted the development of  vas-
cular complications, both retinopathy and nephropahy 
and coronary artery calcification in type 1 diabetes study 
by Bjornstad et al[38]. The following section discusses the 
relationship between SUA levels and each diabetic com-
plication.

Neuropathy
Diabetic neuropathy is occasionally the initial manifesta-
tion of  disease in T2DM patients[39]. It leads to chronic 
pain, numbness, and substantial loss of  quality of  life. 
The prevalence of  diabetic peripheral neuropathy shows 
a significant correlation with increased UA levels[40]. 
Several studies demonstrated that, when controlled for 
confounding factors such as age, gender, BMI, renal 
function, and/or diabetic duration, SUA levels were high 
in patients with diabetic polyneuropathy and sudomotor 
dysfunction[41-43]. 

The pathophysiology of  diabetic neuropathy is not 
completely understood, and multiple metabolic imbal-
ances underlie the development of  diabetic neuropa-
thy[44]. Hyperglycemia, dyslipidemia, and cardiovascular 
dysfunction are all independent risk factors for neuropa-
thy. Probable etiologic factors include the polyol pathway, 
non-enzymatic glycation, free radicals, oxidative stress, 
and inflammation. Oxidative stress and inflammation are 
involved in XDH/XO activity. It is therefore speculated 
that UA generation by XDH/XO plays a role in diabetic 
neuropathy.

Diabetic retinopathy
The presence of  diabetic retinopathy (DR) is associated 
with visceral fat accumulation and insulin resistance in 
T2DM patients[45]. An earlier report found no significant 
difference in UA levels between patients with or without 
retinopathy[46], but several recent studies showed a sig-
nificant increase of  UA-related metabolites levels in DR 

compared to T2DM[47]. SUA concentration was shown 
to be associated with an increased severity of  DR over a 
three-year period in patients with T2DM. Cox regression 
analysis showed that patients with SUA levels in the third 
(5.9-6.9 mg/dL) and fourth (≥ 7.0 mg/dL) quartiles 
had increased hazard ratios for DR when compared with 
patients with SUA in the first quartile (< 4.9 mg/dL)[48]. 
Furthermore, vitreous UA and glucose concentrations 
were higher in proliferative than in non-proliferative DR. 
Focal UA production in the vitreous is thought to be in-
volved in the pathogenesis and progression of  DR[49]. 

Nephropathy
Shichiri et al[50] showed that glomerular hyperfiltration also 
occurs in non-insulin-dependent diabetes mellitus (NI-
DDM) and that it lowers SUA levels by increasing the re-
nal clearance of  urate during the hyperfiltration phase[50]. 
They suggested that hypouricemia can predict the future 
progression of  incipient nephropathy in NIDDM[50]. 
However, other reports have implied that high (and not 
low) SUA levels define the prognosis of  chronic kidney 
disease (CKD)[51]. SUA is also associated with known risk 
factors for kidney disease progression[52], including hyper-
tension[53], cardiovascular disease[54-56], and atherosclero-
sis[55]. SUA is an independent risk factor for CKD, even 
without diabetes[57].

SUA is known to be associated with disease pro-
gression in the early stage of  diabetic nephropathy[17,58]. 
We found that the progression of  renal dysfunction in 
patients with type 2 diabetic overt nephropathy with 
an SUA concentration of  ≥ 6.3 mg/dL carries a poor 
prognosis, even though their SUA range is considered 
high-normal[59]. Our data shows the association between 
UA and disease progression is independent of  diabetic 
control in multivariate analysis. Another report provided 
evidence for a clear dose-response relationship between 
SUA levels and early glomerular filtration rate (GFR) 
loss in patients with T1DM. The progression and regres-
sion of  urinary albumin excretion were not associated 
with UA levels[60]. These studies show that UA is an in-
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Table 1  Association between life-style related diseases and uric acid metabolism

Diseases/status SUA level UA production Focus 1 UA excresion Focus 2

T2DM High/low
   Glucosuria Low Up Glomerulus
   Insulin resistance High Down Proximal tubule cell
   Use of SGLT2 inhibitor Low Up
  Retinopathy Up Vitreus
MetS High Up Adipocyte/liver? Down Proximal tubule cell
CKD High Up Vascular endothelial cell/inflammatory cell Down/up Kidney/intestine
Hypertension High Up
Atherosclerosis Up Vascular endothelial cell/inflammatory cell
Reperfusion injury Up Vascular endothelial cell
Heart failure Up Inflammatory cell
Fructose intake High Up Liver Down
Sodium intake High Down
Thiazide administration High Down Proximal tubule cell

UA: Uric acid; SUA: Serum uric acid; T2DML: Type 2 diabetes mellitus; CKD: Chronic kidney disease; MetS: Metabolic syndrome.
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(especially exercise time until ST depression) when a high 
dose of  600 mg/d of  allopurinol was administered to pa-
tients with chronic stable angina[76]. Allopurinol treatment 
also protects the heart from ischemic reperfusion[77], and 
oxypurinol, an allopurinol derivative, improves the left 
ventricular ejection fraction (LVEF) in congestive heart 
failure patients with low LVEF[22]. Despite the numerous 
aforementioned studies, several studies have indicated 
that no association between UA and ischemic stroke[78] or 
heart disease[79] exists.

OXIDATIVE STRESS, ISCHEMIA/
REPERFUSION, AND VASCULAR 
ENDOTHELIAL XDH/XO
UA itself  reportedly functions as an anti-oxidant[80]. For 
example, XDH-null mutant Drosophila melanogaster 
have increased vulnerability to oxidative stress[81]. Uric 
acid administration improved endothelial function in the 
forearm vascular bed of  patients with type 1 diabetes and 
smokers[82]. However, UA synthesis is accompanied by 
the generation of  ROS.

XDH/XO in the vascular endothelium is associated 
with ischemia reperfusion injury. It has also been suggest-
ed that XO inhibitors improve endothelium-dependent 
vascular relaxation in blood vessels of  hyperlipidemic 
rabbits[83]. XO as the source of  ROS in ischemia/reper-
fusion injury has been discovered 30 years ago[84,85], and 
this injury is preventable with XO inhibitors[86]. XOR in-
hibition reverses endothelial dysfunction in heavy smok-
ers[87,88]. XO inhibitors have the potential to act as free 
radical scavengers. Febuxostat, however, does not have 
this activity but can improve organ changes induced by 
ischemia/reperfusion[23].

FAT DIFFERENTIATION, INSULIN 
RESISTANCE, AND XDH/XO IN FAT 
CELLS
Adipose tissue has a high xanthine oxidoreductase activ-
ity in mice[1], and UA is secreted from adipocytes. XDH/
XO is a novel regulator of  adipogenesis and peroxisome 
proliferator-activated receptor gamma (PPARγ) activity 
and is essential for the regulation of  fat accretion[89]. In 
addition, UA and adipose tissue XOR mRNAs are in-
creased in ob/ob mice, and fat mass is reduced by 50% 
in XOR-/- mice.

ATHEROSCLEROSIS AND XDH/XO IN 
MONOCYTES/MACROPHAGES
XDH/XO is localized to CD68 positive macrophages in 
the pathological state[36,90]. Inhibition of  XDH/XO in in-
flammatory mononuclear phagocytes inhibits the migra-
tion of  neutrophils during acute lung injury[91]. Through 
inhibition of  XDH/XO activity, cytokine-induced neu-

dependent risk factor for renal dysfunction, even after 
adjustments for confounding factors. Furthermore, even 
high-normal SUA levels accelerated renal dysfunction in 
T2DM patients[17,59-62].

UA is lowered in diabetes mellitus (DM) due to 
hyperfiltration[50], but decreased UA excretion during 
renal dysfunction raises SUA levels. Our previous study 
showed that UA levels in the patients who doubled Cr in 
the observation period (Cr doubling group) were higher 
than in the non-doubling group at the same estimated 
GFR (eGFR) level, suggesting that UA production was 
increased in the Cr doubling group[59]. These data suggest 
that higher levels of  UA production are involved in the 
pathophysiology of  nephropathy progression.

Several recent studies have been investigating ther-
apeutic interventions to delay nephropathy progres-
sion[63-65]. Allopurinol therapy significantly decreases SUA 
levels in hyperuricemic patients with mild to moderate 
CKD. Its use is safe and has been shown to help preserve 
kidney function when used for a duration of  12 mo[63]. 
Febuxostat has a higher renoprotective effect than al-
lopurinol, inhibits oxidative stress, has anti-atherogenic 
activity, reduces blood pressure, and decreases pulse wave 
velocity and left ventricular mass index, most likely due 
to a strong SUA lowering effect[65]. In an animal diabetic 
nephropathy model, allopurinol attenuated transforming 
growth factor-beta1-induced Smad pathway activation in 
tubular cells[66].

Diabetic foot
There are a few reports regarding the relationship be-
tween diabetic foot and UA levels. One study states that 
elevated UA levels are a significant and independent risk 
factor for diabetic foot ulcer in female Chinese patients 
with T2DM[67].

Macrovascular complication
A relationship between SUA levels and the development 
of  atherosclerotic disease has been suggested[68-70]. More-
over, there is epidemiological evidence of  an association 
between hyperuricemia and mortality in patients under-
going percutaneous coronary intervention or presenting 
with acute myocardial infarction[71-73]. Our study showed 
that SUA is an independent risk factor for vascular com-
plications, even when adjusted for several confounders, 
including eGFR[56].

Macroangiopathy includes stroke, peripheral artery 
disease, and ischemic heart disease. In stroke, SUA lev-
els are higher in patients with cardiac syndrome X, and 
elevated SUA levels are associated with carotid athero-
sclerosis[74]. A U-shaped relationship was shown for this 
correlation, as both the upper and bottom quintiles of  
SUA were associated with a higher risk of  fatal stroke[75]. 
Besides, our study, a link between peripheral artery dis-
ease and UA has been rarely reported[56]. 

Several interventional studies have proven the efficacy 
of  hyperuricemia treatments. A randomized controlled 
study showed that allopurinol prolongs exercise capacity 
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trophil chemoattractant secretion from mononuclear 
phagocytes is reduced, and small ubiquitin-like modifier 
of  PPARγ and hypoxia-inducible factor 1α levels are 
increased[92]. Febuxostat activates mitogen-activated pro-
tein kinase phosphatase-1 and inhibits inflammation by 
lipopolysaccharide stimulation through the inhibition of  
ROS generation[93]. Tungsten, acting as a xanthine oxidase 
inhibitor, prevents the development of  atherosclerosis in 
ApoE knockout mice fed a Western-type diet[94].

XDH/XO activity is also important for lipid accumu-
lation[36]. XDH/XO knockdown or allopurinol admin-
istration inhibited foam cell formation in macrophage 
J774.1 cells. The production of  inflammatory cytokines 
associated with foam cell formation was reduced by al-
lopurinol and febuxostat, and these medications also sig-
nificantly improved calcification and lipid accumulation 
in the aortic plaque of  ApoE-KO mice[36,95]. It should be 
noted that the expression of  XDH/XO and the deposi-
tion of  UA are seen in macrophages in arteriosclerotic 
lesions[96]. In vitro, febuxostat inhibited cholesterol crystal-
induced ROS formation[95].

Some reports describe XDH/XO as an endogenous 
regulator of  cyclooxygenase (Cox)-2[97] in the inflamma-
tory system, and XDH/XO is central to innate immune 
function[98]. XDH/XO is thought to be upstream of  
PPARγ in lipid retention[89] and also induces Cox-2 to 
induce inflammation, forming a potential feedback loop. 
In our study, administration of  allopurinol to J774.1 cells 
inhibited secretion of  inflammatory cytokines such as 
tumor necrosis factor α, interleukin (IL)-1β, and IL-6[36]. 
Gout-associated uric acid crystals activate the NALP3 
inflammasome[99]. UA crystals can injure organelle such as 
lysosomes, and damaged organelle selectively sequestered 
by autophagy[100]. If  mitochondria is damaged, autopha-
gosome is driven via microtubule to NLRP3 inflamma-
some[101]. Colchine treatment expresses the anti-inflam-
matory effect for gout by inhibiting microtubule-driven 
spatial arrangement, not by inhibiting UA crystallization. 
Therefore uric acid crystal in inflammatory cells of  ath-
erosclerosis lesion might activate inflammation, while 
solvent uric acid acts as antioxidant. Microtubule-driven 
spatial arrangement might be a possible target for dia-
betic complication derived from UA crystals. 

SIGNIFICANCE OF FUTURE UA 
METABOLISM RESEARCH FOR THE 
TREATMENT OF PATIENTS WITH 
DIABETES
XDH/XO has been studied for more than a century, 
and allopurinol has been used before enzyme inhibition 
therapy was established. In recent years, the various roles 
of  XDH/XO in diverse pathological conditions have 
been revealed using a wide variety of  research techniques, 
particularly in the field of  molecular biology. This prog-
ress in research is related to the global demand to target 
lifestyle-related diseases such as T2DM, coronary artery 

disease, CKD, and MetS. Novel research has also led to 
the development of  new powerful and safe UA lowering 
agent.

Obesity rates are increasing rapidly, and consequently, 
the pathophysiology of  T2DM will be increasingly cor-
related with fat accumulation, chronic inflammation, and 
oxidative stress. UA metabolism (involving XDH/XO) 
is thought to play a central role in the pathogenesis of  
these conditions. Hence, the need for novel research will 
increase in the future.

CONCLUSION
The incidence of  hyperuricemia has been on the increase 
since decades. The condition seems to be associated with 
increased insulin resistance and onset and progression of  
diabetic complications. UA might thus be suitable marker 
for both risk evaluation and intervention.
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