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Abstract

We propose a novel localized principal component analysis (PCA) based curve evolution 

approach which evolves the segmenting curve semi-locally within various target regions 

(divisions) in an image and then combines these locally accurate segmentation curves to obtain a 

global segmentation. The training data for our approach consists of training shapes and associated 

auxiliary (target) masks. The masks indicate the various regions of the shape exhibiting highly 

correlated variations locally which may be rather independent of the variations in the distant parts 

of the global shape. Thus, in a sense, we are clustering the variations exhibited in the training data 

set. We then use a parametric model to implicitly represent each localized segmentation curve as a 

combination of the local shape priors obtained by representing the training shapes and the masks 

as a collection of signed distance functions. We also propose a parametric model to combine the 

locally evolved segmentation curves into a single hybrid (global) segmentation. Finally, we 

combine the evolution of these semilocal and global parameters to minimize an objective energy 

function. The resulting algorithm thus provides a globally accurate solution, which retains the 

local variations in shape. We present some results to illustrate how our approach performs better 

than the traditional approach with fully global PCA.

1. Introduction

Level set based shape prior models are widely used in various computer vision applications 

like segmentation, tracking, shape recognition to obtain prior knowledge from training data. 

Principal component analysis (PCA) is commonly used to generate shape priors. In this 

paper, we focus our attention on one such application, a localized PCA based shape prior 

implementation for image segmentation.

The concept of using prior shape knowledge for segmentation was introduced by Cootes et 

al. in [5]. Later Chen et al. [4] used average shape in a geometric active contour model and 

Leventon et al. [8] used a level set framework to restrict the flow of active contours using 

shape information. Level set based shape prior models for image segmentation were 

NIH Public Access
Author Manuscript
IEEE Int Conf Comput Adv Bio Med Sci. Author manuscript; available in PMC 2014 December 
15.

Published in final edited form as:
IEEE Int Conf Comput Adv Bio Med Sci. 2011 November 6; 2011: 1981–1986. doi:10.1109/ICCV.
2011.6126469.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



developed later in [9, 11]. Cremers et al. [6] developed a method to improve segmentation 

by selectively preferring certain shape priors/objects over others. Davatzikos et al. [7] 

showed that using wavelets in a Hierarchical Active Shape Model framework can capture 

certain local variations. Recently authors in [12] developed an explicit ASM-based scheme 

that generates independent partitions and uses PCA strictly local to these partitions and 

authors in [1] use fully global PCA with weighted local fitting. All the above-mentioned 

approaches treat the entire shape as a single global entity.

In our paper, we develop the concept of using localized shape priors for segmentation. We 

first divide our image domain into various target regions by clustering parts of the global 

shape which exhibit highly-correlated local shape variations. The variations in these regions 

may be independent of the variations in other parts of the global shape. We can use these 

local shape priors in an explixit curve representation framework, as in the case with the 

Active Shape Models, or we can use these shape priors in an implicit level set based shape 

prior approach. In this paper, we develop local PCA-based shape priors in a level set 

framework, but our approach can be extended to the explicit ASM scheme by following a 

similar procedure.

Figure 1 shows a sample set of training images. These images are manual segmentations of 

the objects we intend to segment, mugs in this case. The target masks shown in Figure 1(h-

m) separate the variations in the shape of the handle from the shape of the body of the mug.

With these target regions, we use a spatially weighted (local) PCA [10] to learn the shape 

variation in each target region. Thus, we focus the learning from PCA to these regions and 

maximize the utility of each principal component (shape prior). Since we use a spatially 

weighted learning and fitting procedure, we do not require very precise target masks.

We represent our training shapes and target masks using the level set formulation described 

in [11]. We apply local PCA on the level sets for the shape and the mask to obtain a set of 

eigenshapes (shape priors) and eigenmasks (mask priors) corresponding to each target mask. 

We can then represent the segmenting curve and the mask for each (target) semi-local 

segmentation as a linear combination of these local eigenshapes and eigenmasks. Evolving 

the curves locally within these masks generates locally accurate segmentation curves. We 

combine these curves to obtain a hybrid global segmentation curve. Finally, we evolve this 

hybrid curve to obtain a globally accurate segmentation.

Although the semi-local parameters affect the global shape of the segmenting curve, their 

evolution depends on information local to the mask. Henceforth, in the paper, we will refer 

to these semi-local parameters and semi-local segmentation curves as local parameters and 

local segmentation curves, respectively. In Sections 3 and 4, we discuss the procedure for 

using local shape priors for segmentation. In Section 5, we explain the combined evolution 

of various local segmentation curves. Finally, in Section 6, we use our approach for 

Myocardial segmentation in cardiac images.
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2. Binary Shape Alignment

It is standard procedure to align the training images before using PCA. This ensures that the 

priors will capture only the shape variations and not the pose variations. Consider a training 

data set with n images, {I1, I2, …, In}. For each 2D image Ii, we also define a pose 

parameter vector pi, such that p = [a, b, h, θ], where a, b, h and θ represent the x-, y-

translation, scale and rotation, respectively. We jointly align the n images in our training set 

by minimizing the following energy functional [11] with respect to the pose parameters:

(1)

where the transformed image of I is denoted by Ĩ. Since the target masks correspond to 

regions in the original training images, we do not align the target masks separately. Instead, 

we transform the masks with the same set of pose parameters obtained by aligning the 

training shapes. In Figure 1(g) and 1(n), we show an overlay of training images before and 

after alignment.

3. Local Shape Priors

We use signed distance functions to represent the shapes and the masks [8, 9, 11]. The zero 

level set depicts the shape/mask boundary, with positive distances indicating the regions 

inside the boundary and negative distances indicating the regions outside the boundary. Let 

{ψ1, ψ2, …ψn} denote the signed distance functions for the n shapes and {φT1, φT2, …φTn} 

denote the signed distance functions for the corresponding binary masks for a specific target 

T. The mean level set for the shapes, and the mean level set for the masks 

of a given target T is . Now, we define an extended shape variability 

matrix for each target mask as explained in [2].

(2)

In addition to the shape variability matrix we also define a weighting matrix MT, for each 

target T,

Here g(·) is a non-linear function which has unit weight for the elements within the mask 

and for the regions outside the mask it monotonically decreases to zero as we move away 

from the boundary of the mask (g(ϕ̃ ≥ 0) = 1, 0 < g(ϕ̃ < 0) < 1). 1 denotes unit weight for 
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elements which correspond to the mask. Now, we use spatially weighted EM framework 

[10] to estimate k principal components for shape and target mask (k < n). The matrix MT 

gives higher emphasis to the regions within the mask, hence the shape priors will capture the 

local variations better. We denote the localized principal components for the shapes and 

masks as {ψT̂1, ψ̂
T2, …ψ̂

Tk} and {ϕ̂
T1, ϕ̂

T2, …ϕ̂
Tk}, respectively.

We now formulate a new level set function, ψ̃
T, as a linear combination of the mean level set 

(ψ̄) and the k principal modes (local shape priors). In addition to the k modes, we also have 

to accommodate the pose variations in the framework. For a given target mask T, we define 

the new level sets for shape and mask as

(3)

(4)

Here pT is the pose vector and {αT1, αT2, …, αTl} are the weights associated with principal 

modes {ψT1, ψT2, …, ψTl} and {ϕT1,ϕT2, …,ϕTl}. The zero level set of ψ ̃represents the 

shape boundary and by varying the weights αT, we can vary the shape implicitly. The 

evolution of the ϕ̃ should correspond to evolution of ψ̃. Thus, we use the same set of pose 

and shape parameters for both ψ̃ and ϕ̃. Figure 2 compares the variation caused by the 

principal mode of fully global PCA with the variation caused by the principal modes of the 

local PCA for the two target masks.

4. Local Parameter Optimization via Gradient Descent

In this section, we describe the coupled evolution of ψ̃ and ϕ̃ to segment the region of an 

image within the given target mask. The domain under consideration will not be the entire 

image, but only the region within the mask (ϕ̃ ≥ 0). We need to choose a geometric active 

contour energy model to segment this region. In this paper, we use region-based energy, 

although other forms of energies may also be used effectively. Consider a general class of 

region-based energy

(5)

where and 

.

We employ gradient descent on E(ψ̃, ϕ̃) with respect to the pose parameters p and shape 

parameters αl for the evolution of ψ̃. For concise notations, we denote Θ as a collective 

representation of the pose and shape parameters. We denote the gradient of E(ψ̃, ϕ̃) with 

respect to a given parameter Θ by ∇ΘE. The update equation for parameter Θ is given by
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We now denote the zero level set of ψ̃ and ϕ̃ by Cψ̃ and Cϕ̃, respectively. The evolution of 

parameters Θ results in the evolution of ψ̃ and ϕ̃, which causes an implicit evolution of Cψ̃ 

and Cϕ̃. Figure 3 shows a graphical representation of ψ̃ and ϕ̃. To compute ∇ΘE, we need 

the line integral on the curve C. We can thus represent ∇ΘE as the line integral

(6)

where s is the arc length parameter of the curve and N⃗ ψ̃ is the outward normal of the zero 

level set of ψ̃.

Since the zero level set of ψ̃ is a function of C and Θ, we have

(7)

Taking the gradient of (7) w.r.t. Θ, we get

(8)

Substituting (8) in Equation (6), we get

(9)

where .

In the examples presented here, we use the region-based energy functional proposed by 

Chan and Vese [3]. Thus, we use the following choices for functions fin and fout:

where μ and ν denote the mean intensity values inside the regions Rin and Rout respectively.

Figure 4 shows an example of local segmentation using two target masks. We initialize the 

segmentation with the mean level set shown in Figure 2(a). Since the curve evolves only on 

the basis of the cues within the mask, we get a reliable segmentation in the regions inside the 

mask.
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5. Combined Shape Evolution

5.1. Initialization

The target regions are chosen such that they isolate correlated local variations. In reality, the 

local variations in the various target regions are never completely independent. Thus, we 

have to combine the local segmentation curves corresponding to each target mask to obtain a 

hybrid segmentation. To combine the individual local segmentation curves we use the same 

level set framework that we used in generating the local segmentation.

Given N target regions, we combine the level sets {ψ1̃, ψ̃
2, …ψ̃

N} into a single hybrid level 

set Ψinit.

(10)

where λT is the scalar weight associated with each target level set and ρ(ϕ̃
T) ≥ 0 is a non-

linear function. We set the value of λT = 1/N to obtain the initial hybrid level set. The 

function ρ(·) should be 1 in the regions within the mask (positive values of ϕ̃
T and for the 

regions outside the mask it should monotonically decrease to zero as we move away from 

the mask boundary. In the regions where the masks overlap, the hybrid level set will be the 

average of the overlapping level sets. Thus, the hybrid level set seamlessly combines the 

various target level sets (with a higher weight given to the regions inside each mask).

5.2. Evolution

Along with the k principal modes corresponding to each target level set ψ̃
T, we use a single 

set of pose parameters P for the hybrid level set Ψ. Since we have a new set of pose 

parameters, we will update the eigenshapes and eigenmasks for each target with the 

corresponding pose parameters (ψT̂l = ψ̂
Tl(pT), ϕ̂

Tl = ϕ̂
Tl(pT)). Thus, (3) becomes

(11)

where AT are the weights associated with the new eigenshapes. A similar equation can be 

derived for the update of the mask ϕ̃
T. Now, we can express the hybrid level set as

(12)

This hybrid level set is a function of the set of pose parameters (P), shape parameters 

corresponding to each target region {A1, A2, …, AN} and scalar weights {λ1, λ2, …, λN}. 

We converge to the final segmentation by employing gradient descent (Section 4) on each of 

these parameters. The parameters λT and AT will evolve based on the cues within their 

respective target regions. Thus, the evolution still retains the local properties within each 
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mask. But the pose parameters will be affected by the collective region of all the target 

masks, hence the pose parameters evolve based on global cues. Thus, the final segmentation 

retains the local shape variations in each mask and these variations are combined using 

global pose parameters.

Figure 5(a) shows the final evolved hybrid segmentation using 2 principal modes for each 

target mask. Figure 5(b) shows the segmentation obtained using the fully global PCA 

approach using 4 principal modes. Although we use the same number of principal modes to 

segment the image in both cases, the local PCA approach does a very good job of capturing 

the shape of the body of the mug as well as the handle. Since most of the effort from the 

fully global PCA is used in learning and fitting the shape of the body, it is unable to segment 

the handle correctly. Our approach concentrates the efforts of the local PCA to segment each 

target region separately, thus achieving a better global segmentation. In Figure 6, we show 

results on the same test image with added occlusions, variation in pose and additive 

Gaussian noise. These results suggest that our approach is robust under such demanding 

conditions, which are common to various segmentation tasks.

6. Application to Cardiac Image Segmentation

Myocardial segmentation in cardiac images is considered a very challenging problem 

because of the low contrast separating the ventricles from the myocardium and partially 

missing boundaries along the ventricles. In our experiment, we used a data set of 200 2-D 

images from a 4-D interactive manual segmentation of a single patient's cardiac CT scan. 

We used 100 of these images for training and the test set consisted the other 100 images. 

Figure 7 shows an example of one training image slice with the corresponding manual 

segmentation. To generate the masks we dilate the left and right ventricles from the manual 

tracing. We dilate the masks enough to include some parts from the exterior regions of the 

epicardial boundary.

Figure 8 compares the results of segmentation on a test image. We use 12 principal modes 

for each target mask, and compare our result with the fully global PCA approach with 24 

principal modes. Our approach segments the boundaries along both the ventricles and the 

epicardium, whereas the fully global PCA approach tries to fit the curve simultaneously on 

the endocardial and epicardial boundary, and in the process fails to achieve either. We note 

that the masks were generated automatically from the training data, which suggests that our 

approach does not rely on custom designed masks. The masks need not be designed 

accurately; any mask that can successfully cluster the correlated local shape variations will 

improve segmentation. Since our approach uses fewer modes for segmentation, it can be 

very useful in cases where the training data set consists limited data.

7. Conclusion

We have presented a variational framework that can employ local shape priors to segment 

within various target regions in an image and then combine these locally accurate 

segmentation curves to obtain a single globally accurate segmentation. The examples 

presented in our paper show that concentrating the efforts of the local shape priors within 

certain target regions can enhance the utility of PCA as a tool.
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Figure 1. 
(a-f) Training images, (h-m) Target Masks: The white regions mark Target Mask ‘1’ - 

capturing variations in the shape of the body. Gray regions mark Target Mask ‘2’ - capturing 

variations in the shape of the handle. (g) Shape overlay before alignment (n) Shape overlay 

after alignment.
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Figure 2. 
Shape variability of fully global PCA and localized PCA.
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Figure 3. 
Domain under consideration is marked by the shaded region. The region inside the mask and 

the curve form Rin and the region outside the curve but inside the mask forms Rout.
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Figure 4. 
Local segmentation: Red curves mark the boundary of the target mask. The segmentation is 

accurate inside each target mask (without caring for the segmentation outside the mask).
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Figure 5. 
The final hybrid segmentation successfully segments the handle and the body of the mug, 

where as the fully global PCA approach uses all its training resources to capture the 

variation in the mug body and fails to segment the handle.
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Figure 6. 
Segmentation on mug image with occlusion and noise.
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Figure 7. 
Myocardial Segmentation: Training data and masks.
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Figure 8. 
(a) Cardiac image (b,c) Black curve - boundary of target mask, White curve - semi-local 

segmentation. (d,e) Black curve -manual tracing, White curve - Final Segmentation. (d,e) 

Average distance between the manual tracing and segmentation: (d) (1.47 ± 1.88)mm. (e) 

(5.21 ± 6.41)mm.
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