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Abstract

Modern information technologies enable organizations to capture large quantities of person-

specific data while providing routine services. Many organizations hope, or are legally required, to 

share such data for secondary purposes (e.g., validation of research findings) in a de-identified 

manner. In previous work, it was shown de-identification policy alternatives could be modeled on 

a lattice, which could be searched for policies that met a prespecified risk threshold (e.g., 

likelihood of re-identification). However, the search was limited in several ways. First, its 

definition of utility was syntactic - based on the level of the lattice - and not semantic - based on 

the actual changes induced in the resulting data. Second, the threshold may not be known in 

advance.

The goal of this work is to build the optimal set of policies that trade-off between privacy risk (R) 

and utility (U), which we refer to as a R-U frontier. To model this problem, we introduce a 

semantic definition of utility, based on information theory, that is compatible with the lattice 

representation of policies. To solve the problem, we initially build a set of policies that define a 

frontier. We then use a probability-guided heuristic to search the lattice for policies likely to 

update the frontier. To demonstrate the effectiveness of our approach, we perform an empirical 

analysis with the Adult dataset of the UCI Machine Learning Repository. We show that our 

approach can construct a frontier closer to optimal than competitive approaches by searching a 

smaller number of policies. In addition, we show that a frequently followed de-identification 

policy (i.e., the Safe Harbor standard of the HIPAA Privacy Rule) is suboptimal in comparison to 

the frontier discovered by our approach.
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1. Introduction

In the age of big data, organizations from a wide range of domains (e.g., finance, healthcare, 

homeland security, and social media) will accumulate a substantial quantity of detailed 

personal data [7, 25]. These large-scale resources will support the development of novel 

applications and refinement of innovative services. For instance, healthcare facilities are 

increasingly adopting electronic medical record systems and high-throughput genotyping 

technologies, which, in turn, have enabled the discovery of personalized treatment regimens 

[34]. At the same time, there are many pressures to publish person-level data to support 

information reuse and transparency (e.g., [3, 18, 46]) and adhere to federal requirements 

(e.g., [29]). While publication enables broad access, there are also concerns that it can 

violate personal privacy rights [5, 17, 31].

To mitigate privacy threats, various laws and regulations recommend that personal data be 

de-identified before dissemination (e.g., the EU Data Protection Directive [1] and the US 

Health Insurance Portability and Accountability Act (HIPAA) [45]). The concept of de-

identification is somewhat subjective [35], but is often tied to the notion of re-identification 

(oftentimes referred to as identity disclosure [21]) risk. While we recognize there are 

concerns that de-identified data may be re-identified [30], it remains a core principle of 

privacy regulation [41]. Technically, an organization may adopt various approaches to 

accomplish de-identification. In this research, we focus on the application of generalization, 

a common strategy in de-identification policies [12]. The application of such policies has a 

direct influence on the usability of the resulting data [32]. As a consequence, it is critical 

that the policy selected for de-identification appropriately balance the competing needs of 

minimizing risk (R) and maximizing utility (U).

As we recount in the following section, there have been several attempts to achieve this 

balance. The majority have focused on optimization in the context of anonymization (e.g., k-

anonymity [4]), but this is a more rigid formalism than de-identification [28]. 

Anonymization provides guarantees of protection for each record in a dataset, but de-

identification is often a rules-driven policy (e.g., “recode all ages over 90 as 90+”). As such, 

previous optimization approaches are not as flexible in their policy definitions. To the best 

of our knowledge, the only work that provides a data structure for such an optimization is 

the work in [6]. However, their work is limited in several crucial ways. First, it models data 

utility from a syntactic perspective (e.g., “How many ages are generalized?”) as opposed to 

a semantic perspective (e.g., “How does the generalization of age influence the distribution 

of patients?”). Second, it does not allow for a complete analysis of the tradeoff between 

privacy and utility. Rather, it assumes that a privacy risk threshold is known (or can be 
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computed) a priori, whereupon it then searches for alternative strategies with risk no greater 

than the threshold.

As we show in this work, the framework of [6] can be extended to overcome this limitation. 

To do so, we introduce a semantic utility function and model the de-identification policy 

search problem as a dual-objective optimization. Thus, our goal is to detect a set of policies 

that form an R-U frontier, which offers a collection of mutually exclusive de-identification 

policies. The visualization of such a frontier should provide intuition into the tradeoff 

between utility and risk for policy alternatives. While the space of possible policies is too 

large to perform a systematic exhaustive in practical time, we introduce an efficient strategy 

to navigate the policy space and construct an approximation of the frontier. More 

specifically, our work has three primary contributions:

• Problem formalization: We provide a rigorous definition of the de-identification 

policy frontier discovery (DPFD) problem. We show how this problem relates to a 

lattice of policies and measures for re-identification risk and data utility.

• Search Strategies: Based on the policy lattice, we develop a novel search strategy, 

guided by probability-based heuristics, that can construct an approximate frontier 

efficiently.

• Empirical Evaluation: We perform an empirical study on the Adult dataset and 

demonstrate that our approach is more effective than a competitive search strategy, 

in terms of the frontier discovered and time required to do so. Moreover, we 

illustrate how a common health data de-identification policy (i.e., HIPAA Safe 

Harbor) is suboptimal to the frontier discovered by our policy.

The remainder of this paper is organized as follows. In Section 2, we review related work in 

optimization strategies for data privacy, with a particular focus on anonymization and 

statistical disclosure control frameworks. In Section 3, we formalize the DPFD problem and 

several algorithms for solving the problem. In Section 4, we present an empirical evaluation 

of our search strategy. In Section 5, we discuss the contributions and limitations of this work 

and in Section 6 we offer several conclusions.

2. Related Work

In this section, we review frameworks and strategies for optimizing the search for 

anonymization and de-identification solutions. This topic is a portion of the broader issue of 

privacy-preserving data publishing, for which we direct readers to [15] for an excellent 

survey.

2.1 Search for Anonymization Solutions

Many variations of formal anonymization have been proposed, but the literature primarily 

focuses on optimization for the k-anonymity protection model [40]. In effect, k-

anonymization is a special case of de-identification and thus illustrates the complexity of our 

problem. k-anonymization dictates that each published record must be equivalent to k–1 

other published records. This technique is often applied to a quasi-identifier (QI), which is 

the set of attributes (e.g., date of birth and residential ZIP code) that link a record to a 
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resource containing explicit identifiers (e.g., personal name) [9]. QI attributes have 

traditionally been formalized as domain generalization hierarchies (DGHs) that can be 

systematically enumerated [39]. However, the search for the k-anonymous solution which 

minimizes the total quantity of generalization is an NP-hard problem [2, 27], which has led 

to a large and growing collection of search strategies [8]. Here, we review the most relevant 

to our work.

[39] introduced the concept of full-domain generalization in which all values of each 

attribute are generalized to the same level of the DGH. This paper also proposed greedy 

heuristics to generate k-anonymous solutions. [33] showed the generalization space maps to 

a partially ordered lattice and introduced a binary search method, which guarantees the 

solution is optimal according to a certain cost metric.

By relaxing the constraint of mapping the entire domain to the same level of the DGH, [19] 

defined the generalization solution space as all arbitrary partitions on the ordered set of 

values in a single attribute's domain (e.g., age 14 is reported as 10-15 while age 16 is 

reported as 16-30). Given that the size of the search space is exponential in the size of a QI's 

domain, exhaustive search strategies are impractical. Thus, [19] proposed a genetic 

algorithm, to perform a partial search of the generalization space. This work is also notable 

because it represents QIs and their generalization as bit-strings, a model we adopt in this 

paper. Since genetic algorithms do not provide a guarantee about the optimality of the 

solution and are often associated with long runtimes, [16] restructured the space of [19] to a 

tree and provided a systematic search algorithm using pruning and rearrangement to find an 

optimal k-anonymization in a practical amount of time. [23] further expanded the solution 

space to permit arbitrary partitioning of each attribute domain without forcing a total order 

on it. Based on this partitioning, they proposed a novel method to create a partition 

enumeration tree and search algorithms to efficiently discover the optimal anonymization 

solution.

In all the generalization strategies mentioned above, each attribute is generalized 

independently (i.e., a single-dimension attribute domain). Thus any specific value in each 

domain is generalized in the same way in every tuple of the dataset. [22] extended this 

model to a multi-dimensional space by generalizing values of tuples in the dataset. A greedy 

partitioning strategy was introduced to discover a k-anonymization solution. While flexible 

(e.g., females with age 14 are expressed as [female, 14] while males with age 14 are 

expressed as [male, 10-14]), the expansion of the search space provides more generalization 

options. As a result, the anonymized dataset can be confusing for users because the same 

value of a QI attribute can be mapped to different values in the same anonymized dataset.

2.2 Search for De-identification Solutions

As mentioned earlier, the work most closely related to ours is that of [6]. The space of 

possible solutions is modeled as the lattice introduced in [19]. However, the privacy goal is 

not k-anonymization. Instead, risk is modeled as the expected number of records likely to be 

re-identified under a certain policy (e.g., HIPAA Safe Harbor).
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The lattice is searched for policies that have risk no worse than the prespecified policy. The 

search process is accomplished through a bisecting search. Our work generalizes and 

extends this framework. A fundamental difference is that [6] searches for policies with 

minimum cost that satisfy the predefined risk, whereas in this paper the search is a dual-

objective optimization problem.

2.3 Frontiers and Data Privacy

The idea of frontier optimization for privacy protection derives from the Risk-Utility (or R-

U) confidentiality map [11] which was first used to assess different statistical disclosure 

control (SDC) methods based on the optimal tradeoff between risk and utility. [37] 

introduced a framework that maps SDC methods to an R-U confidentiality map to determine 

optimal parameterizations for such techniques. Based on this framework, [36] performed an 

empirical analysis of SDC methods for standard tabular outputs(e.g., swapping, rounding). 

[42] also adopted the R-U confidentiality map as an optimal criterion for data release. Given 

its roots in the statistical domain, the R-U confidentiality map was initially applied to 

protection strategies based on perturbation (e.g., randomization), as opposed to the 

generalization techniques more commonly found in de-identification.

In the context of data anonymization, the R-U confidentiality map is composed of a set of 

scattering points mapped from a generalization space instead of a simple curve in previous 

SDC applications. To explicitly represent the optimal solution curve in the R-U space, the 

concept of frontier is introduced to the R-U confidentiality framework [24]. It was 

demonstrated that k-anonymization can be framed as a dual-objective optimization in the R-

U space. [24] uses the algorithm in [22] to discover anonymization solutions to map to the 

R-U space. [26] adopted R-U confidentiality map to transaction data anonymization. [10] 

also framed k-anonymization as a dual-objective optimization problem. In their framework, 

the solution space is the lattice structure introduced by [19], which is searched using a 

genetic algorithm. This approach, however, has several limitations in comparison to the 

strategy we offer in this paper. In particular, the genetic algorithm is slow and is not clearly 

guided by the semantics (e.g., risk and utility) of its solutions. By contrast, our algorithm is a 

combination of systematic and stochastic search and uses several monotonicity cost 

properties on the lattice to prune large sections from consideration.

3. Methods

In this section, we present the de-identification policy frontier discovery (DPFD) problem. 

First, we define a policy search space, a mapping of the policy space to the R-U space, and 

the formalization of the search problem. Second, we introduce several search algorithms to 

systematically explore the policy space.

3.1 De-identification Policy

We assume the data to be published is organized in a table for which the explicit identifying 

attributes (e.g., personal name and Social Security number) have already been suppressed. 

The remaining attributes of the table constitute the QI and each tuple corresponds to a 
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distinct individual. To de-identify the data, the specific QI values will either i) remain in 

their specific state or ii) be recoded with more general, but semantically consistent, values.

Different generalization models induce different de-identification polices. In this work, we 

require a total order in the domain of each QI attribute and apply a full-subtree 

generalization model [22], which means that the values in a domain are mapped to a set of 

non-overlapping intervals. As such, a mapping function can be defined by the corresponding 

partition on the domain of a QI attribute.

Formally, a de-identification policy corresponds to the set of domain partitions (Definition 

3.1) for each QI attribute (Definition 3.2).

DEFINITION 3.1 (DOMAIN PARTITION). Let D be a totally ordered domain and p be a set of intervals on 

D: p = { I1, …, Il}, where l is the number of intervals. p is a partition on D if ∀i ≠ j, Ii ∩ Ij = 

Ø and .

DEFINITION 3.2 (DE-IDENTIFICATION POLICY). Let Q = {Q1, …, Qn} be a set of quasi-identifying attributes. 

Let us assume Di is the domain of Qi and pi is a partition on Di. The set {p1, …, pn} is a de-

identification policy.

Figure 1 provides an example of a de-identification policy. The set of QI attributes is {Age, 

Gender, ZIP} and the domains are {1, …, 10}, {male, female}, and {37201, …, 37229}, 

respectively. In this policy Age, Gender, and ZIP are mapped to the aggregated groups: 

[1-2], [3-6] and [7-10]; [female] and [male]; and [37201, …, 37228] and [37229], 

respectively. This policy is valid because the aggregated groups of values for each QI 

compose a partition of the corresponding domain. By contrast, a mapping of ages to [1 – 5] 

and [3 – 10] does not constitute a valid policy because the intervals overlap (i.e., 3, 4, or 5 

could be in either interval).

We use the full subtree generalization model because it offers several advantages over 

alternative models. First, as shown in [6], it enables representation of fine-grained policies, 

as well as common policies encountered in the real world (e.g., HIPAA Safe Harbor). 

Second, the set of policies can be structured as a lattice of generalizations which can be 

systematically searched. Third, it is straightforward to interpret how a policy changes the 

syntax of the data.

3.2 Policy Space Formalization

3.2.1 Policy Representation—In our model, policies are modeled as bit-strings. To 

characterize the translation, let n be the number of values in the domain of a QI attribute. 

After enforcing a total order on the values, they are mapped to a bit-string of size n – 1. The 

original domain is represented by a bit-string of 1's, whereas a bit of 0 indicates a 

demarcation in the partition has been removed to widen an interval1 (i.e., values have been 

generalized). For example, the bit-string for Age in Figure 1 is [0, 1, 0, 0, 0, 1, 0, 0, 0].

1The final value in the domain is implicit in the partition.
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A de-identification policy α is the concatenation of the bit-string for each QI attribute. In the 

remainder of this paper, we use the term de-identification policy to refer to both the actual 

policy and its bit-string representation when the meaning is unambiguous. For reference, we 

use α[i] to represent the value of the ith bit.

3.2.2 Partial Order of Policies—The policy space contains all possible bit-string 

permutations, which are partially ordered. We use ≺ to refer to the ordering on two policies 

as follows:

DEFINITION 3.3 (≺). Given policies α and β, we say α ≺ β if

By this definition, α is more general than β because we can derive β by making smaller 

intervals in the partition (i.e., flipping bits from 0 to 1). As an example, Figure 2 depicts 

three policies for Age. It can be seen that α is the same policy as γ without the demarcation 

between ages 4 and 5. Similarly, β removes the demarcation between ages 6 and 7. As such, 

β ≺ α ≺ γ and the de-identified data derived from 7 will be at least as specific as the data 

derived from α.

We define the Greatest Lower Bound (GLB) over the policy space as follows:

DEFINITION 3.4 (GREATEST LOWER BOUND (GLB)). Policy α is a GLB of policy β, if

In Figure 2, β is a GLB of α while a is a GLB of γ.

The most general policy (i.e., all 0's) and the most specific policy (i.e., all 1's), are referred 

to as top and bottom, respectively.

3.2.3 Policy Lattice—Based on the partial ordering, the policy space can be structured in 

a lattice. An example of such a lattice is depicted in Figure 3. The nodes in this lattice are 

composed of all bit-strings of length n. There is a directed edge from policy α to policy β, if, 

and only if, α is a GLB of β.

In preparation for our policy search algorithms, we define two types of subgraphs over the 

lattice: 1) chain and 2) sub-lattice. A chain (Definition 3.5) is a totally ordered subset in the 

lattice. A maximal chain is one that is not a proper subset of any other chain.

DEFINITION 3.5 (CHAIN). A sequence of policies C: α1 ≺ α2 ≺ ⋯ ≺ αn is a chain if, and only if 

∀i, αi is a GLB of αi+1. The chain is a maximal chain if and only if, α1 is top and αn is 

bottom.
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In Figure 3, the rectangular nodes (i.e., [0, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 

1, 1]) constitute a maximal chain.

A sublattice (Definition 3.6) is a subgraph i) bounded by an upper node and lower node on 

some chain and ii) contains every node in the set of all chains between them. Any two 

policies with a chain between them can define a sublattice.

DEFINITION 3.6 (SUBLATTICE). Given policies α and β, if α ≺ β, then the set {p∣α ≺ p ∧ p ≺ β} is a 

sublattice. This set is referred to as sublattice (α, β), where α and β are the upper and lower 

policies of the sublattice, respectively.

An example of a sublattice is shown in the oval nodes of Figure 3. Here sublattice([0, 0, 0, 

1], [1, 0, 1, 1]) defines the set {[0, 0, 0, 1], [0, 0, 1, 1], [1, 0, 0, 1], [1, 0, 1, 1]}.

3.3 Policy Frontier Search Problem

3.3.1 Risk and Utility Measurement—To map a policy to the R-U space, we assess its 

risk and utility with respect to the data under consideration for dissemination. To enable an 

efficient search, it is crucial to ensure the order of risk and utility scores are consistent with 

the natural partial order in the policy space. This notion is formalized through the following 

order homomorphisms:

DEFINITION 3.7 (RISK ORDER HOMOMORPHISM). Given a policy lattice S and a data table T, a risk 

function RT(α) satisfies a risk order homomorphism if ∀α, β ∈ S, α ≺ β → RT (α) ≤ RT (β).

DEFINITION 3.8 (UTILITY ORDER HOMOMORPHISM). Given policy lattice S and a data table T, an 

information loss function UT (α) satisfies a utility order homomorphism if ∀α, β ∈ S, α ≺ β 

→ UT(α) ≥ UT(β),

3.4 Policy Frontier

By applying risk and utility functions that satisfy their respective homomorphisms, each 

policy in the lattice is mapped into the R-U space to be searched for frontier policies.

To define a frontier, we introduce the notion of a strictly dominated relationship:

DEFINITION 3.9 (STRICTLY DOMINATED). Given policies α and β and a data table T, α is strictly 

dominated by β if

and

Informally, policy β strictly dominates policy α if both risk and utility values of β are no 

greater than the corresponding values of α and at least one value of β is strictly less that of 
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α. The dominated relationship defines a partial order in the R-U space. Based on this partial 

order, the frontier corresponds to the set of policies for which we have found no dominating 

policies:

DEFINITION 3.10 (FRONTIER). Given a policy lattice S, the frontier is the non-dominated set of 

policies {α∣α ∈ S ∧ ∄β (β ∈ S ∧ β strictly dominates α)}.

The goal of the de-identification policy frontier discovery (DPFD) problem is to find all 

frontier policies in a lattice.

3.5 Search Algorithms

The size of a typical policy lattice is too large for an exhaustive, systematic search. Thus, we 

developed two heuristic approaches: 1) Random Chain Search and 2) Heuristic Sublattice 

Search.

3.5.1 Random Chain—The first strategy is called the Random Chain Search (RCS) and is 

shown in Algorithm 1.

The process begins by assigning an arbitrary non-dominated set of policies in the lattice to 

the frontier, which is accomplished through InitializeFrontier()2. Next, we itera-tively select 

maximal random chains, via the selectRandom-Chain(), and update the frontier with policies 

on the chains. This process iterates until n policies have been searched. Updating the frontier 

is accomplished through the function updateFrontier(f, α), which attempts to revise the 

frontier f with each policy α in the chain. If the frontier does not contain policies that 

dominate α, it is inserted into the frontier. The frontier then drops all policies dominated by 

α. As an example of this function, consider Figure 4(a).

Algorithm 1 Random Chain Search (RCS)

Input: n, the maximum number of policies to estimate; L, the length of a policy; T, a dataset

Output: f, the frontier policies

1: i ← 0

2: f ← InitializeFrontier() {This function returns a non-dominated set of policies, including top and bottom.}

3: while i < n do

4:  c ← selectRandomChain() {This function begins at bottom. It iteratively selects a policy at random from the 
GLB, to which it proceeds until it reaches top. It returns all the policies selected.}

5:  for all α in c do

6:   f ← updateFrontier (f,α)

7:  end for

8:  i ← i + L {L is the number of policies on the chain}

9: end while

10: return f

2The initial frontier may affect the performance of the search; however, this issue is outside the scope of this paper.
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3.5.2 Sublattice Heuristic Search—The RCS algorithm is naïve in that it assumes all 

regions of the lattice are equally likely to update the frontier. However, this is not the case, 

and we suspect sublattices can be compared to the frontier to search more efficiently. 

Consider, given a frontier f, we can draw a stair-step curve in the R-U space that connects all 

policies on the frontier. An example of such a curve is depicted in Figures 4(a) and 4(b). It is 

clear that any policy mapped to the region above the curve will be dominated by at least one 

policy on the frontier. Additionally, any policy mapped to the region below the frontier will 

always update the frontier. Thus, this curve divides the R-U space into two regions: 1) 

dominated and 2) non-dominated.

Given sublattice(α, β), it can be proven that the risk and utility values of policies in the 

sublattice are bounded in a rectangle defined by the risk and utility values of policies α and 

β, which we call the bounding region. In other words, all policies in the sublattice will have 

risk in the range [RT(α), RT(β)] and utility in the range [UT(β), UT(α)].3 For example, in 

Figure 3, all policies in sublattice([0, 0, 0, 1], [1, 0, 1, 1]) are mapped to the rectangular area 

bounded by the R-U mapping of the top and bottom policies of the frontier in Figure 4(b).

To leverage this fact from a probabilistic perspective, we assume that the policies in a 

sublattice are uniformly distributed in the bounding rectangle. This implies the probability 

that a policy in a sublattice updates the frontier is the proportion of the lattice's bounding 

rectangle which falls below the curve of the frontier. Formally, imagine policies on the 

frontier f are mapped to a set of R-U points that are ordered increasingly by risk {(r0, u0), 

…, (rh, uh)}, where h is the number of polices on the frontier. Now, given sublattice(α, β), 

let us assume the policies α and β are mapped to points (rα, uα) and (rβ, uβ), respectively.

We compute the area of the bounding region as (rβ − rα × (uα − uβ). If we draw a line 

parallel to the y-axis at each point of the frontier in the R-U space, then the area of the non-

dominated region is composed of the resulting rectangles. More specifically, if ri < rα < ri+1 

and rj < rβ < rj+1, then the area of the non-dominated region is

Finally, the probability that a policy in the sublattice can update the frontier is computed as:

(1)

For example, in Figure 4(b), the probability that any policy in sublattice([0, 0, 0, 1], [1, 0, 1, 

1]) can update the frontier is the ratio between the area below the step curve in the rectangle 

(non-dominated region) and the entire rectangle (bounding region).

3A proof sketch for this claim is as follows. Any policy γ in sublattice(α, β) satisfies α ≺ γ ≺ β and RT(α) and UT(α) satisfies the 
order homomorphisms. Thus, RT(α) ≤ RT(γ) ≤ RT(β) and UT(α) ≥ UT(γ) ≥ UT(β).
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Based on this observation, we introduce a second search algorithm called the Sublattice 

Heuristic Search (SHS). The steps of the process are shown in Algorithm 2, which we 

describe here.

As in RCS, this algorithm begins with a call to intial-izeFrontier(), which instantiates the 

frontier f as a non-dominated policy set. Next, the algorithm instantiates a list to maintain 

memory of which policies (or sections of the lattice) have been pruned due to dominance by 

the frontier. At this point, the algorithm iteratively selects a sublattice (details in the 

Appendix) and tailors its process depending on the following conditions:

• Condition 1: If the entire bounding region of a sub-lattice is in the dominated 

region of the frontier, the sublattice is pruned.

• Condition 2: If the entire bounding region of a sub-lattice is in the non-dominated 

region of the frontier, we search a random maximal chain of the sublattice. Though 

any of the policies in the sublattice can improve the current frontier, they may 

dominate one another. Moreover, the entire sublattice can contain a substantial 

number of policies, which would make a complete search infeasible. By contrast, a 

maximal chain is the maximal set of policies in the sublattice that can be 

guaranteed to be on the new frontier.

• Condition 3: If neither of the previous conditions are satisfied, we use the update 

probability to determine if the sublattice is worth further searching. Specifically, if 

the update probability is greater than a threshold, we search a maximal chain of the 

sublattice, selected at random. Otherwise, no search is initiated.

Algorithm 2 Sublattice Heuristic Search (SHS)

Input: n, the maximal number of policies to assess; TH, the threshold for searching a sublattice; L, the length of a 
policy; T, a dataset

Output: f, list of frontier policies of the searched policies

1: i ← 0

2: f ← initializeFrontier()

3: prunedlist ← ∅

4: while i < n do

5:  sublattice ← generateRandomSublattice (prunedlist)

6:  p ←H(sublattice,f){Equation 1}

7:  if p ≥ TH then

8:   c ← selectRandomChain(sublattice)

9:   for all α in c do

10:    f ← updateFrontier(f,α)

11:   end for

12:   i ← i + length(c)

13:  else

14:   if p = 0 then

15:    prunedlist.append(sublattice)

16:   end if

17:   i ← i + 2
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18:  end if

19: end while

20: return f

4. Experiments

4.1 Evaluation Framework

4.1.1 Real World Policy: HIPAA Safe Harbor—To perform a comparison with an 

existing rules-based de-identification policy, we compare our frontier to the Safe Harbor 

policy of the HIPAA Privacy Rule. This policy enumerates eighteen specific attributes that 

must be generalized or suppressed from a dataset before it is considered de-identified. Of 

importance to this study, we focus on Safe Harbor's perspective of demographics. For such 

features, it states that 1) all ZIP codes must be rolled back to their initial three characters and 

that codes with populations of less than 20,000 individuals must be grouped into a single 

code and 2) all ages over 90 must be recoded as a single group of 90+. Safe Harbor does not 

prevent the dissemination of gender or ethnicity, but we include these features because they 

are common demographics, which could be generalized in favor of age and geocodes [13].

4.1.2 Evaluation Dataset—For evaluation, we use the Adult dataset from the UCI 

Machine Learning Repository [14]. This dataset consists of 32,561 tuples without missing 

values. There are fourteen fields included in this dataset, but many (e.g., occupation) are 

related to economic analysis and are not considered for comparison with Safe Harbor or 

other de-identification policies. Thus, we use the demographics {Age, Gender, Race} as the 

QI attributes.

To enable a comparison with Safe Harbor, we synthesize and append an additional attribute, 

which corresponds to 5-digit ZIP codes. To do so, we combine the available demographics 

data from Adult with demographic information obtained from the US Census Bureau's 2000 

Census Tables PCT12A-G [44] to provide each tuple with a valid Tennessee 5-digit ZIP 

code. Additionally, since the Age field in Adult appears to have aggregated all ages 90 and 

above to be [90+], we use the 2000 Census Tables to disaggregate these ages into years 90 

through 120. This disaggregation affects 43 tuples.

4.1.3 Risk Computation—To compute risk, we adopt the disclosure measure in [6], 

which is based on the distinguishability metric proposed by [43]. This measure assumes a 

tuple in the generalized dataset contributes an amount of risk inversely proportional to the 

size of the population group that matches its QI values. Again, the population information is 

based on the PCT12A-G Census tables.

For example, imagine a record in the Adult dataset is [39, male, white, 37203]. This record 

is unique in the dataset, but the census tables show there are 5 people in the region with the 

same demographics. As a result, this record contributes a risk of 0.2. Further details on this 

risk computation can be found in [6].

The disclosure risk of the entire generalized dataset corresponds to the sum of the risk of 

each record. To ensure the risk score for a dataset is normalized between [0, 1], we divide 
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this sum by the risk value for the original dataset. This dataset has no generalization and 

constitutes the maximum risk for all policies in the lattice. Given a dataset D, a population 

P, the formal definition of the risk for generalized dataset D′ is:

(2)

(3)

where g(d′) is the size of the population group in P with th e set of quasi-identifiers of record 

d ∈ D′. [6] demonstrated this risk measurement satisfies the order homomorphism.

4.1.4 Utility Computation—To compute utility we use an information loss measure. In 

particular, we use KL-divergence to measure the loss incurred by a generalized dataset with 

respect to its original form. This measure satisfies the order homomorphism constraint.4 

Formally, the KL-divergence is computed as:

(4)

where P(i) and Q(i) are the probability distributions of the quasi-identifying values in the 

original and de-identified datasets, respectively.

While P(i) is computed from the frequency of quasi-identifying values in the original 

dataset, Q(i) is an approximation. Specifically, Q(i) is based on the assumption that if 

several values are generalized to a single group, then the corresponding records are 

uniformly distributed across the group. For example, imagine the quasi-identifier set is 

{Age, Gender} and there is a record in the generalized dataset [Age = [1-2], Gender = [male, 

female]] with a frequency of m. Then, each possible value (i.e., [1, male], [1, female], [2, 

male], and [2, female]) is assigned a frequency of m/4. Following [20], we use the standard 

convention that ln 0 = 0. Based on this definition, the information loss measure is in the 

range of [0, 1] and there is no need for normalization.

4.2 Results

4.2.1 Efficiency of the Search Strategies—To conduct experiments on efficiency, we 

provide a search budget of 14,780 total policies to search. This value represents 20 maximal 

chain searches (i.e., the policy lattice is composed of 739 levels).

First, we evaluated the efficiency of the search algorithms. We assessed the progress of the 

algorithms over 20 complete runs. There is minimal variance in actual time to completion 

4The proof of this homomorphism is withheld due to space constraints.
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between the algorithms, but a significant difference in how quickly the algorithms converge 

a high-quality frontiers.

To illustrate this finding, we established checkpoints during the runtime of the experiments. 

At each checkpoint (e.g., every 100 policies examined), the current average area under the 

frontier was determined (i.e., smaller areas illustrate better frontiers). The result (mean and 

the standard deviation) of this evaluation is depicted in Figure 5. The result shows that the 

SHS method dominates the RCS. In particular, after computing 100 policies, the average 

result of the sublattice search is 28% better than the average result of the random chain 

search. This result indicates that the SHS method is particularly efficient when a quick 

solution is needed.

Next, we evaluated the effect of the sublattice heuristic (i.e., area under the frontier) upon 

searching. In this experiment, we initialized the frontier to a random maximal chain and 

subsequently generated 24240 random sublattices. For each sublattice, we applied H() to 

predict the probability that searching a random chain through the sublattice yields frontier 

updates. We then picked a random chain and computed the empirical probability E() of a 

policy in a random chain in the sublattice updating the frontier in terms of the ratio of the 

number of policies that actually updated the frontier and the total number of policies in the 

searched chain. Finally, we analyze the correlation between the predicted probability H() 

and the empirical probability E().

We first run a linear regression over the aggregated set of H() and E() values. In particular, 

we partition the sublat-tices into 10 groups based on the value of H() (e.g., lattices with H() 

∈ [0, 0.1] are placed in the first group). The representative H() value of each group is 

assigned to the upper bound of the interval. For the set of lattices in each group, the average 

and confidence interval of the ratio of number of policies that update the frontier to the total 

number of policies are computed. The results are depicted in Figure 6, where the mean of 

the actual update ratio clearly increases with the predicted frontier probability. This result 

suggests that the driving intuition behind the SHS heuristic was reasonable with respect to 

the Adult dataset.

To further demonstrate the relationship between the probabilities H() and E(), we ran a 

linear regression and a correlation test on the set of values. The Pearson's product-moment 

correlation coefficient of H() and E() is 0.8643536, with a p-value of 2.2 × 10−16. This result 

indicates that the actual probability a policy in the path of a sublattice will improve the 

current frontier is positively correlated with the estimated probability based on our heuristic.

4.2.2 Quality of Frontier Policies—Next, we evaluated the quality of search results. 

The results in the previous experiments indicated that SHS is a superior search strategy to 

RCS, so we continue our evaluation using only SHS.

For illustration, Figure 7 shows the policies the SHS algorithm visit and the frontier 

constructed. Again, the algorithm visited 14,780 policies, which resulted in a frontier 

composed of 796 policies. Approximately 750 of the policies on the frontier represent 

unique R-U values.
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We then compared the frontier policies returned by SHS to the Safe Harbor de-identification 

policy. Figure 8 indicates that within the Adult dataset, 24 out of 796 policies (i.e., the green 

squares on the frontier) strictly dominate the Safe Harbor policy. The average Euclidean 

distance between each of these 24 policies and Safe Harbor policy in the R-space is 0.025. 

This indicates that Safe Harbor policy is very near in the [0, 1] × [0, 1] R-U space.

After investigating the policies which dominated Safe Harbor, we found that 23 of the 

policies were from one chain of the same sublattice. This observation indicates that the 

frontier policies found by SHS can provide a user with highly related policies which should 

be useful in practice. We show examples of policies that dominate Safe Harbor in Figure 9.5 

Here, we illustrate through two policies (A and B), the actual semantic differences proposed 

by our discovered policies. We note that for brevity, we abbreviate the enumeration of ZIP 

code generalizations in both Policies A and B. We further note that Policy A is one policy in 

the previously mentioned group of 23 along the same chain, while Policy B is the lone 

unrelated policy. While each policy generalizes Age and ZIP to different levels, the primary 

difference is the generalization of Race and Gender. Where Policy A generalizes “Black or 

African American” with all other races, it leaves Gender unmodified. Policy B, however, 

generalizes “Black or African American alone” with “Asian”, “American Indian and Alaska 

Native alone”, and “Native Hawaiian and Other Pacific Islander alone”, while “Some other 

race alone” is generalized with “Two or more races”. While these policies differ greatly 

from that suggested by Safe Harbor, it is worth mentioning that these policies – again – 

strictly dominate Safe Harbor.

Additionally, we compared our algorithm to the method of Benitez et al. [6]. It can see in 

Figure 8(b) that [6] returns only policies with risk not greater than Safe Harbor, while our 

method returns the “best” alternatives discovered.

Indeed, while [6] yields 500 policies which dominate the Safe Harbor policy, 98% of these 

are dominated by the 24 policies we return as a part of our discovered frontier.

5. Discussion

5.1 Main Findings and Implications

In this work, we formalized the problem of de-identification policy frontier discovery 

(DPFD) as a dual-objective optimization. We demonstrated how to map the space of policy 

alternatives to a Risk-Utility (R-U) metric space for each given dataset, where a frontier 

represents a set of non-dominating policy tradeoffs. Given the complexity of the discovery 

task, we introduced a probability-driven heuristic search algorithm, whose effectiveness 

over an existing competitor strategy was verified through an empirical evaluation. We 

demonstrated that the heuristic enabled efficient construction of a frontier, but further 

showed that, for a dataset representative of the demographics of Tennessee, a common de-

identification policy for health information is suboptimal to the frontier.

5The three-digit with an ”XX” suffix is a convention used in Census 2000 for a large land area with no sufficient information to 
determine the five-digit codes.
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Although we cannot guarantee discovery of the optimal frontier, we believe there are several 

major benefits of our research. First, the fact that the policies in our frontier can dominate a 

broadly-adopted mainstream de-identification policy suggests that our approximate frontier 

is useful. We believe that a healthcare organization willing to follow the Safe Harbor policy 

can justify the use of an alternative on our frontier when it dominates in both risk and 

information loss. Second, we believe that our approach could be useful for assisting policy 

makers to reason about what might constitute a different de-identification standard. The 

visualization of the trade-off between privacy risk and information loss should assist in such 

decision making. For instance, our approach can demonstrate how small changes in risk (or 

information loss) could lead to significant gains in information loss (or risk). Third, we 

provide the visualization of R-U frontier to address the alternative policy set navigation 

issue in previous de-identification policy discovery methods such as [6]. A user can easily 

locate a policy that satisfies their R-U tradeoff preference through navigating the frontier.

5.2 Limitations and Next Steps

Despite its merits, there are several limitations of the work that we wish to highlight. First, 

our framework requires a complete ordering of the domain of QI attributes and a structuring 

of all policy alternatives in a lattice. Yet, some data publishers may want to measure the 

information loss or risk in a function that does not satisfy this limitation. At this time, it is 

unclear how partial orders of a domain could be explored through a systematic search. One 

concern in particular is that partial orders may violate the homomorphism requirement of the 

risk and information loss functions.

Second, our study uses specific risk and utility measures, which may not be desirable in all 

cases. For instance, our risk measure assumes each record contributes a risk proportional to 

its group size (e.g., an individual in a group size of one contributes an equal amount of risk 

as two individuals in a group size of two). This is not necessarily the case and alternative 

risk measures may be more appropriate for modeling [38]. Similarly, our utility is based on 

an information theoretic measure which characterizes the distance between the distribution 

of QI values in the original and de-identified dataset. It thus neglects the relationship 

between the QI attributes and additional information that may be disclosed (e.g., the 

diagnoses for a patient). We adopted this perspective because regulation (e.g., the HIPAA 

Privacy Rule) does not address this issue. We recognize that models exist for characterizing 

such a relationship (e.g., mutual information measures) and believe they are worth 

considering in the future.

Third, it is possible that our dataset is not properly representative. In our analysis, we 

analyzed demographics in Tennessee, but not other states or smaller locales (e.g., counties). 

To further evaluate the effectiveness of our approaches, we plan on performing empirical 

studies with additional populations in the US and abroad.

Finally, as mentioned earlier, our search algorithm does not provide any guarantees with 

respect to the optimal solution. We believe a fruitful research direction is in the definition of 

approximation algorithms for the discovery of the frontier. Such approximation strategies 

have been addressed for certain anonymization [2] problems and it is possible that similar 

approaches may be appropriate for de-identification.
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6. Conclusions

Organizations that must publish person-specific data for secondary use applications need to 

make a tradeoff between privacy risks (R) and utility (U). To provide a guideline for data 

publishers to make this tradeoff, we 1) added a semantic utility metric to an alternative de-

identification policy discovery framework, 2) mapped each policy to a two-dimensional R-U 

space, and 3) formalized the frontier search problem. To solve the problem, we build a set of 

policies that define a frontier in the R-U space through a heuristic search with a probabilistic 

basis. We demonstrated that our approach dominates a baseline approach in terms of the 

quality of the frontier obtained within a fixed number of searched policies.

Our empirical study on the Adult dataset, supplemented with population statistics from of 

the state of Tennessee showed that our method can efficiently find a frontier in the R-U 

space which dominates the commonly applied HIPAA Safe Harbor policy (i.e., less risk and 

more utility). We believe that the frontier can be used as a tool to assist data managers make 

informed decisions about the relationships between risk and utility when sharing data. Our 

frontier policy framework is highly generalizable in the sense that the risk and utility 

measures can be any function, provided 1) they satisfy certain order homomorphisms and 2) 

the policy space can be structured for a systematic search.

In future research, we anticipate investigating if other heuristic (or approximation) strategies 

could be invoked to discover better frontiers and assess if similar results are obtained 

through the study of other geographic locales.
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Appendix

Appendix: Generating Sublattices for SHS

To ensure new regions in the lattice are explored, the SHS algorithm systematically 

generates sublattices which do not overlap with the list of pruned regions.

A Constraint Satisfaction Formulation

Given a list of pruned sublattices, we define the problem of generating the next sublattice to 

consider as a constraint satisfaction problem.

Based on the definition of a sublattice, each policy in a sublattice is bounded by the upper 

policy α and the lower policy β will have a set of bits in common. In particular,
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Now, let us assume {a1, a2, …, an2} and {b1, b2, …, bn1} are the sets of bits set to 0 and 1 in 

all policies of the sub-lattice, respectively. For reference, assume B is a bit-string that 

represents a policy. A sublattice(α, β) can then be represented as a conjunction clause:

A sufficient condition for a sublattice to not to have any overlap with another sublattice is:

This condition is equivalent to:

and is precisely the constraint defined by sublattice(α, β). For example, all policies in 

sublattice([0, 0, 0, 0, 1], [1, 0, 1, 0, 1]) satisfy B[4] = 1 ∧ B[3] = 0 ∧ B[3] = 0 As a result, the 

corresponding constraint clause is B[4] = 0 ∨ B[1] = 1 ∨ B[3] = 1.

Searching for Sublattices

Algorithm 3 summarizes the search process for non-overlapping lattices. Given a set of 

pruned sublattices, each one defines a clause. The conjunction of the set of clauses is the 

constraint which the new sublattice should satisfy. We assume the set of clauses is C = {c0, 

…, cm}, and each clause is a disjunction set of literals . If this constraint set 

is satisfiable, we can find a set of literals S = {s0, …, sns}, such that s0 ∧ ⋯ ∧ sns → c0 ∧ ⋯ 

∧ cm.

We use a depth-first search to find a set of literals for which the conjunction satisfies the 

aforementioned requirement. We begin by randomly selecting a literal I from the clause with 

the least number of literals. We check each clause and if l → c0 ∧ ⋯ ∧ cm, then it is deemed 

a solution; otherwise, we add l to path, which keeps the solution set S, and keep searching.

In each iteration, we add a random literal from the clause with the least number of literals in 

the unsatisfied constraint clause by the current path to expand the path. Selecting the clause 

with the least number of literals is a greedy strategy.

Algorithm 3 Search Non-overlapping Lattices (SNL)

Input: Constraints, a list of clauses defined by the set of pruned sublattice

Output: path, a list of literals that defines a solution sub-lattice

1: path ← ∅

2: Stack ← ∅

3: root ← shortestclause(Constraints)

Xia et al. Page 18

CODASPY. Author manuscript; available in PMC 2014 December 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4: push(Stack,root)

5: while Stack ≠ ∅ do

6:  clause ← pop(Stack)

7:  if clause ≠ ∅ then

8:   literal ← randomliteral(clause)

9:   remove(clause,literal)

10:   push(Stack,clause)

11:   if Conflict(literal,path)= TRUE then

12:    continue

13:   else

14:    push(path, literal)

15:    unsatisfied ← unsatisfied(Constraints, path)

16:    if unsatisfied = ∅ then

17:     return path

18:    else

19:     clause ← shortestclause(unsatisfied)

20:     push(Stack,clause)

21:    end if

22:   end if

23:  else

24:   if path ≠ ∅ then

25:    pop(path)

26:   end if

27:  end if

28: end while

29: return path

The process is relatively straightforward. Instead of proceeding through all of the details for 

the algorithm, we present an simple example. Assume the constraint set is:

Then, the complete search tree is depicted in Figure 10. Path = {B[4] = 1, B[2] = 0} is a 

possible solution.
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Figure 1. An example of a de-identification policy defined over three quasi-identifying attributes, 
{Age, Gender, ZIP}
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Figure 2. An example of GLB. β is a GLB of α, while a is α GLB of γ
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Figure 3. 
An example of a de-identification policy lattice with five quasi-identifying values. 

Rectangular nodes depict a maximal chain, while oval nodes represent a sublattice.
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Figure 4. 
An example of updating the frontier in the R-U space using policies from Figure 3. The 

current frontier is composed of policies mapped to the stair-step curve. In 4(a), the policy 

mapped to the square will be added to the frontier because it dominates policies currently on 

the frontier (i.e., [1, 1, 0, 0] and [1, 1, 1, 0]), which will be removed. In 4(b), the rectangle 

represents the bounding region of the R-U mapping of policies in sublattice ([0, 0, 0, 1], [1, 

0, 1, 1])
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Figure 5. The efficiency of search strategies on the Adult dataset as a function of number of 
policies searched
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Figure 6. An empirical evaluation of the sublattice heuristic H()
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Figure 7. Policies searched and frontier discovered through one run of the SHS algorithm
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Figure 8. Comparison of the SHS frontier, Safe Harbor, and policies discovered by the algorithm 
in [6]
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Figure 9. Examples of two policies (upper and middle) discovered by SHS that strictly dominate 
Safe Harbor (lower)
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Figure 10. The search tree of the constraint satisfaction problem defined by the pruned lattice set
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