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This study examined hippocampal volume as a putative bio-
marker for psychotic illness in the Bipolar-Schizophrenia 
Network on Intermediate Phenotypes (B-SNIP) psychosis 
sample, contrasting manual tracing and semiautomated 
(FreeSurfer) region-of-interest outcomes. The study sam-
ple (n = 596) included probands with schizophrenia (SZ, 
n = 71), schizoaffective disorder (SAD, n = 70), and psy-
chotic bipolar I disorder (BDP, n = 86); their first-degree 
relatives (SZ-Rel, n = 74; SAD-Rel, n = 62; BDP-Rel, n 
= 88); and healthy controls (HC, n = 145). Hippocampal 
volumes were derived from 3Tesla T1-weighted MPRAGE 
images using manual tracing/3DSlicer3.6.3 and semiauto-
mated parcellation/FreeSurfer5.1,64bit. Volumetric out-
comes from both methodologies were contrasted in HC and 
probands and relatives across the 3 diagnoses, using mixed-
effect regression models (SAS9.3 Proc MIXED); Pearson 
correlations between manual tracing and FreeSurfer out-
comes were computed. SZ (P = .0007–.02) and SAD (P = 
.003–.14) had lower hippocampal volumes compared with 
HC, whereas BDP showed normal volumes bilaterally (P = 
.18–.55). All relative groups had hippocampal volumes not 
different from controls (P = .12–.97) and higher than those 
observed in probands (P = .003–.09), except for FreeSurfer 
measures in bipolar probands vs relatives (P = .64–.99). 
Outcomes from manual tracing and FreeSurfer showed 
direct, moderate to strong, correlations (r = .51–.73, P < 
.05). These findings from a large psychosis sample support 
decreased hippocampal volume as a putative biomarker 
for schizophrenia and schizoaffective disorder, but not for 
psychotic bipolar I disorder, and may reflect a cumulative 
effect of divergent primary disease processes and/or life-
time medication use. Manual tracing and semiautomated 
parcellation regional volumetric approaches may provide 

useful outcomes for defining measurable biomarkers under-
lying severe mental illness.

Key words:  schizophrenia/psychotic bipolar 
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Introduction

Alterations in medial temporal lobe anatomy and func-
tion are consistently reported in schizophrenia and 
include (1) hippocampal volume reduction,1–5 (2) elevated 
hippocampal regional blood flow,6 (3) reduced task-
associated activation as probed by novelty and memory 
tasks,7–10 (4) associations between hippocampal altera-
tions and severity of psychosis,4,6 and (5) attenuation of 
hippocampal-dependent relational memory dysfunction 
by antipsychotic medication.11 Furthermore, structural 
and functional hippocampal abnormalities are found in 
other psychotic, mood, and anxiety disorders, as well as 
neurodegenerative conditions12–15 suggesting that hip-
pocampal vulnerability may be a common biomarker 
underlying a broad array of psychiatric and neurologic 
phenotypes. Although molecular mechanisms of these 
hippocampal alterations remain unknown, several puta-
tive determinants have been proposed, including gluta-
mate/NMDA-16,17, GABA-18,19, and cortisol-mediated20 
metaplasticity changes resulting in hippocampal sub-
field-specific disease vulnerability and, possibly, psy-
chosis formation.16,21 Given this broad link between 
hippocampal alterations and psychosis, we examined 
whether regional hippocampal volumetric characteris-
tics show common and/or distinctive features across the 
schizophrenia–psychotic bipolar I disorder diagnoses in 
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a large sample of probands and their first-degree relatives 
from the Bipolar-Schizophrenia Network on Intermediate 
Phenotypes (B-SNIP),22 with the aim of understanding 
the biological determinants of lifetime psychosis.

Hippocampal volumetric characteristics have been pre-
viously examined in psychotic disorders, mostly in small 
samples, using a “gold standard” manual tracing region-
of-interest (ROI) approach1,13,23–26 and, more recently, 
semiautomated methods utilizing edge-detection and 
tissue intensity differences, such as FreeSurfer.2,27,28 In 
schizophrenia, reduced hippocampal volumes compared 
with healthy controls (HC) are well documented,1–5 espe-
cially for the left hippocampus,27,29,30 though some stud-
ies report no volume differences.13,26 In bipolar disorder, 
data are inconsistent, ranging from normal,1,24,26,31 to 
decreased,12,13 to increased32 hippocampal volumes com-
pared with controls, with some reports of asymmetric 
alterations, eg, smaller volume in the right but not the 
left hippocampus.12,13 A  recent meta-analysis33 reported 
smaller bilateral hippocampal volumes in probands with 
schizophrenia (SZ) vs bipolar probands. A  few small 
studies have specifically focused on hippocampal vol-
umes in psychotic vs nonpsychotic bipolar phenotypes: 
Strasser et al24 found no differences in hippocampal vol-
umes between SZ and nonpsychotic and psychotic bipo-
lar disorder probands (BDP), whereas McDonald et al31 
reported smaller bilateral hippocampi in SZ than in BDP; 
both found no differences in BDP vs HC. Furthermore, 
analyses that included the amygdala-hippocampus com-
plex into a single ROI have shown similar volumes across 
schizophrenia, psychotic bipolar disorder,15,34 and psy-
chotic depression,15 suggesting that the ROI definition 
may introduce further variability in the volumetric out-
comes. No study has examined hippocampal volume in 
schizoaffective disorder as a unique group, but manual 
tracing reports from mixed schizophrenia and schizoaf-
fective proband (SAD) samples have shown smaller vol-
umes of hippocampus25,35 and amygdala-hippocampus 
complex34 compared with HC.

Hippocampal volume alterations have also been 
reported in biological relatives of psychosis probands, 
albeit with substantial variability in findings. Studies in 
relatives of SZ (SZ-Rel)25,36,37 have reported hippocam-
pal volumes intermediate between those found in SZ 
and HC, with characteristic hippocampal volume reduc-
tions observed in unaffected relatives.36,38–40 Seidman 
et  al39 reported more substantial left hippocampal vol-
ume reductions in individuals with 2 or more first-degree 
relatives with schizophrenia, suggesting familial cose-
gregation of this biomarker in psychosis. In contrast, 
other studies found normal hippocampal volumes in 
SZ-Rel.2,27,41 A few small reports in first-degree relatives 
of BDP (BDP-Rel) showed hippocampal volumes similar 
to those in HC,31,42 but larger than those found in pro-
bands.43 To date, no study has examined hippocampal 
characteristics unique to relatives of SAD (SAD-Rel) 

although the data from mixed schizoaffective disorder/
schizophrenia relatives samples have produced outcomes 
consistent with those in SZ-Rel alone.25,35 No studies have 
contrasted hippocampal characteristics in relatives based 
on psychosis-relevant clinical manifestations, ie, relatives 
with psychosis spectrum disorders vs unaffected relatives.

Overall, hippocampal volume outcomes from the 
“gold standard” manual and semiautomated studies, all 
of limited sample size, support diminished volumes in SZ 
and SAD, with more variable observations in BDP and 
in biological relatives of psychosis probands. The hippo-
campal volume abnormalities associated with psychosis 
are subtle, averaging 2%–4% decrease in SZ (see meta-
analyses);3,5 thus, larger samples are necessary to support 
reliable characterization of these putative brain structure 
biomarkers.

This study examined hippocampal volume using man-
ual tracing and semiautomated parcellation, FreeSurfer, 
contrasting these outcomes across the schizophrenia-
bipolar I disorder psychosis dimension in a large sample 
of probands and their first-degree relatives. We tested 
whether hippocampal volume measures would show 
common or divergent characteristics across the 3 psycho-
ses diagnoses—schizophrenia, schizoaffective disorder, 
and psychotic bipolar I  disorder—contrasting (1) pro-
bands and HC, (2) relatives and HC, and (3) probands 
and relatives. We hypothesized that (1) probands will 
show decreased hippocampal volumes compared with 
HC, consistent across schizophrenia, schizoaffective dis-
order, and psychotic bipolar I disorder diagnoses, and (2) 
relatives will show hippocampal volumes similar across 
the 3 diagnostic groups and intermediate in magnitude 
between volumes observed in their respective probands 
and controls.

Methods

Study Sample

Five hundred ninety-six subjects were included in this anal-
ysis, including 227 psychosis probands (71 SZ, 70 SAD, 
and 86 BDP), 224 first-degree relatives (74 SZ-Rel, 62 
SAD-Rel, and 88 BDP-Rel), and 145 HC from 2 B-SNIP 
sites (University of Chicago, J.A.S.; UT Southwestern 
Medical Center at Dallas, C.A.T.). Detailed character-
istics of the B-SNIP clinical population are described 
elsewhere.22 The study was approved by the Institutional 
Review Boards at each site and was consistent with stan-
dards for the ethical conduct of human research. All sub-
jects provided written informed consent after the study 
procedures had been fully explained. Axis I diagnoses in 
probands and affected relatives were established based on 
the Structured Clinical Interview for DSM-IV Diagnosis 
(SCID-I/P),44 and Axis II diagnoses in relatives were estab-
lished based on the Structured Interview for DSM-IV 
Personality Disorders (SIDP-IV).45 Probands were clini-
cally stable, mostly medicated outpatients. Relatives 
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with lifetime psychiatric diagnoses were asymptomatic/
mildly symptomatic at the time of the imaging acquisi-
tion. Given potential confounders related to lifetime dis-
ease burden and treatments, relatives with lifetime Axis 
I  psychotic disorders (n = 26 with “proband-like” psy-
chosis diagnoses, ie, schizophrenia, schizoaffective disor-
der, and psychotic bipolar disorder, and n = 2 with other 
Axis I psychoses) were excluded. Relatives with psychosis 
spectrum disorders (cluster A: schizoid, paranoid, and 
schizotypal personality disorders) (n = 24), those with 
nonpsychotic Axis I and/or II diagnoses (eg, mood and 
anxiety disorders, cluster B, C personality disorders) (n 
= 72), and those completely unaffected (n = 126) were 
included, providing basis for an exploratory analysis con-
trasting hippocampal volumes in affected vs unaffected 
relatives. Rates of DSM-IV Axis I-II diagnoses in rela-
tives are presented in supplementary table 1.

Demographic, clinical, and cognitive characteristics 
of  the study sample are detailed in table 1. There were 
no between-group differences in age or handedness. 
The groups differed in sex due to a higher proportion 
of  males among SZ and SAD compared with other 
groups. While no differences in ethnicity were observed, 
the groups differed in race due to a higher proportion 
of  African Americans among SZ and SAD. There were 
differences in years of  education, where SZ had lower 
education attainment than BDP, BDP-Rel, and HC. The 
proband groups did not differ in age of  illness onset, 
age at first psychiatric hospitalization, or lifetime num-
ber of  hospitalizations. SZ and SAD had higher Positive 
and Negative Syndrome Scale (PANSS)46 total, positive, 
negative, and general subscales scores compared with 
BDP. SAD showed the highest scores on Montgomery-
Asberg Depression Rating Scale (MADRS)47 and Young 
Mania Research Scale (YMRS).48 All proband and rela-
tive groups scored lower than controls on the Global 
Assessment of  Functioning, with the lowest ratings 
observed in SZ and SAD. The Reading Subtest scores 
from Wide Range Achievement Test (WRAT), used as 
an estimate of  premorbid intellectual functioning, dif-
fered across groups, accounted for by lower scores in SZ 
compared with that in BDP, all relative groups, and HC, 
as well as lower scores in SZ-Rel compared with BDP 
and BDP-Rel. Additionally, probands had lower com-
posite and subscale scores on the Brief  Assessment of 
Cognition in Schizophrenia (BACS) neuropsychologi-
cal test battery,49 compared to relatives and controls, 
consistent with our previous report.50 Most probands 
were actively treated with various psychotropic medica-
tions including antipsychotics (81.9%), mood stabilizers 
(48.0%), and antidepressants (45.8%); 73.6% of pro-
bands were treated with psychotropic agents of  more 
than 1 class. Among relatives, the majority was unmedi-
cated (82.4% SZ-Rel, 69.4% SAD-Rel, and 64.8% BDP-
Rel); antidepressants were the most common treatment 
in all relative groups.

Structural Magnetic Resonance Imaging Acquisition 
and the Hippocampal ROI Definitions

Whole brain structural magnetic resonance imaging 
(sMRI) 3D images were acquired on 3Tesla scanners 
(University of Chicago: GE Signa, UT Southwestern 
Medical Center: Philips Achieva). All subjects at each 
site were scanned on the same magnet. High-resolution 
isotropic T1-weighted Magnetization Prepared RApid 
Gradient Echo (MPRAGE) sequences were obtained fol-
lowing the Alzheimer’s Disease Neuroimaging Initiative 
protocol (http://adni.loni.usc.edu). The MPRAGE 
sequence parameters were comparable across sites 
(detailed in supplementary methods).

All images were processed by experienced ana-
lysts (manual ROI tracing: S.J.M.A., T.A.G., A.P.R.; 
FreeSurfer: A.N.F., N.T.) blind to subjects’ clinical char-
acteristics. Manual hippocampal ROI tracing was per-
formed using 3DSlicer/v.3.6.3 (http://www.slicer.org). 
Within- and between-rater reliability was established at 
>90% agreement and checked every 4 weeks throughout 
tracing period. Tracing was performed on the coronal 
view, with all views simultaneously visible in 3DSlicer.51 
The area defined as hippocampal ROI is bounded later-
ally and medially by the lateral ventricle, anteriorly by 
the hippocampal-amygdala transitional zone, posteriorly 
by the crus of the fornix, inferiorly by the subiculum, 
and superiorly by the alveus, similar to Keshavan et al23 
(detailed in supplementary methods and supplementary 
figure 1A). Hippocampal mask labeling relied on a tissue-
based definition of the hippocampus proper and included 
cornu ammonis1 (CA1), CA2/3, dentate gyrus/CA4, and 
fimbria, avoiding subiculum, entorhinal cortex, and 
hippocampus-amygdala transitional zone. All ROI defi-
nitions were checked against a standardized anatomical 
brain atlas.52

Hippocampal volume outputs were extracted from 
FreeSurfer/v.5.1-64bit (http://surfer.nmr.mgh.harvard.
edu), following standardized steps of preprocessing, sub-
cortical and cortical parcellation, and automated label-
ing algorythm53–55 (detailed in supplementary methods). 
The hippocampal mask included CA1, CA2/3, CA4/den-
tate gyrus, subiculum/presubiculum, and fimbria (http://
surfer.nmr.mgh.harvard.edu), yielding a more inclusive 
ROI than our manual tracing definition (supplementary 
figure 1B). Left and right hippocampal volumes (as pri-
mary outcomes) as well as total intracranial volume (as 
a covariate in mixed model analyses) from FreeSurfer 
were used. Intracranial volumes (group mean ± stan-
dard deviation, mm3: SZ, 1488796.49 ± 217813.15; SAD, 
1389376.66 ± 186550.83; BDP, 1444642.19 ± 175834.12; 
SZ-Rel, 1425362.36 ± 197966.93; SAD-Rel, 1417176.02 
± 158748.94; BDP-Rel, 1495038.38 ± 158848.76; HC, 
1451021.05 ± 177621.46) were comparable to previ-
ously reported in similar clinical populations.28,56 There 
was an effect of diagnostic group on intracranial volume 
(F(6,505) = 2.78, P = .01), accounted for by lower volume 
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http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu009/-/DC1
http://www.slicer.org
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in SZ vs BDP-Rel (adjusted P = .02); the rest of pairwise 
group comparisons were nonsignificant.

Statistical Analyses

A one-way analysis of  variance with a subsequent post 
hoc Tukey Honest Significant Difference test and Yates 
corrected chi-square test were used, as appropriate, for 
demographic, clinical, and cognitive variables. To test a 
priori hypotheses, the left and right hippocampal vol-
umes from manual tracing and semiautomated parcel-
lation/FreSurfer were contrasted in (1) probands (SZ, 
SAD, and BDP) and controls, (2) relatives (SZ-Rel, 
SAD-Rel, and BDP-Rel) and controls, and (3) probands 
and their respective relatives (SZ vs SZ-Rel, SAD vs 
SAD-Rel, and BDP vs BDP-Rel). A maximum likeli-
hood approach was used to fit mixed-effect regression 
models for the left and right hippocampal volume from 
manual or semiautomated tracing variables (SAS9.3 Proc 
MIXED procedure) controlling for the following covari-
ates: age, sex, handedness (left-handed indicator), and 
FreeSurfer-derived total intracranial volume. The family 
cluster (ie, a random code assigned to all probands and 
relatives from the same pedigree) and site variables were 
incorporated as random effects in the model. The model 
specified the covariance structure within subjects using 
an unstructured model to account for the within-sub-
ject correlation across family clusters and sites. A fam-
ily cluster effect was included in the mixed-effect model 
only for analyses comparing probands and their respec-
tive relatives. F test was used to test a diagnostic group 
variance in mean estimates, and t test was used to test 
pairwise between-group differences in mean estimates 
of  the left and right hippocampal volumes from manual 
tracing and FreeSurfer.

Fourteen percent of the study sample (including 9 SZ, 
6 SAD, 7 BDP, 17 SZ-Rel, 7 SAD-Rel, 21 BDP-Rel, and 
17 HC) had missing FreeSurfer-derived hippocampal 
volume and total intracranial volume data. The missing 
intracranial volume variables were imputed using mul-
tiple imputation (MI) method57 and subsequently used as 
a covariate in both manual- and FreeSurfer-based hippo-
campal volume analyses. MI is a simulation-based inferen-
tial tool operating on multiple completed data sets, where 
the missing values are replaced by random draws from 
their respective predictive distributions following Monte 
Carlo Markov Chain (SAS9.3 Proc MI procedure). This 
study used 50 sets of completed data, then analyzed by 
standard complete data methods, and the results were 
combined into a single inferential statement using rules 
to yield estimates, standard errors, and P values that for-
mally incorporate the missing-data uncertainty into the 
modeling process (SAS9.3 Proc MIANALYZE).

In addition, a series of exploratory analyses was 
conducted to examine potential disease and medica-
tion effects on hippocampal volume using maximum 

likelihood mixed-effect regression models (SAS9.3 Proc 
MIXED). (1) To explore whether hippocampal volume 
outcomes cosegregate in probands and relatives within 
the same pedigree, relatives were stratified by the hip-
pocampal volumes in their respective probands using a 
“median split” approach.8 Subsequently, relatives of pro-
bands with hippocampal volumes above vs below group 
median were compared. (2) To examine effect of lifetime 
mild psychosis manifestations on hippocampal volume, 
relatives with psychosis spectrum/cluster A  personality 
disorders (n = 24) were contrasted with relatives without 
lifetime psychosis (n = 198), including those completely 
unaffected (n = 126) and those with nonpsychotic Axis 
I/II disorders (n = 72). (3) Pearson correlations were 
computed between hippocampal volumes and symp-
tom severity scores from PANSS, YMRS, and MADRS 
(in probands) and between hippocampal volumes and 
BACS composite and declarative/verbal memory scores 
(in proband, relative, and control groups). (4) To inves-
tigate effect of active medication use, hippocampal vol-
ume outcomes were contrasted in all probands combined 
who were actively treated with antipsychotic medications 
vs those off-antipsychotics and those on- vs off-lithium. 
In addition, Pearson correlations between antipsychotic 
dose chlorpromazine equivalents58 and hippocam-
pal volumes from manual tracing and FreeSurfer were 
calculated.

Pearson correlations between hippocampal volume 
outcomes from the 2 sMRI methodologies were also 
computed.

Results

Hippocampal Volume in Probands

Hippocampal volume outcomes in the psychosis pro-
bands and HC from manual tracing and FreeSurfer are 
presented in table 2A and figure 1A. Effect of the diag-
nostic group was observed for the left manual (P = .088, 
trend) and bilateral FreeSurfer (left, P = .005; right,  
P = .001) measures. A  priori planned pairwise com-
parisons showed lower hippocampal volumes in SZ 
and SAD compared with HC based on manual tracing  
(P = .02–.09, except for the right hippocampus in SAD 
P = .14) and FreeSurfer (P = .0007–.009). In contrast, all 
outcomes in BDP were not different from controls (P = 
.18–.55). Furthermore, FreeSurfer measurements showed 
reduced hippocampal volumes in SZ and SAD compared 
with BDP (P = .02–.07).

Hippocampal Volume in Relatives

Hippocampal volume outcomes in relatives of the psy-
chosis probands and HC based on manual tracing and 
FreeSurfer are reported in table  2B and figure  1B. No 
overall effect of the diagnostic group (P = .39–.99) was 
observed for any of the hippocampal measures, using 
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either methodology. Likewise, planned pairwise compari-
sons showed no between-group differences in any of the 
relative groups vs controls (P = .25–.93) or across the 3 
relative diagnostic groups (P = .12–.97).

Hippocampal Volume Outcomes in Probands vs 
Relatives

Hippocampal volume outcomes in the psychosis probands 
contrasted with their relatives are presented in table 2C 
and figure  1C. SZ and SAD had lower hippocampal 
volumes than their respective relatives based on manual 
tracing (P = .005–.08) and semiautomated parcellation  
(P = .002–.05). BDP showed decreased hippocampal 

volumes compared with their relatives based on manual 
tracing (P = .03–.09), but not FreeSurfer (P = .64–.997).

Effect of Illness and Medication on 
Hippocampal Volume

Relatives’ subgroups stratified by hippocampal volumes 
in their respective probands based on “median split” 
showed numerically lower volumes in the relatives of 
probands whose hippocampal volumes fell below group 
median compared with relatives of probands with vol-
umes above group median (supplementary table 2). These 
differences were statistically significant in BDP-Rel for 
the left manual tracing volume (P = .001) and at a trend 

Fig. 1.  Hippocampal volume outcomes from manual tracing and FreeSurfer in probands, relatives, and healthy controls. The scatter 
plots show individual hippocampal volumes derived from manual tracing and FreeSurfer in each proband, relative, or HC subject. The 
horizontal bars indicate group means and standard deviations. SZP, probands with schizophrenia; SADP, probands with schizoaffective 
disorder; BDP, probands with psychotic bipolar I disorder; SZR, relatives of probands with schizophrenia; SADR, relatives of probands 
with schizoaffective disorder; BDR, relatives of probands with psychotic bipolar I disorder; HC, healthy controls; L Hipp, the left 
hippocampus; R Hipp, the right hippocampus; MT, manual tracing; FS, FreeSurfer.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu009/-/DC1
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level in SZ-Rel (left manual, P = .051; right FreeSurfer, 
P = .052) and SAD-Rel (left manual, P = .068) relative 
subgroups.

No between-group differences in hippocampal volume 
were found in relatives with lifetime psychosis spectrum 
disorders vs relatives unaffected by psychosis for either 
manual (P = .64–.73) or semiautomated (P = .58–.71) 
hippocampal ROIs (supplementary table 3).

PANSS total and positive subscale scores correlated 
inversely with bilateral hippocampal volumes from man-
ual tracing and FreeSurfer (r = −.14 to −.3, P < .05) 
(supplementary table  4), whereas no correlations were 
found with PANSS negative and general subscale scores, 
YMRS, or MADRS scores in any of the proband groups. 
BACS composite and verbal memory scores showed 
direct correlations with manual tracing and FreeSurfer 
hippocampal volume outcomes across proband, relative, 
and control groups (supplementary table 4).

No differences in hippocampal volumes were 
found in probands actively treated with antipsychotic 
medication(s) vs those off-antipsychotic(s) (P = .65–.94) 
(table  3A). Probands treated with lithium had numeri-
cally higher hippocampal volumes compared with those 
off-lithium across all measures. However, this difference 
was statistically significant only for the right hippocam-
pal volume from FreeSurfer (P = .047). All correlations 
between antipsychotic dose chlorpromazine equivalents 
and manual and FreeSurfer hippocampal volume out-
comes were nonsignificant (table 3B).

Correlations Between Manual Tracing and 
Semiautomated Hippocampal Outcomes

Direct, moderate to strong correlations were found 
between hippocampal volume outcomes from manual 
tracing and semiautomated parcellation (r = .51–.73, 
P < .05) across all proband, relative, and HC groups 
(figure  2). Manual tracing yielded lower bilateral hip-
pocampal volumes than FreeSurfer: 31.46% and 34.58% 
volume differences for the left and right hippocampal 
ROIs, respectively, averaged across all study groups.

Discussion

This study examined hippocampal volume characteris-
tics in probands and their first-degree relatives across the 
schizophrenia-bipolar psychosis dimension from a large 
multisite sample (B-SNIP) using 2 ROI methodologies: 
The “gold standard” manual tracing and FreeSurfer. The 
outcomes showed bilateral hippocampal volume reduc-
tions in SZ and SAD compared with controls, but normal 
bilateral hippocampal volumes in BDP. Hippocampal 
volumes in relatives contrasted by their probands’ diag-
noses were normal, with no differences found between 
relatives with and without lifetime psychosis spectrum 
disorders. However, relatives’ subgroup analysis, where 
hippocampal outcomes in relatives were stratified by their 

respective probands’ volumes (ie, above and below group 
median), suggested a cosegregation of hippocampal vol-
ume outcomes in probands and relatives from the same 
pedigree: Relatives whose probands had “high” volumes 
also had “high” hippocampal volumes, whereas relatives 
whose probands had “low” volumes also showed “low” 
hippocampal volumes. These differences were strongest 
in BDP-Rel (left manual measure, P = .001) but were 
also observed in SZ-Rel (left manual, P = .051; right 
FreeSurfer, P = .052) and SAD-Rel (left manual, P = 
.068) at a trend level. Furthermore, hippocampal vol-
ume outcomes from the conventional manual tracing 
approach with rigorous reliability standards and semi-
automated regional parcellation, FreeSurfer, correlated 
highly. Exploratory analyses revealed inverse correlations 
between hippocampal volume and PANSS psychosis and 
total scores, suggesting a relationship between the vol-
ume reduction and severity of psychosis. Direct correla-
tions were obtained between hippocampal volume and 
BACS declarative memory and composite scores, sug-
gesting a cognition cost to hippocampal volume reduc-
tion. Active treatment with antipsychotics had no effect 
on hippocampal volume outcomes, whereas lithium was 
associated with an increased hippocampal volume, albeit 
based on a single measure (right FreeSurfer, P = .047).

The divergent findings for hippocampal volume out-
comes in schizophrenia/schizoaffective disorder vs 
psychotic bipolar I disorder are in agreement with sev-
eral prior reports,1,24,31,33 but not all.13,24,26 The volume 
decreases found in schizophrenia/schizoaffective cases 
are subtle, consistent with previously observed range of 
2%–4% decrease based on meta-analyses;3,5 thus, larger 
samples may be necessary to detect these regional altera-
tions. The mechanisms underlying these hippocampal 
volume differences across schizophrenia vs bipolar disor-
der phenotypes are unknown. Nevertheless, postmortem 
findings from schizophrenia and bipolar cases parallel 
these hippocampal characteristics captured with sMRI. 
Tissue from SZ cases show reductions in whole hippo-
campal volume compared with controls59,60 (although 
see).61,62 Decreased hippocampal volume may be due 
to reduced neuropil volume along with normal cell size 
and number, similar to Goldman-Rakic and Selemon’s63 
observations in prefrontal cortex in schizophrenia. 
Furthermore, hippocampal subfield alterations have been 
reported in schizophrenia, suggesting subfield-specific 
disease vulnerability16: Cell size is decreased in the left 
cornu ammonis 1 (CA1) and CA2, and the right CA364; 
nonpyramidal cell size and density in CA2 were found to 
be decreased in a mixed schizophrenia/bipolar disorder 
sample.65 However, 2-dimensional cell counting studies 
carry methodological limitations due to tissue shrink-
age by fixation and staining procedures.62 Additionally, 
problems may be caused by irregular cell shape and size 
(ie, pyramidal neurons), nonrandom orientation, and 
cutting of cells during sectioning.66 Stereological studies 

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu009/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu009/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu009/-/DC1
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failed to detect alterations in the total cell number in 
CA1, CA2/3, CA4, or subiculum in schizophrenia cases 
vs matched controls.61,67 Nevertheless, a decreased oli-
godendrocyte number in the bilateral deep polymorph 
layer of the dentate gyrus/CA4 has been detected and 
linked to hippocampal volume decreases and white mat-
ter tracts alterations captured with in vivo imaging tech-
niques.62 Postmortem findings in bipolar probands are 
even less consistent, with some studies reporting subtle 
hippocampal volume reductions compared with con-
trols.68 Although the total number of hippocampal neu-
rons is normal,69 size of pyramidal neurons in CA170 and 

nonpyramidal cell layer volume in CA2/369 were found to 
be decreased in bipolar cases vs HC. In contrast, some 
studies report no differences in neuronal densities in hip-
pocampus, superior temporal cortex, and dorsolateral 
prefrontal cortex in bipolar vs controls tissue,71 consis-
tent with the finding of overall normal cortical thickness 
in bipolar cases.72 These distinct postmortem findings in 
schizophrenia and bipolar disorder, with volumetric/cel-
lular reductions found in schizophrenia and less severe, if  
any, tissue volume changes in bipolar disorder,73 suggest 
at least partially unique anatomical underpinnings for the 
2 disorders and provide plausible cellular correlates for 

Table 3.  Associations Between Psychotropic Medications and Hippocampal Volume Outcomes

A. Hippocampal Volume Comparisons in Probands On- and Off-Antipsychotic Medications and Lithium

Hippocampal  
Volume Measure

Proband Groups by 
Active Medication Usea

Hippocampal Volume, 
Mean ± SD, mm3 df t P

Antipsychotics
  Manual left On (n = 184) 2678.05 ± 372.76 220.25 0.46 .65

Off (n = 39) 2631.19 ± 414.40
  Manual right On (n = 185) 2613.52 ± 354.90 220.27 0.46 .65

Off (n = 39) 2545.04 ± 448.60
  FS left On (n = 168) 3935.34 ± 403.89 194 0.07 .94

Off (n = 33) 3833.45 ± 461.79
  FS right On (n = 169) 4016.38 ± 439.42 196 0.28 .78

Off (n = 34) 3882.74 ± 519.12
Lithium
  Manual left On (n = 30) 2686.48 ± 362.69 220.25 0.43 .67

Off (n = 193) 2667.27 ± 383.24
  Manual right On (n = 30) 2640.55 ± 359.67 220.27 0.10 .92

Off (n = 194) 2595.58 ± 375.20
  FS left On (n = 25) 4019.88 ± 351.42 194 1.13 .26

Off (n = 176) 3904.23 ± 421.53
  FS right On (n = 26) 4171.31 ± 453.90 196 2.00 .047

Off (n = 177) 3967.95 ± 450.69

B. Pearson Correlations Between Antipsychotic Dose Chlorpromazine Equivalents and Hippocampal Volumes

Antipsychotic Dose Chlorpromazine Equivalentsb

SZ (n = 39) SAD (n = 25) BDP (n = 86)

Mean ± SD, mg 472.11 ± 365.93 619.72 ± 639.13 306.75 ± 450.26

Pearson Correlations in All Probands Combined

Hippocampal  
Volume Measure n r P

Manual left 109 .02 .86
Manual right 104 .08 .39
FS left 110 −.07 .47
FS right 104 .02 .82

Note: Manual right, right hippocampal volume from manual tracing; Manual left, left hippocampal volume from manual tracing; FS 
right, right hippocampal volume from FreeSurfer; FS left, left hippocampal volume from FreeSurfer; SZ, probands with schizophrenia; 
SAD, probands with schizoaffective disorder; BDP, probands with psychotic bipolar I disorder.
aSample sizes are indicated per hippocampal volume measure.
bChlorpromazine equivalents were calculated for concomitant (taken during the study) antipsychotic medications according to 
Andreasen et al.58

Statistically significant outcomes are indicated in Bold.
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Fig. 2.  Pearson correlations between the hippocampal volume outcomes from the 2 ROI methodologies–manual tracing and 
FreeSurfer–in all study groups combined. Manual tracing yielded lower bilateral hippocampal volumes than FreeSurfer: left, 
manual tracing volume = 2721.38 mm3, FreeSurfer = 3970.78 mm3, 31.46% difference; right, manual tracing volume = 2645.51 mm3, 
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the divergent hippocampal volume outcomes in SZ/SAD 
and BDP observed here.

Alternatively, it is possible that hippocampal volume 
preservation in BDP could be secondary to a medication 
effect (ie, chronic treatment with lithium) and that, even 
if  a “primary” disease-associated loss of hippocampal 
volume exists in these probands, it could be obscured by 
a volume-enhancing effect of chronic exposure to lith-
ium.32,33 Our findings of higher hippocampal volumes in 
probands actively treated with lithium vs those who were 
not support this notion, albeit the exploratory nature of 
these analyses merits cautious interpretation. Moreover, 
active treatment effects tested here could be obscured by 
high frequency of combined medication use (61%–81%) 
across all proband groups, as well as by longitudinal 
effects of both disease and treatments on hippocampal 
structure.74–78 Disambiguating disease and medication 
effects is difficult, especially in a cross-sectional study 
such as ours.

The finding of overall normal hippocampal volumes 
in biological relatives, when contrasted based on their 
probands’ diagnoses, is in agreement with some2,27,31,41,42 
but not all25,35–39 reports. Hippocampal abnormalities in 
relatives may be even more subtle than in probands, pos-
sibly manifesting on functional rather than structural 
level, supported by well-established deficits in declarative 
memory in SZ-Rel, SAD-Rel, and BDP-Rel79–81; and cor-
relations with BACS observed here. Our findings argue 
for disease effects that accompany psychosis in probands 
(eg, characteristic cellular abnormalities in SZ), which 
may be not present in relatives. Longitudinal MRI studies 
find hippocampal volume decreased in first-episode and 
chronic psychosis probands alike but not in ultrahigh-
risk individuals,20 suggesting this biomarker’s specific-
ity to frank, fully manifested psychosis within psychosis 
dimension. Subsequent exploratory analyses stratifying 
relatives’ hippocampal outcomes by volumes in their 
related probands suggest a consistent pattern of hippo-
campal outcomes within the same pedigrees: Relatives of 
probands with “low” hippocampal volumes had “low” 
volumes as well, whereas relatives of probands with 
“high” volumes had consistently “high” hippocampal 
outcomes. These findings indicate substantial heterogene-
ity within the relatives’ sample, with a range of heritable82 
“hippocampal biomarker load,” clustering in probands 
and relatives within the same pedigree. These hippo-
campal volume characteristics do not map on either the 

DSM “schizophrenia/bipolar” or “psychosis spectrum 
disorders/unaffected” relatives diagnostic groups, and 
advocate for future studies testing heritability and genetic 
underpinnings for brain structure biomarkers.

Hippocampal outcomes from manual and semiauto-
mated volumetric approaches showed direct, moderate 
to strong correlations (r = .51–.73,  P < .05), consistent 
with previous studies.12,83 Nevertheless, these methodolo-
gies utilize entirely different volume-defining approaches, 
reflected in observed here differences in volumes (ie, lower 
volumes with manual tracing than FreeSurfer), similar to 
prior reports.12,83 Manual tracing remains a “gold stan-
dard” in ROI-focused investigations, providing precise 
regional definitions and is highly sensitive to within- and 
between-subject anatomical variabilities. It is especially 
useful in investigation of brain structures known to have 
significantly heterogeneous tissue intensity properties, eg, 
subcortical structures, as well as in hippocampal subfield-
level analyses.84,85 However, this methodology requires 
rigorous reliability standards, high scan resolution, and 
ROI definition specificity, particularly in the hippocam-
pus.51 FreeSurfer is semiautomated and therefore highly 
reproducible and more efficient in person hours, mak-
ing it useful for large samples. However, region-specific 
inconsistencies in volume estimates have been reported 
with this technique, eg, less precision in anterior hippo-
campus,83 and overall larger/more inclusive hippocampal 
ROIs compared with manual tracing,12,83 accounted for 
by inclusion of areas avoidable during manual tracing 
(eg, subiculum/presubiculum, hippocampus-amygdala 
transitional zone). Nevertheless, the 2 methodologies 
show high correlations in volume estimates, and both are 
reliable and valid for volumetric analysis.

These findings from a large psychosis family sample 
(B-SNIP) support structural alterations in hippocampus 
as a putative biomarker for the 2 major psychosis phe-
notypes, schizophrenia and schizoaffective disorder, but 
not for psychotic bipolar I disorder. Both the “primary” 
disease effects, as demonstrated by postmortem schizo-
phrenia vs bipolar tissue findings,63–65,68–70,72 and chronic 
treatments (eg, a volume-enhancing effect of lithium)32,33 
likely contribute to these outcomes. Structural and func-
tional hippocampal alterations, which are long known to 
play a crucial role in learning and memory processes,86 
have been recently linked to psychosis formation,16 pro-
viding a framework for future testing of the biological 
mechanisms of psychosis. The strengths of our study are 

FreeSurfer = 4043.89 mm3, 34.58% difference (all volumes are averaged across all study groups). Correlation coefficients (r) in: (1) All 
groups combined: left, r = .66; right, r = .63; (2) probands: SZ, left, r = .73; right, r = .63; SAD, left, r = .66; right, r = .74; BDP, left, 
r = .65; right, r = .64; (3) relatives: SZ-Rel, left, r = .68; right, r = .69; SZD-Rel, left, r = .6; right, r = .55; BDP-Rel, left, r = .72; right, 
r = .71; and (4) HC: left, r = .57; right, r = .51. All correlations are statistically significant at P < .05. SZ, probands with schizophrenia; 
SAD, probands with schizoaffective disorder; BDP, probands with psychotic bipolar I disorder; SZ-Rel, relatives of probands with 
schizophrenia; SAD-Rel, relatives of probands with schizoaffective disorder; BDP-Rel, relatives of probands with psychotic bipolar 
I disorder.
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the relatively large sample, study of psychosis probands 
and their relatives across DSM psychosis diagnoses, and 
comprehensive hippocampal ROI characterization via 
2 complimentary volumetric methodologies: The “gold 
standard” manual tracing and semiautomated parcel-
lation by FreeSurfer. Limitations include the cross-
sectional nature of the study, potential confounds related 
to chronic and active medication use (ie, only a small sub-
set of probands were off-antipsychotics, mood stabiliz-
ers, and/or other psychotropic medications at the time of 
imaging acquisition), as well as state of illness. In addi-
tion, psychosis diagnoses are limited to schizophrenia, 
schizoaffective disorder, and psychotic bipolar I  disor-
der, and do not cover full psychosis spectrum or relevant 
nonpsychotic phenotypes (eg, nonpsychotic bipolar dis-
order). Future studies investigating brain structure char-
acteristics in individuals with severe mental illness, using 
multimodal imaging techniques coupled with genetic and 
molecular testing, focusing on disease dimensions (eg, 
psychosis, affect, and cognition) and underlying circuit-
ries may help to elucidate disease mechanisms and define 
disease biomarkers.
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Supplementary material is available at http://schizophre 
niabulletin.oxfordjournals.org.
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