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Introduction
Though there are traditional methods for modeling an 
ordinal response, these methods assume independence 
among the predictor variables and require that the number 
of samples (n) exceed the number of covariates (P) included 
in the model. For high-throughput genomic data, P .. n, so 
the traditional ordinal response models cannot be estimated. 
Penalized models have been demonstrated to have excellent 
performance when applied to high-throughput genomic data-
sets in fitting linear, logistic, and Cox proportional hazards 
models. However, penalized methods have not been fully 
extended to the ordinal response setting even though ordi-
nal responses are pervasive in medicine. For example, tissue 
samples may be collected with the goal of classifying them as 
normal , pre-malignant , malignant or by stage of cancer. 

In these cases, molecular features monotonically associated  
with the ordinal response may be important to disease develop
ment; that is, an increase in the phenotypic level (stage of 
cancer) may be mechanistically linked through a monotonic 
association with gene expression. While one can apply nom-
inal response classification methods to ordinal response data, 
in so doing some information is lost that may improve the 
predictive performance of the classifier. We previously devel-
oped software for the R programming environment that uses 
the coordinate descent algorithms of Refs. 1 and 2 for fit-
ting penalized constrained continuation ratio models.3 These 
packages, glmpathcr and glmnetcr, are capable of modeling 
an ordinal response in settings where P  ..  n. Unfortu-
nately, extension to the cumulative link, adjacent category, 
stereotype logit models, and other link functions using this 
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framework is not straightforward. Other algorithms can be 
used for obtaining solutions for the least absolute shrinkage 
and selection operator (LASSO)4,5 and elastic net penalized 
models.6 In the linear regression setting, the incremental 
forward stagewise (IFS) is a penalized solution that enforces 
monotonicity.7 IFS can be generalized to problems involv-
ing those other than squared error loss, and the adaption is 
called the generalized monotone incremental forward stage-
wise (GMIFS) method.7 Herein, we extended the GMIFS 
method7 to ordinal response models and describe our ordin-
algmifs R package. The ordinal.gmifs function can be used 
to fit traditional and penalized cumulative link, forward 
continuation ratio, and backward continuation ratio models 
using either a logit, probit, or complementary log–log link. It 
can also be used to fit adjacent category and stereotype logit 
models.

In the following sections, we provide an overview of 
the LASSO, IFS, and GMIFS methods for the linear and 
logistic regression settings. We then describe our imple-
mentation of the GMIFS method for modeling an ordi-
nal response. Our implementation includes methods for 
initializing the ordinal thresholds, methods for updating 
estimates for a no penalty subset of predictors if specified 
by the user, derivatives for identifying which covariate to 
update, and convergence criteria. Because the GMIFS 
method requires the derivatives of each log-likelihood, 
where the log-likelihood function is derived from the tra-
ditional ordinal response models, including the cumulative 
logit, adjacent category, continuation ratio, and stereotype 
logit models, we also provide an overview of traditional 
ordinal response models. We then illustrate the func-
tions in the ordinalgmifs R package using a dataset where 
we were interested in predicting normal  ,  pre-neoplastic  
,  neoplastic states of liver disease using high-throughput 
methylation data.8

Brief Overview of Penalized Methods
Traditional variable selection methodologies, including best 
subsets, and forward selection and backward elimination 
procedures, often fail to provide feasible and stable results 
because of their strong assumptions of covariate indepen-
dence as well as their discrete procedures. Regularization 
methods provide a more continuous process and yield sta-
tistical models having coefficients with non-zero estimates 
for “important” covariates, while many coefficients are 
shrunk to be exactly zero. There are several algorithms that 
yield a penalized solution that are applicable for continuous 
responses.

Penalized methods for linear regression. The LASSO4 
is a widely used method for deriving a parsimonious model 
for high-dimensional data. It produces penalized estimates 
of the unknown regression parameters by including the L1 
norm of the coefficients as a constraint in the least-squares 
estimate
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hence, the terms LASSO and L1 penalized regression are 
often used synonomously. Here λ is the tuning parameter 
that controls the amount of shrinkage: if λ  =  0, the solu-
tion is the OLS estimates; as λ increases, the amount of 
shrinkage of the parameter estimates increases. Because the 
L1 model shrinks some coefficients to be exactly zero, it is 
better than ridge regression in terms of model parsimony 
and interpretability. Algorithms for fitting penalized linear 
regression models include the least angle regression (LAR) 
algorithm9 and the IFS regression method.7 The advantage 
of IFS is that it can be generalized to problems involving 
other than squared error loss. Therefore, we present the IFS 
method for the linear regression setting as a prelude to the 
GMIFS method.

IFS method for linear regression. The forward stagewise 
method is a greedy procedure similar to forward stepwise 
regression but is more cautious in that the coefficient updates 
are made using very small increments. It was historically con-
sidered to be inefficient because of its slow-fitting nature but 
later showed to be competitive in terms of variable selection 
stability and prediction accuracy.7 The IFS method7 proceeds 
according to the following steps to admit the solution:

1.	 Standardize the predictors, and then initialize the resid-
uals to r y y= −  and initialize the p = 1, … , P parameter 
estimates to 1 0ˆ ˆ, , .Pβ β =…

2.	 Find the predictor xm most correlated with r, m =
maxarg ( ( , ) ).ρ̂ pp

r x

3.	 Update ˆ ˆ ,m m mβ β δ= +  where sign ,ˆ( ( ))m mδ ε ρ= × r x  and 
ε is some small positive constant such as 0.001.

4.	 Update r = r − δmxm, and repeat steps 2–3 until no predic-
tor has any correlation with r.

At the end of this iterative algorithm, the final 1
ˆ ˆ, , Pβ β…  

are taken as the penalized solution. It was previously shown 
that the penalized solution can be obtained using the expanded 
predictor space = [ : – ].X̂ X X 7 When using the expanded pre-
dictor space, the absolute value of the correlation estimates 
is unnecessary in step 2, while the coefficient and residual 
updates in steps 3 and 4 let δm = ε. Finally, the P ×  1 vec-
tor of coefficient estimates corresponding to the original rep-
resentation of the covariate matrix X can be obtained using 
ˆ ˆ ˆ–p p p Pβ β β +=  for p = 1, …, P.

Extending IFS for logistic regression. For observations 
i = 1, …, n, let yi represent the dichotomous dependent vari-
able and
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represent the conditional probability of experiencing the event 
given the independent predictor variables xi. Then the like-
lihood function is simply the product of the n independent 
binomial terms
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Mathematically, it is easier to maximize the log-likelihood, 
which is given by

1

, 1 1log( ( , | )) ( log( ( )) ( – ) log( – ( ))).
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When the response is discrete, minimizing the residual 
sum of squares is not reasonable; so a modified penalized model 
that maximizes the penalized log-likelihood is needed. For an 
L1 penalized logistic regression model, this is expressed as

	 1

,log( ( , | )) – .
P

p
p

L α β λ β
=

∑y x

Obviously, the residual, r, in the IFS procedure is no 
longer appropriate for a categorical response, so it cannot be 
used in the logistic regression setting. However, the GMIFS 
regression method, where the coefficient to be updated is 
selected based on the gradient of the log-likelihood, can be 
used to provide the coefficient estimates for a penalized logis-
tic regression model.7 Starting with the expanded covariate 
space X, the GMIFS algorithm is

1.	 Standardize the predictors and initialize the p = 1, …, 2P 
parameter estimates to 1 1 2 0ˆ ˆ ˆ ˆ, , , , ,P P Pβ β β β+ =… …  at step 
s = 0.

2.	 Find the predictor xm, where m p= argmin − δ δβlog /L p  at 
the current estimate ( )ˆ ˆ .sβ β=

3.	 Update the corresponding coefficient 1( ) ( )ˆ ˆs s
m mβ β ε+ = +  to 

yield a new vector of parameter estimates 1( )ˆ .s+β
4.	 Repeat steps 2 and 3 many times.

At the end of the iterative procedure, the P × 1 vector of coeffi-
cient estimates is obtained by ˆ ˆ ˆ–p p p Pβ β β +=  for p = 1, …, P.

Proposed GMIFS algorithm for ordinal response mod-
els. Although the GMIFS algorithm has been described, there 
was no specific stopping criteria, but rather step 4  in Ref. 7  
recommends to repeat steps 2 and 3 many times. Therefore, we 
implemented the criteria to stop the iterative process when the 
difference between two successive log-likelihoods is smaller 
than a pre-specified tolerance τ. Further, recall that for the 
linear regression scenario, the constant term β0 term is com-
monly omitted because the response is centered. However, for 
ordinal response models having K different ordinal levels, we 
require K – 1 separate threshold estimates be included in the 
model. These K – 1 α  intercept terms are essential for an ordinal 

response model that assumes proportional odds, because under 
this assumption, the β estimates do not have category-spe-
cific effects.10 Therefore, the log-odds ratio, which measures 
the degree of association between two ordinal levels, can be 
explained by the difference between the corresponding thresh-
olds, logit(γj) – logit(γj') = αj – αj' , such that the α estimates are 
highly important for distinguishing between ordinal classes. 
Moreover, there are some research problems for which a sub-
set of predictor variables is to be included in the model (ie, not 
penalized). That is, in certain modeling contexts, it is desired 
to include relevant variables based on subject-specific knowl-
edge. Therefore, we have included in our algorithm the ability 
to include a set of covariates as a no penalty subset of predictor 
variables. For K ordinal classes and P predictors, our GMIFS 
algorithm is:

0a.	 Let = [ : – ]X X X  be our standardized predictors that are 
to be penalized and, if applicable, W be our predictor(s) 
that is(are) not to be penalized (no penalty subset). Let β 
represent the coefficients associated with X and θ repre-
sent the coefficients associated with W.

0b.	 Initialize α and θ based on the specific ordinal response 
model (see the following ordinal response models section).

1.	 Initialize the components of ( )ˆ sβ  at step s =  0 as 
1 2 1 2 0ˆ ˆ ˆ ˆ ˆ .P P Pβ β β β β+= = = = = = =… …

2.	 Find m p= argmin − δ δβlog /L p  at the current estimate 
( )ˆ .sβ

3.	 Update 1( ) ( )ˆ ˆ .s s
m mβ β ε+ ← +

4.	 Update α ’s and θ by maximum likelihood considering 
the vector of coefficients 1ˆ s+β  from step 3 as fixed.

5.	 Repeat steps 2–4 until log L(s+1) − log L(s) , τ, where τ is 
pre-specified tolerance.

Therefore, for each ordinal response model, we need to initial-
ize the α1, … , α

k–1 and θ estimates, provide expressions for  
δ log L/δβp for updating the β ’s, and provide maximum likeli
hood equations for updating the α1, …, α

k–1 and θ estimates after 
the β ’s have been updated. These equations are presented in the 
subsequent sections for the cumulative link, adjacent category, 
forward and backward continuation ratio model, and stereotype 
logit model. While our ordinalgmifs R package additionally 
allows fitting cumulative link, and forward and backward con-
tinuation ratio models using a probit or complementary log–log 
link, we have omitted the details regarding their derivatives and 
initial α estimates here.

Ordinal Response Models
Let Yi represent the ordinal response for observation i that 
can take on one of K ordinal levels. Denote the n × P covariate 
matrix as x so that xi represents a P × 1 vector for observation 
i and xp represents the n × 1 vector for covariate p. For obser-
vations i = 1, …, n, the response Yi can be reformatted as a 
response matrix consisting of n rows and K columns where
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j
ij =
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1

0

if observation is class

otherwise.

i ,

Therefore, yj is an n × 1 vector representing class j member-
ship. Letting πj(xi) represent the probability that observation i 
with covariates xi belongs to class j, the likelihood for an ordinal 
response model with K ordinal levels can be expressed as

	
L j i

y

j

K

i

n
ij=

−=
∏∏ π ( ) .x

11

	 (1)

Similar to logistic regression, it is more convenient to work 
with the log-likelihood, which be expressed as

	
log log( ( )).L yij j i

j

K

i

n
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Cumulative logit model. The cumulative logit model 
models K − 1 logits of the form.
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where αj denotes the class-specific intercept and β is a  
p × 1 vector of coefficients associated with explanatory vari-
ables xi.11 Note that the class-specific probabilities can be cal-
culated by subtracting successive cumulative logits,

	 i( ) ( | ) – (   – 1| )j i i i iP Y j P Y jπ = ≤ ≤x xx .

Therefore, for any class j, we can express the class-specific 
probabilities by
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Because we require α0 = – ∞, for j = 1, this expression 
simplifies to
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and because we require α
k
 = ∞, for j = K, this expression sim-

plifies to
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Therefore, the derivative of the log-likelihood with 
respect to βp is
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In the GMIFS algorithm, the alpha terms are initial-
ized to α j i

n
k
j

iky n= ∑ ∑( )= =log / .it 1 1  If a no penalty subset 
is included, we can consider x to be the expanded matrix of  
w: x, and the parameter vector β to be the expanded vector  
θ: β for calculating the class-specific probabilities. However, 
the derivative is only estimated with respect to the variables in 
the penalized portion of the model. Also, when a no penalty 
subset is included, α and θ are estimated by maximum likeli-
hood at the initial step and after each β update. Because the 
class-specific probabilities are obtained by subtracting succes-
sive cumulative logits, we require α1 # α2 # … # αK–1. There-
fore, the maximum likelihood estimation of α and θ includes 
that constraint on the threshold estimates.

Adjacent category model. The adjacent category model 
models the logits of ordinal categories that are adjacent to one 
another. That is, for any ordinal level j = 1, …, K − 1, its logit is

	 log ( ) ,it γγ ββj j= +α x 	 (4)

where
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Plugging equation 5 into the logit in equation 4, we have the 
simplification,
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so that
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The class-specific probabilities for the adjacent cate
gory model can be calculated using the baseline category 
framework. Suppose we let the first class be our baseline 
category (note that the baseline category is arbitrary). 
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Then for any other class j # K, we can express its baseline 
category logit as
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Adding log(π1) to both sides of this equation and then expo-
nentiating yields
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The derivative of the log-likelihood with respect to βp is 
the sum of the derivatives of the K class components
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In the GMIFS algorithm, the α terms are initialized as 
the logits of the adjacent class probabilities: α1 =  log(π2/π1), 
α2 = log (π3/π2), …, α

k–1 = log(πK/πK–1). If a no penalty subset 
is included, α and θ are estimated by maximum likelihood at 
the initial step and after each β update.

Continuation ratio models. Although the likelihood for 
continuation ratio models can be expressed using equation 1, 
it is more convenient to express the likelihood using the con-
tinuation ratios. There are different ways in which one can set 
up a continuation ratio model, so here we present the back-
ward and forward continuation ratio models separately.

Backward continuation ratio model. The backward contin-
uation ratio model models the logit of the j = 2, …, K condi-
tional probabilities or

it
( | , )log ( ( | , )) log .
( | , ) j

P Y j Y jP Y j Y j
P Y j Y j

α
 = ≤= ≤ = = + < ≤ 

x
x x

x
β

Here we have used the backward formulation, which is com-
monly used when progression through disease states from 
none, mild, moderate, and severe is represented by increas-
ing integer values, and interest lies in estimating the odds of 
more severe disease compared to less severe disease.12 Letting 
δij represent the conditional probabilities,

	 1
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such that for K ordinal classes, there are K – 1 logits. The like-
lihood can be expressed using these j = 2, …, K conditionally 
independent probabilities:
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which can be factored as the product of K – 1 binomial likeli-
hoods. Using this expression, the derivative of the log-likeli-
hood with respect to βp for the backward continuation ratio is 
given by
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In the GMIFS algorithm, the α terms are initialized as 
αj = log (Πj/(1 – Πj)), where Π j i

n
ij i

n
k
j

iky y= ∑ ∑ ∑= = =1 1 1/ . If a no 
penalty subset is included, α and θ are estimated by maximum 
likelihood at the initial step and after each β update.

Forward continuation ratio model. The forward continua-
tion ratio model models the logit of the conditional j = 1, …, 
K – 1 probabilities or

it
( | , )log ( ( | , )) log .
( | , ) j

P Y j Y jP Y j Y j
P Y j Y j

α
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As with the backward continuation ratio model, the likeli-
hood for the forward continuation ratio model can be expressed 
using the K – 1 conditionally independent probabilities,
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The derivative of the log-likelihood is the same, which 
for the forward continuation ratio model is given by,
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In the GMIFS algorithm the α terms are initialized as  
αj = log (Πj/(1 – Πj)), where Π j i

n
ij i

n
k j
K

iky y= ∑ ∑ ∑= = =1 1/ . If a 
no penalty subset is included, α and θ are estimated by maxi-
mum likelihood at the initial step and after each β update.

Stereotype logit model. The proportional odds versions 
of the cumulative logit, adjacent category, and forward and 
backward continuation ratio models all assume that the odds 
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at x = x1 compared to x = x2 are exp(β(x1 – x2)) regardless of the 
response category. The stereotype logit model is more flexible 
than the proportional odds versions of the cumulative logit, 
adjacent category, forward continuation ratio, and backward 
continuation ratio models, yet is more parsimonious in com-
parison to fully unconstrained versions of these models.13,14 
From the definition of the stereotype logit model,13 the prob-
ability that observation i is from class j is defined as

	
π

α φ
α φj i

j j i
T

h
K

h h i
T( )

exp( )
exp( )

,x
x

x
=

+
∑ +=

ββ
ββ1

	 (9)

and to impose an ordinality restriction, we let α
k
 = 0 and  

φ
k
 = 0 such that for category K,

1
1 1

1 1
1 –( ) .

exp( ) exp( )K i K T K T
h h h i h h h i

π
α φ α φ= =

= =
∑ + + ∑ +

x
x xβ β

	
		  (10)

Note that these probabilities are equivalent to expressing 
the stereotype logit model using the Kth class as the baseline 
category; the j = 1, …, K – 1 logits are of the form

	
log

( )
( )

π
π

α φj i

K i
j j i

T
x

x
x







= + ββ 	 (11)

such that the class-specific probabilities for classes j = 1, …,  
K – 1 are expressed as

	 π α φ πj i j j i
T

K i( ) exp( ) ( ),x x x= + ββ 	 (12)

where

	
1

1

1
1 –( ) .

exp( )K i K T
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π
α φ=

=
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x β
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Substituting πj(xi) and πK(xi) into equation 2 and simplifying 
yields

1

1 1 1

1
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( – ) log( ) – log exp( – ) .
n K K

T T
ik k k i h h i

i k h
y α φ α φ

= = =

 
+  ∑ ∑ ∑x xβ β

	
		  (14)

Because log(1) = 0, our final log-likelihood is

1

1 1 1

,

x x
–

( , , | )

( – ) – log exp( – )
n K K
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or given the second form for π
k
(xi) in equation 10,

1 1
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,
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To ensure ordinality of the model,13 it was further required 
that φ1 = 1, φK = 0, and φ1 $ φ2 $ φ3$ … $ φK–1 $ φK.

The first derivative of the log-likelihood with respect to 
βp is given by
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The α terms are initialized as
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while φ are initialized as φ1 = 1, φ2, …, φ
k–1 = 0.1. If a no pen-

alty subset is included, α, φ, and θ are estimated by maximum 
likelihood at the initial step and after each β update.

Implementation
The ordinalgmifs package was written in the R programing 
environment.15 The ordinal.gmifs function allows the user to 
specify a model formula, identify the matrix of covariates to 
be penalized in the model fitting algorithm using the x para
meter, and additionally specify the model type (probability.
model) and link function (link). The default is to fit a cumula-
tive logit model, though allowable probability models include 
Cumulative, ForwardCR, BackwardCR, AdjCategory, and 
Stereotype while allowable links include logit, probit, and 
cloglog for the first three and loge and logit for the last two, 
respectively. The defaults for updating the penalized coeffi-
cients are epsilon  =  0.001 and tol  =  1e  –  5. Our likelihood 
functions were written in R and tested by comparing our  
R output to output produced by the vglm R VGAM pack-
age for cumulative link, adjacent category, and forward and 
backward continuation ratio models and to STATA’s slogit 
function and the rrvglm function in the R VGAM for the ste-
reotype logit model using benchmark datasets for data where 
P , n.

Examples
The ordinalgmifs package includes example datasets hav-
ing an ordinal response and a detailed tutorial as a vignette. 
The example data are a subset of subjects and CpG sites 
reported in the original paper where liver samples were 
assayed using the Illumina GoldenGate Methylation 
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BeadArray Cancer Panel I.8 Technical replicate samples 
and matched cirrhotic samples from subjects with hepa-
tocellular carcinoma (HCC) were removed to ensure all 
samples were independent. These data are in two formats:  
as a data.frame (hccframe) and as a BioConductor Expres-
sionSet (hccmethyl). However, for the demonstration provided 
here, we illustrate downloading the full dataset, GSE18081, 
from Gene Expression Omnibus, filtering on relevant crite-
rion, and fitting a cumulative logit model to the independent 
subjects whose liver was either normal (n =  20)  , cirrhotic 
but not having HCC (n = 16, cirrhosis non-HCC) , HCC 
(n  =  20, HCC) using the CpG site methylation values as 
predictor variables. To download the GSE18081 dataset, we 
load the GEOquery R  package before using the getGEO 
function.

. library("GEOquery")

. data,–getGEO("GSE18081") [[1]]

We then removed paired cirrhotic samples from patients 
that also contributed to tumor samples and replicate hybrid-
izations so that only independent subjects are included in our 
dataset.

�.  data,–data [,ifelse (pData (data) $characteristics_ 
  ch1==" disease state: Cirrhosis", FALSE, TRUE)]
. data,–data [,–grep ("Replicate",pData (data) $title)]
�.  hccCancerPanel,–data.frame(Tissue = factor( ifelse  
  (pData (data) $characteristics_ch1==" disease state:  
  Cirrhosis non-HCC", "Cirrhosis non-HCC", 
�  ifelse (pData(data) $characteristics_ch1==" disease state:  
  Normal", "Normal", 
�  "HCC")), ordered=TRUE, levels=c("Normal", "Cirrhosis  
  non—HCC", "HCC")), t(exprs(data)))
. rownames(hccCancerPanel),–rownames (pData(data))

The class to be predicted (normal  , cirrhosis non-
HCC , HCC) is stored in our hccCancerPanel data.frame 
as Tissue along with the 1,505 CpG site methylation val-
ues. However, prior to model fitting, NA values should be 
imputed or removed from the data.frame. Our first filtering 
step applied removed 10 CpG sites that had at least one miss-
ing value. Additionally, we removed any CpG site that had a 
variance of 0 (n = 26), leaving 1,469 CpG sites for our predic-
tive model.

�. filter,–c(0,apply(hccCancerPanel[,–1],2,function(x) sum 
  (is.na(x))))
. hccCancerPanel,–hccCancerPanel [,filter==0]
. filter2,–c(1,apply(hccCancerPanel[,–1],2,function(x) sd(x)))
�. hccCancerPanel,–hccCancerPanel [, (1:
  dim (hccCancerPanel) [2]) [filter2!=0]]
To fit a model where all predictors are penalized, the model 

formula is specified to fit an intercept only model and the predictors 

to be penalized are specified using the x parameter. When fitting 
a penalized model, it is expected that more than one variable is 
included in the x parameter. The x parameter can either be a vector 
naming columns in the data.frame specified by the data parameter 
or be a data.frame name with the columns to include (or exclude) 
indicated by their (negative) index. By default, a cumulative logit 
model is fit when neither probability.model nor link is speci-
fied by the user. Because Tissue is the first variable in hccCan-
cerPanel, we fit a model penalizing all CpG sites by specifying  
x = hccCancerPanel[,–1], which simply removes our ordinal outcome.

. library("ordinalgmifs")
�. cumulative.logit,–ordinal.gmifs(Tissue ∼ 1, 
  x = hccCancerPanel[,–1], data = hccCancerPanel)

Because the GMIFS procedure is incremental, the user may 
want to specify verbose = TRUE to print the step number in 
order to monitor the status of the model fitting procedure.

Methods including coef, plot, predict, fitted, print, 
and summary can be applied to ordinalgmifs model objects. 
Because the returned list differs depending on whether a no 
penalty subset is included or a stereotype logit model is fit, the 
print function returns the object names of the fitted object.

. print (cumulative.logit)

[1] “beta” “alpha” “zeta”

[4] “x” “y” “w”

[7] “scale” “logLik” “AIC”

[10] “BIC” “model.select” “probability.model”

[13] “link”

By default coef, predict, and summary extracts the rel-
evant information from the step in the solution path that 
attained the minimum AIC. Because most of the features will 
have a coefficient estimate of zero, it is more convenient to 
extract the coefficient estimates and then examine those fea-
tures with non-zero estimates. Here we see that in the AIC 
selected model there are 15 CpG sites with non-zero coef-
ficient estimates.

. head (summary(cumulative.logit))

Cumulative model using a logit link
at step = 5085

logLik = –12.164

AIC = 111578

BIC = 122035

(Intercept):1 (Intercept):2 AATK_ 
E63_R

AATK_ 
P519_R

AATK_ 
P709_R

–1.9115 1.9158 0.0000 0.0000 0.0000

ABCA1_E120_R

0.0000
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. coefficients,–coef (cumulative.logit)

. coefficients [coefficients!=0]

(Intercept):1 (Intercept):2 CDKN2B_seq_50_S294_F

–1.9115 1.9158 –0.5730

DDIT3_P1313_R ERN1_P809_R GML_E144_F

–0.6240 0.3620 0.6130

HDAC9_P137_R HLA.DPA1_P205_R HOXB2_P488_R

0.0830 0.3540 –0.0760

IL16_P226_F IL16_P93_R IL8_P83_F

0.3970 0.1460 0.1710

MPO_E302_R MPO_P883_R PADI4_P1158_R

0.3270 0.1390 –0.0860

SOX17_P287_R TJP2_P518_F

–0.8210 –0.3130

Although the AIC is the default model selected, any step along 
the solution path can be extracted by specifying the step using the 
model.select parameter for these three functions. For example, 
the model attaining the minimum BIC can be extracted using

summary(cumulative.logit, model.select  =  which.min 
(cumulative.logit$BIC)).

Alternatively, the 150th step can be extracted using  
summary (cumulative.logit, model.select = 150). Note that the αj 
thresholds are labeled as (Intercept): 1, …, (Intercept):K – 1.

When examining the non-zero coefficient estimates, 
SOX17 and DDIT3 had the largest absolute values. Boxplots 
of the β values by tissue type revealed a monotonic relation-
ship for both (Fig. 1).

The plot function plots the solution path of the model 
fit. The vertical axis can be changed using the type param-
eter with allowable selections being trace (default), AIC, 
BIC, or logLik. Although there are default x-axis, y-axis, 
and titles provided for each plot, the user can modify these 
by supplying their own arguments to xlab, ylab, and main, 
respectively.

. plot(cumulative.logit)

The predict function (or equivalently, fitted) returns a list 
containing predicted, a matrix of the class probabilities from 
the fitted model, and class, the class having the maximum 
predicted probability from the fitted model. As with coef and 
summary, the predict function by default extracts the model 
that attained the minimum AIC, but predictions for any step 
along the solution path can be obtained by specifying the step 
using the model.select parameter.

. phat ,– predict(cumulative.logit)

. table(phat$class, hccCancerPanel$Tissue)

Normal Cirrhosis non-HCC HCC

Normal 20 0 0

Cirrhosis non-HCC 0 16 0

HCC 0 0 20

. head(phat$predicted)
[,1] [,2] [,3]

[1,] 0.00125343 0.0532523 0.94549

[2,] 0.01002675 0.3074904 0.68248

[3,] 0.00019167 0.0085375 0.99127

[4,] 0.00527017 0.1904609 0.80427

[5,] 0.01017666 0.3105981 0.67923

[6,] 0.01333243 0.3696477 0.61702

	 �.   boxplot(hccCancerPanel$SOX17_P287_R∼

         hccCancerPanel$Tissue, xlab="", ylab=expression(beta))
�.  boxplot(hccCancerPanel$DDIT3_P1313_R∼

  hccCancerPanel$Tissue, xlab="", ylab=expression(beta))

For the AIC selected model, there were no misclassifi-
cation errors. However, a fair way of estimating generaliza-
tion error should be applied. When there are small sample 
sizes in one or more groups, K-fold cross-validation (CV) 
methods may not perform well as a means to estimate gen-
eralization error because of the random inclusion of samples 
into each of the folds. That is, multiple folds may include 
few if any subjects from the small classes. Therefore, here 
we have demonstrated N-fold CV for this dataset. Note 
that we include the drop  =  FALSE argument to preserve 
the dimension format of the object when only one subject 
comprises the test set. Note that we used the foreach and 
doSNOW packages for parallel processing to speed up our 
computations.

. library("doSNOW")

. library("itertools")

. machines ,– rep("localhost", each=4)
�. cl ,– makeCluster(machines, type="SOCK", outfile 
   ="test.txt")
. registerDoSNOW(cl)
�. iter ,– isplitIndices(nrow(hccCancerPanel), chunks =  
   nrow(hccCancerPanel))
�. nfold.class ,– foreach(i = iter,
   .combine=c,.packages="ordinalgmifs")%dopar% {
   �f it,–ordinal.gmifs(Tissue ∼ 1, x=hccCancerPanel  

[–i,–1], data=hccCancerPanel [–i,])
�   return(predict(fit, newx=hccCancerPanel [i,–1,drop=�
   FALSE])$class)
  }
. stopCluster(cl)

. table(hccCancerPanel$Tissue, nfold.class)

nfold.class

1 2 3

Cirrhosis non-HCC 14 2 0

HCC 3 14 3

Normal 0 0 20
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There were 8 of 56 misclassifications from the N-fold CV 
procedure, which yields a generalized misclassification rate 
of 14.3%.

Aside from a logit link, a probit or complementary 
log–log link can be used in conjunction with the cumulative 
link probability model. These three links are also available 
for probability.model  =  "ForwardCR" and probability.
model = "BackwardCR". A stereotype logit model only uses 
a logit link, while an adjacent category model only uses a loge 
link. Misspecifying the link for either a stereotype logit or 
adjacent category yields a warning that is printed to the R con-
sole, but only the correct link is used in the model fit.

Summary
Herein we presented an extension of the GMIFS method for 
predicting an ordinal response in high-dimensional covariates 
spaces. If interest lies in predicting an ordinal response and the 
number of covariates is small relative to the available sample 
size, we recommend using the VGAM package. However, our 
ordinalgmifs R package is capable of fitting models in high-
dimensional covariate spaces and the penalization process 
better handles multicollinearity problems. We presented the 
flexibility of the GMIFS method by adapting it to fit cumu-
lative link model, forward and backward continuation ratio 
models using either a logit, probit, or complementary log–
log link, as well as the adjacent category and stereotype logit 
models. Functions for extracting coefficients, obtaining fitted 
probabilities, predicting class, plotting, and summarizing the 
fitted model object are also provided. Our ordinalgmifs pack-
age should be helpful when predicting an ordinal response for 
datasets where the number of covariates exceeds the number 
of available samples.
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Figure 1. Boxplots of β values for SOX17 (left panel) and DDIT3 (right panel) by tissue type.
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