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Abstract

Gene set analysis (GSA) is a promising tool for uncovering the polygenic effects associated with 

complex diseases. However, the available techniques reflect a wide variety of hypotheses about 

how genetic effects interact to contribute to disease susceptibility. The lack of consensus about the 

best way to perform GSA has led to confusion in the field and has made it difficult to compare 

results across methods. A clear understanding of the various choices made during GSA—such as 

how gene sets are defined, how SNPs are assigned to genes, and how individual SNP-level effects 

are aggregated to produce gene- or pathway-level effects—will improve the interpretability and 

comparability of results across methods and studies. In this review, we provide an overview of the 

various data sources used to construct gene sets and the statistical methods used to test for gene set 

association, as well as provide guidelines for ensuring the comparability of results.
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Moving from genes to gene sets to understand complex disease

Genome-wide association studies (GWAS) have substantially improved our knowledge of 

the genes involved in complex diseases [1]. For most diseases, however, GWAS studies 

have revealed that strong single-gene effects are the exception, not the rule. It is now clear 

that genetic risk for most complex diseases involves the cumulative small effects of many 
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genes, perhaps in concert with a few genes of moderate effect. This fact mandates a move 

from individual genetic associations to hypotheses about how interactions between the 

effects of multiple genes contribute to disease susceptibility and expression [2].

Gene set (or pathway) analyses, which test for association between curated collections of 

genes and a phenotype, are a primary approach for exploring the aforementioned polygenic 

effects. It is expected that this approach will allow researchers to extend the knowledge 

gained from GWAS, including those already conducted. As these methods test the 

cumulative effect across multiple genes, it is possible to detect effects at the gene set level, 

which may be the result of heterogeneous effects at the gene or variant level. Furthermore, 

gene set analyses improve the power to detect statistically significant associations both 

because collapsing individual SNPs into gene sets results in fewer statistical tests performed 

[3,4,5,6], and because individual weak effects, not detectable in a standard GWAS, can 

combined to produce a strong association signal.

In order to realize the potential of gene set analyses to extend the knowledge gained from 

GWAS, the field requires a clear understanding of the different methods for defining gene 

sets, the different approaches to utilizing gene sets, and the statistical methods used to test 

gene sets. The available techniques encompass a wide variety of hypotheses about how 

genetic effects combine to contribute to disease susceptibility, which meaningfully influence 

the results obtained, and therefore must be recognized in order to use these methods 

effectively. The basic steps performed in a gene set analysis are illustrated in Figure 1.

In this review, we aim to provide an overview of the methods available for gene set analysis, 

with special attention paid to the hypotheses and assumptions behind the analysis, the 

interpretation of results, and the comparability of results from different methods. A theme 

that will underlie much of our discussion here is the importance of context. The context 

relevant for gene set analyses can be conceptualized in two ways. Genomic context refers to 

the inherent structure of the genotype data and the statistical or mathematical methods used 

to transform SNP effects into pathway effects. Functional context refers to the details of 

how genes are hypothesized to interact biologically to produce a specific function. The 

definition of a gene set, including information about the relative importance of genes within 

the set and any interactions with the environment in which the gene set acts, is important for 

understanding the functional context of a gene set.

Having a clear understanding of both genomic and functional context will improve 

interpretation of results and will allow for comparison of results from different studies—

something that is often difficult at present. Such an understanding will, we hope, contribute 

to the establishment of a unified perspective of gene set analysis, in turn advancing the 

genetic study of complex traits.

Gene Set Definitions

The concept of a gene set loosely refers to a curated collection of genes based on knowledge 

of genes and biological processes. Numerous databases now provide publicly available gene 

sets that can be used for gene set analyses, for example: the Pathway Commons database [7], 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) [8,9], Reactome [10], the Gene 
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Ontology [11], Metacore [12], Biocarta [13], Molecular Signatures Database (MSigDB) [14, 

15], Pathway Interaction Database (PID) [16], Ingenuity [17], and ConsensusPathDB [18], 

among others. Researchers must be aware of the different models and corresponding 

definitions used to construct these gene sets, so as not to provide misleading interpretations 

of the results [19]. Here we will provide an overview of four of the most commonly used 

gene set definitions: biological pathways, networks, gene ontologies, and biomarkers.

Biological Pathways

The strictest definition of a gene set is the biological pathway. Jarvik and Botstein [20] 

originally described a biological pathway when referring to developmental events as “parts 

of pathways in which intermediates are processed in a defined sequence.” The definition has 

evolved to describe a pathway as a set of interacting genes (or their products) that together 

perform a specific biological function. Still, the idea of concerted action towards a specific 

endpoint remains a key element of a biological pathway [5, 21]. Therefore, a pathway must 

include information about the molecular entities involved, as well as information about how 

those entities interact.

More recently, four types of pathways were proposed to attempt to describe the 

heterogeneity of currently available pathway definitions: molecular, cellular, disease, and 

intervention pathways [5]. With the premise that biological pathways are driven from a 

specific starting point to a specific outcome, molecular pathways characterize biochemical 

actions on a molecule or compound (e.g. folate metabolism). By contrast, cellular pathways 

model the regulation of more global cellular processes, such as cell division or apoptosis. It 

was also suggested that pathways can be defined at higher levels, such as the organ or 

system level. An example of this type of high-level pathway would be the circadian rhythm 

pathway in KEGG [8, 9].

In addition, pathway models can describe disease processes or responses to interventions 

(e.g. drug response). An example of this type of pathways is the Alzheimer’s Disease 

pathway in KEGG, which contains key Alzheimer’s-related genes, such as APOE, APP and 

PSEN1. It was noted, however, that disease and intervention pathways may simply be 

collections of genes previously associated with a phenotype, rather than being based on 

knowledge of precise biological mechanisms [5]. In that case, they may not qualify as 

pathways at all based on the definitions proposed herein. Therefore, depending on the 

amount of information about the interactions between biological entities incorporated in 

disease and intervention pathways, it may be more appropriate to think of these types of 

gene sets as “biomarkers” (discussed below).

Currently available pathway databases illustrate two issues important for the interpretation 

of results from gene set analyses. The first issue is that pathways represent models of 

hypothesized biological processes. There are no standardized rules for constructing pathway 

models [21], although there are frameworks for representing them once they are constructed 

(such as BioPAX [22]). Although experimental data is often used to derive these models, the 

level of evidence supporting pathway models varies among databases and among pathways. 

Thus pathway models may differ among data sources. These differences can have 
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consequences for the interpretation, confidence, and comparability of results from gene set 

analyses [19].

The second issue concerns the hierarchical nature of biological pathways, meaning that 

some pathways can represent subsets of a larger pathway. It was shown that “cross-talk” 

effects (the influence of one pathway on another) are largely due to the shared genes 

(overlap) between pathways. Using a simulated data set, the authors found a strong 

correlation between pathway similarity and p-value coupling, confirming that significantly 

overlapping pathways will have similar p-values [23], violating the independence 

assumptions of statistical tests. Researchers should be aware that gene overlap between 

pathways can lead to a statistically significant association for a pathway that is not 

necessarily biologically meaningful (e.g. not relevant in the specific biological context of the 

disease being studied).

Networks

Biological networks, such as protein-protein interaction (PPI) networks, can also be used to 

define gene sets. Unlike pathways, networks do not explicitly describe a specific biological 

function or process carried out in a specific biological context. Rather, networks simply aim 

to describe biological relationships (observed or predicted interactions) between multiple 

genes or gene products. In general, the evidence used to build publicly available PPI 

networks, such as BIND, DIP, IntAct, MINT, HPRD, and STRING [24, 25, 26, 27, 28, 29], 

is heterogeneous. For example, evidence for protein interaction can come from multiple 

types of experiments (e.g., Co-IP, ChiP-chip, gene expression, text-mining), which are 

performed in various tissue types and under various conditions [30]. In addition, the data 

used to infer an interaction can be of varying quality, and information about the confidence 

of interactions is not always available [31]. Therefore, it can be difficult to extract from 

these databases a high-confidence sub-network that is relevant to a specific biological 

context (e.g., disease process). Nevertheless, networks can be used to derive sets of related 

genes that can be tested for association with a phenotype. Manual curation of network 

models can provide disease-specific biological context, and can improve the ability to detect 

gene set associations. An example is the neurodevelopmental network identified in [32]. 

Other methods for extracting gene sets (sub-networks) from a genome-scale PPI network 

include community detection algorithms, which use topological measures to identify tightly 

clustered nodes [33, 34], and heuristic search algorithms that can identify active 

subnetworks [35, 36, 37]. It is also possible to simply overlay already defined gene sets 

(such as gene ontology categories) onto a PPI network to obtain interactions between the 

genes. See Box 1 for more information about extracting context-specific gene sets from PPI 

networks.

Box 1

Biological Context for Gene Sets

The function of biological pathways often depends on a specific biological context (e.g., 

cell or tissue type). For example, there is evidence that protein interactions can change 

based on the cellular context in which those proteins are being observed (e.g., different 
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stimuli or different tissues) [38, 39]. Methods used to test for association between a 

pathway and a phenotype should consider the effects of biological context [19].

Although manual curation can help refine a pathway definition related to a specific 

phenotype [32], bioinformatics techniques that integrate information from multiple 

sources can also be used to create context-specific gene sets. For instance, a method has 

been described that uses gene expression data and functional annotations to derive Cell 

Context-Specific Gene Sets (CSGS) from molecular interaction data [40]. The hypothesis 

underlying this method is that many gene set analyses that use predefined gene sets are 

limited because of the lack of biological context associated with each gene set and the 

biases in the literature used to define gene sets (e.g., many gene sets and pathways are 

based on studies of a few high-prevalence diseases).

In a gene set analysis of cardiomyopathy [40], CSGS were more robust than the 

predefined gene sets from the MSigDB [14, 15]. Specifically, CSGS were more 

frequently observed in the list of most significant gene sets when the analysis was 

repeated on multiple subsets of the data.

Another group created a framework for assigning context-sensitive weights to protein-

protein interaction data [41]. Their method is based on the idea that proteins have 

preferred interaction partners depending on the cellular context. Applying this framework 

to identify pathways activated during influenza infection, they found that high-scoring 

context-sensitive paths in a PPI network were more likely to include biologically relevant 

proteins (those shown to have a significant effect on viral propagation and interferon 

production when silenced in an siRNA experiment) [41].

Although these types of context-sensitive methods are in their infancy, evidence suggests 

that accounting for cellular context is an important issue that should be addressed when 

designing studies to identify networks or pathways associated with complex diseases.

Gene Ontologies

A popular source for gene set definitions is the Gene Ontology (GO) database, which 

attempts to describe gene functions using three hierarchical biological categories: molecular 

functions, biological processes, and cellular components. For gene set analyses it is common 

practice to define gene sets by grouping all genes associated with a particular molecular 

function or biological process. Examples of gene ontology biological processes and 

molecular functions are utilized in generating Figure 3.

However, although genes assigned to a particular GO category may be associated with 

similar functions, this grouping does not indicate known relationships or interactions 

between these genes. Additionally, like pathways, the hierarchical nature of GO can produce 

significant overlap between categories, which has implications for both analysis and 

interpretation of results [23]. It is also important to examine evidence codes for GO 

assignments, which can range from experimentally determined to computationally inferred.
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Disease Biomarkers

Genes that have previously been associated with a particular disease can be grouped to form 

another type of gene set, a disease biomarker. The difference between a disease biomarker 

and a GO category is that the genes that constitute a biomarker do not necessarily share 

functions. Also, unlike the concept of a disease pathway mentioned above, biomarker genes 

do not necessarily interact with one another.

The hypothesis behind multi-gene biomarkers is simply that the gene set is more strongly 

associated with the disease than any individual gene, but for many biomarkers this 

hypothesis is not necessarily confirmed. Indeed, because the evidence supporting individual 

biomarker genes may come from studies done on a diverse range of populations, the 

biomarker set may capture genetic heterogeneity of a disease rather than a unified marker. In 

practice, many multi-gene biomarkers that show statistical association at the population 

level are not able to accurately predict individual susceptibility for purposes of clinical usage 

[42]. From the strict definition of a clinical biomarker, therefore, the label “correlated gene 

set” is often more appropriate. An example of such a putative biomarker, which includes 14 

genes associated with bone mineral density and fracture risk at the population level, is 

described in [43].

Implications of Gene Set Annotation Source

In addition to the underlying models, the data sources used to construct gene sets can 

influence the hypotheses tested in a gene set analysis. First, similar biological concepts can 

be described by different sets of genes. Second, the relationships between genes within a 

gene set can differ between annotation repositories (e.g., GO does not specify gene 

interactions). Finally, the total number of genes that are members of any gene set (genomic 

coverage) can vary significantly across data sources, which means that some genes may not 

be assigned to any gene sets and the effects of those genes will be ignored in the analysis. 

This last point is an important consideration as more and more candidate genes are produced 

from large consortium GWAS efforts. It is important to examine how well a particular 

collection of gene sets covers those genes hypothesized to affect the trait of interest in order 

to ensure the gene set analysis produces meaningful results.

To demonstrate differences among the various gene set annotations, we compared the 

genomic coverage of four popular sources of gene sets: canonical pathways from the 

Pathway Commons database (version 4, all sources) [7], PPI networks from the Human 

Protein Reference Database (HPRD) (release 9) [28] and STRING (version 9.05) [29, 30], 

and the GO database (submission date: Dec. 11, 2013) [11]. Both HPRD and STRING were 

included to illustrate the difference between manually curated interaction data (HPRD) and 

interaction data that includes computational predictions (STRING). Figure 2 shows a 

significant difference in the level of genomic coverage between potential data sources. For 

instance, GO biological processes contain nearly twice the number of genes contained in all 

Pathway Commons pathways.

Related to the differences in genomic coverage are differences in membership among gene 

sets from different sources (Figure 3). As an illustration, we chose a specific biological 
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concept, glucocorticoid receptors (GCR), and identified gene sets related to this concept 

from three different data sources: Pathway Commons, GO, and the proprietary pathway 

database Metacore. There was very little overlap in gene membership between the gene sets 

representing the same biological concept. For instance, the number of genes related to GCR 

ranged from 7 to 82 across the data sources, and the uniqueness of the gene sets (the 

proportion of genes related to GCR in only one data source) ranged from 44 % for GO 

Molecular Functions to 86 % for GO Biological Processes.

The above examples demonstrate that the choice of data source for gene sets can have 

significant implications for the biological hypotheses tested. It should be recognized that the 

use of different gene set sources may limit our ability to replicate specific findings.

In addition, genomic coverage is an important part of the overall genomic context in which a 

gene set analysis is performed. In particular, genomic coverage will affect the number of 

SNPs included in the analysis and may have an impact on the level of correlation between 

gene sets. For GWAS data, the correlation between gene sets is due to linkage 

disequilibrium among SNPs. This is fundamentally different from the correlation between 

genes in gene expression data (e.g. due to co-regulation of expression), but it results in 

similar challenges for data analysis [44]. See Box 2 and Box 3 for details about the influence 

of genomic context (including the influence of linkage disequilibrium and correlated genes) 

in gene set analyses.

Box 2

Genomic Context: Assigning SNPs to Genes

Because gene set analyses are concerned with the effects of groups of genes, it is 

necessary to map data acquired from different sources (e.g. SNPs) to genes. The simplest 

methods for mapping SNPs to genes are based solely on SNP location. For instance a 

SNP is mapped to any gene within a specified distance, or simply to the nearest gene. 

These methods, although straightforward, do not take into account linkage disequilibrium 

(LD) patterns or the possibility of regulatory sequences distant from a gene.

LD patterns can be used to provide a more realistic way to map SNPs to genes. One such 

approach describes the use of an LD-weighted scoring method for assigning SNPs to 

various genomic features (3′-UTRs, exons, introns, etc.) [45]. SNPs are first annotated 

with genomic features based on position. Scores for each SNP are then calculated as the 

sum of correlation coefficients between the SNP and all other SNPs mapped to a 

particular feature. If the SNP’s score is above a chosen threshold, the SNP is assigned to 

the corresponding feature. To address the issue of correlated association measures, 

another group proposed the use of LD blocks, rather than genes, as features in a gene set 

analysis [46].

Functional annotations (i.e. the predicted functional consequences of SNPs) have also 

been used to prioritize and map SNPs to genes. This approach can be particularly useful 

in regions where genes on different strands overlap [35, 47].
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Yet another approach addresses three important biases associated with mapping SNPs to 

genes [48]. First, using GWAS data from a study of HDL levels, the authors found that 

gene sets created with the largest genes (those that had the most SNPs assigned) were 

significantly enriched for a number of GO terms, demonstrating a bias in favor of gene 

sets containing large genes.

Second, they found that gene sets comprised of genes positioned closely together on the 

same chromosome had significant and widespread enrichment of GO terms when 

compared to random gene sets. To address this they suggest cleaning gene sets to remove 

genes in high LD with others in the same set.

Finally, they found that using imputed data increased the coverage of short genes, and 

that these short genes were less likely than longer genes to contain significant SNPs. This 

last issue will need to be addressed when comparing the results of gene set analyses 

performed with datasets containing different numbers of SNPs.

Box 3

Statistical Significance and the Impact of Pathway Size

For all analysis methods, pathway size is a potential source of bias [4, 5]. For example, 

large gene sets are more likely to contain association signals simply by chance. On the 

other hand, very small gene sets may exhibit false-positive associations due to a strong 

single-SNP effect [3]. To address this, many studies limit the size of the gene sets tested. 

Although the limits are arbitrary, pathways used in gene set analyses are commonly 

limited to those containing between 10 and 200 genes. Figure I shows the distribution of 

sizes for all pathways in the Pathway Commons database (after removing any pathways 

containing only a single gene and mapping pathway members to Ensembl gene IDs). 

There are 732 pathways with fewer than 10 genes and 43 pathways with greater than 200 

genes, illustrating that while constraining the size of pathways tested may reduce the 

potential for biased results, it may also lead to a loss of information.

In addition, there is no consensus on the best way to adjust significance measures for the 

size of a gene set (number of SNPs mapped to the set). It has been suggested that one 

simply multiply the gene set p-value by the number of LD-adjusted SNPs in the gene set 

[48]. However, this may not be adequate for all gene set statistical methods, and a 

number of permutation or randomization procedures for creating a null distribution of 

gene set p-values have also been proposed. The most widely used method is to repeatedly 

permute the phenotype (case/control status) to create a null distribution of gene set 

statistics. This method preserves the LD between SNPs. Another technique is to create 

random gene sets (by randomly sampling genes or SNPs or LD blocks) of the same size 

as the target gene set in order to create a null distribution [46, 62]. A weighted gene 

resampling procedure based on gene length has also been suggested [63], as has an 

innovative method called “circular genomic permutation” that aims to preserve LD 

structure among the permuted SNP sets [64]. A hybrid method, known as 

“restandardization” [65], combines both phenotype permutation and gene randomization. 

Because the level of LD among SNPs will vary among datasets, and because different 
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statistical tests vary in their susceptibility to gene set size bias, the correlation between 

gene set size and gene set significance should always be examined, both before and after 

a correction procedure has been applied.

Figure I. 
Histogram of pathway sizes for 2256 pathways from Pathway Commons. Both axes have 

been trimmed (Mean = 38, Max = 1757). There are 775 pathways (34 %) with fewer than 

10 genes or greater than 200 genes.

Analysis Methods

A variety of gene set analysis methods have been developed which are particularly well 

suited for secondary analysis of GWAS data (Table 1). In the following sections we describe 

general methodological categories, which can be useful for classifying and comparing the 
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numerous approaches. However, it is important to note that not all available methods fit 

neatly into these categories.

Two-step and One-Step Methods

Gene set analysis methods have been previously described as falling into two categories: 

two-step or one-step [6]. In two-step methods, gene-level statistics are calculated first. Next, 

the gene-level statistics are aggregated to calculate a single statistic for the entire gene set. 

By contrast, one-step methods use all SNPs in the gene set to calculate the final test statistic, 

disregarding any gene-level effects. These methods have complementary advantages and 

disadvantages.

The simplest method for calculating gene-level effects for the two-step approach is to 

calculate all SNP-level effects, and then for each gene select the minimum p-value from 

among the SNPs mapped to that gene. Although straightforward and computationally 

efficient, using a single SNP to summarize a gene-level effect is not always the most 

appropriate choice. Genomic context and the method for assigning SNPs to genes can have a 

non-trivial effect on the calculation of gene-level effects (Box 2 and Box 3). For instance, 

the greater the number of SNPs assigned to a gene, the greater the probability that one of 

those SNPs, and hence the gene, will be statistically significant.

Furthermore, the power to detect a gene set association may be reduced when the method 

used to create gene-level statistics does not take into account multiple associated SNPs 

within the same gene. For example, combining multiple SNPs with moderate association 

signals may be as significant as a single SNP with a strong association signal.

Within the two-step approaches, multiple SNPs within the same gene can be used to 

calculate a gene-level effect in two ways: (i) combining individual SNP p-values, or (ii) 

multi-SNP modeling. For the first, all SNPs within a gene are individually tested for 

association and then these test statistics are combined to produce a gene-level measure of 

association. Fisher’s method for combining p-values is a common approach, and numerous 

modifications have been proposed [49, 50]. Other closely related methods, such as the 

Gamma method and the adaptive rank truncated product method have also been proposed 

[51, 52]. Another method, VEGAS, calculates a gene-level statistic by summing the chi-

squared statistics from each SNP in the gene and produces an empirical p-value via 

simulations derived from the multivariate normal distribution [53].

Alternatively, a gene-level effect can be calculated by jointly modeling multiple SNPs 

within the same gene using multiple regression approaches [54]. To account for LD among 

SNPs assigned to the same gene, variable selection methods, shrinkage methods (penalized 

regression), and dimension reduction methods (e.g., principal component analysis and kernel 

methods) are promising approaches [55, 56, 51]. In the case of principal component 

analysis, for example, rather than modeling all SNPs within a gene, the top components 

(e.g., those explaining 80% of variation) are used as variables in a regression model.

Methods for modeling multiple SNPs may also be adapted to “one-step” approaches, where 

all SNPs in the gene set are modeled to produce a measure of association for the entire gene 
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set [57, 58]. However, for gene sets that contain many SNPs (i.e., more SNPs than samples) 

not all approaches will be appropriate. In those cases, variable selection methods, penalized 

regression methods, or dimension reduction methods may be viable options [59, 60, 61].

There is no consensus regarding the relative merit of one-step methods versus two-step 

methods [52]. However, an advantage of two-step methods is that individual gene 

contributions to a gene set association can be identified because gene-level effects are 

known. This may be particularly useful when interpreting results from sets containing a 

large number of genes, as not all genes in a gene set contribute equally to the association. As 

was pointed out, the power to detect gene set associations ultimately depends on the signal-

to-noise ratio within the unit of analysis (e.g., SNPs vs. genes) and the amount of LD within 

a gene [52]. This signal-to-noise ratio will depend, in part, on the method of defining gene 

sets and the method of assigning SNPs to genes (Box 2).

It is common practice to perform gene set analysis as a secondary exploration of GWAS 

data (often by looking for enrichment of individual SNP associations). However, in order to 

truly address the issues of small effect size and statistical power inherent in GWAS, it may 

be useful for researchers to think of pathways (or gene sets) as the unit of analysis in the 

early stages of study design.

Competitive and Self-Contained Tests

Tests to determine the statistical significance of a gene set can be classified as either 

competitive or self-contained, based on the definition of the null hypothesis. Competitive 

methods, such as enrichment tests, compare the association signal among the genes in a gene 

set to the association signal among all genes outside the set. The null hypothesis is that the 

extent of association signal within the gene set is equal to the extent of association signal 

outside the gene set.

On the other hand, self-contained methods consider only the effects within a gene set of 

interest. These tests simply ask whether the gene set is associated with the trait of interest, 

the null hypothesis being no association. Self-contained methods do not require data from 

genes outside the gene set being tested. It has been suggested that two-step methods may be 

more powerful when self-contained statistical tests are used [6, 51]. Given the striking 

difference between the null hypotheses for these two categories of tests, it is critical that the 

method chosen reflect the question of interest.

Topology-based Methods

For gene sets derived from data sources that describe interactions between genes (e.g., 

pathways or networks), there is a growing collection of methods that incorporate graph 

topology into the procedure for scoring the gene set ([21] and references therein). Although 

most work done in this area has focused on gene expression data, some of the methods are 

adaptable for use with GWAS data, as they only require a gene list or p-value for each gene 

(see Table 1). HotNet2 and dmGWAS are examples of network-based methods designed 

specifically for DNA variant data [36, 37], and both can be used to search PPI networks for 

sub-networks significantly associated with a trait of interest.
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Topology-based methods take into account not only individual gene effects, but also the 

relationship between genes and the relative “importance” of individual genes within the 

entire gene set. The hypotheses tested by topology-based methods are fundamentally 

different from other gene set analysis methods because not all genes in the gene set are 

treated equally. Topology-based methods are more concerned with the overall process 

performed by the gene set, rather than the cumulative effects of multiple independent genes. 

This is because genes hypothesized to play a more crucial role in the process are weighted 

more heavily when testing for association. These gene weights are often based on graph 

theory measures of centrality.

Because of the use of gene weights, it may not be possible to directly compare results from 

topology-based analyses with results from other gene set analyses. When interpreting results 

from topology-based analyses, it is important to examine the relative contribution (the 

combination of gene-level effects and gene weights) of individual genes in the overall 

association measure.

A potential source of bias for topology-based methods is the data used to calculate 

connectedness between genes. This issue is demonstrated by the difference between the 

HPRD (~38,000 interactions) and STRING (over 2,000,000 interactions) PPI networks (see 

Figure 2). When comparing results from different topology-based analyses it is important to 

account for the overall level of connectivity in the datasets used.

Concluding remarks

Gene set analyses have great potential to extend the knowledge gained from GWAS. 

However, the wide variety of available techniques for testing gene set associations makes it 

difficult to compare results across studies. Discrepant results are often difficult to reconcile 

without detailed knowledge of the statistical procedures used. Given the growing popularity 

of gene set analyses and the rapid development of techniques, it is crucial that steps are 

taken to improve the interpretability and comparability of results. To aid in this effort we 

have provided an overview of issues important for understanding both the genomic context 

and functional context in which gene set analyses are conducted. We have also provided 

guidelines for reporting the results of gene set analyses (Box 4), which we believe will 

enable researchers to more readily compare results across methods, and consequently to 

generate meaningful hypotheses about the genetic mechanisms involved in complex 

diseases.

Box 4

Unanswered Questions & Suggested Guidelines

Despite the rapid development of methods for gene set analysis, several questions remain 

regarding how to appropriately represent and evaluate multi-gene associations. First, 

consensus is lacking about the best way to summarize SNP-level effects at the gene set-

level. Second, it is unclear how best to evaluate the statistical significance of a pathway-

level effect. This is complicated by known biases, such as gene or pathway size, and the 
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complex correlation structure of the data both within an individual pathway and between 

different pathways.

Definitive answers to these questions are hindered by the fact that there is no gold 

standard by which to evaluate gene set analysis methods. Additionally, our lack of 

knowledge about the overall genetic architecture responsible for complex disease 

prevents the creation of realistically complex simulated datasets.

One strategy for building consensus in the field is to compare the ability of different 

methods to identify narrowly defined polygenic effects, such as the additive effect of 

many weakly associated SNPs or multiple interaction effects. Because it is unlikely that a 

single method will be sensitive to all types of polygenic effects, knowing which methods 

perform best in different situations will be of great value. Furthermore, because the 

cumulative genetic risk for complex disease is likely a combination of multiple types of 

polygenic effects, using an ensemble of analysis methods will probably be necessary to 

uncover all risk factors. This type of ensemble approach has previously been suggested 

for gene set analysis of gene expression data [100].

Another area for future research relates to the question of how best to map SNPs to 

genes. Mapping all intergenic SNPs to the nearest gene has the potential to add a 

significant amount of noise to the data (e.g., SNPs mapped to genes when they have no 

effect on that particular gene). Yet, ignoring all intergenic SNPs results in a significant 

loss of information. Development of new methods for mapping intergenic SNPs to genes, 

possibly through mappings to known regulatory elements, is an interesting area for future 

work.

Knowledge of how different analysis choices affect gene set analysis results will be 

crucial for our ability to compare studies and to judge the utility of gene set associations 

for predicting genetic risk or for generating biological hypotheses. To aid in the 

interpretation and comparison of results from different studies, we suggest the following 

guidelines for reporting the results of gene set analyses:

1. Provide the Source of Gene Set Definitions: Report the definitions of the gene 

sets tested, including database versions. List the genes belonging to any 

significantly associated gene sets.

2. Report Statistical Methods & Potential Biases: Provide a detailed description 

of the methods used to score pathways and determine statistical significance, 

including the methods used to “roll-up” effects from the SNP level to the 

pathway level, and any statistical adjustments made. An examination of the 

correlation between gene set size and significance should also be performed.

3. Report SNP- and Gene-level Effects: Provide a reference for the original 

GWAS results, or information about the distribution of individual SNP-level 

effects. Also, report the individual gene contributions to a significant gene set 

association.

4. Report Gene Set Overlap: Examine the possibility of cross-talk effects for 

significant gene sets.
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5. Demonstrate Biological Context: Provide biological context and rationale for 

the joint effect of the genes in the significantly associated gene sets.
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Highlights

• Gene set analyses (GSA) will extend the knowledge gained from GWAS.

• There is no consensus about the best way to perform GSA.

• The wide variety of analysis methods makes it difficult to compare GSA results.

• Steps must be taken to improve the interpretability and comparability of GSA.
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Figure 1. 
An overview of the steps performed in a gene set analysis. The effects of decisions made at 

each step are highlighted.
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Figure 2. 
The number of genomic entities (genes or proteins) contained in various data sources used 

for gene set analysis. The proportion of the genome covered by different gene set data 

sources varies significantly. “Original entities” refers to the specific type of identifier used 

for gene set members in each data set. These entities were then mapped to Ensembl Gene 

identifiers for comparison across data sources. “Canonical pathways” includes all unique 

human pathways in the Pathway Commons database. The Human Protein Reference 

Database (HPRD) is a manually curated PPI network. The STRING PPI network contains 

evidence of interaction from multiple sources, including interactions inferred from text 

mining. For the Gene Ontology data, only Biological Processes were included here, as this 

category most closely resembles pathways. Including GO Molecular Functions and Cellular 

Components would increase the genomic coverage of GO by ~20 %.
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Figure 3. 
Gene sets related to glucocorticoid receptor (GCR) processes retrieved from four data 

sources. A single pathway in the Pathway Commons database (GCR regulatory network) 

and one in Metacore (Development_GCR signaling), along with two GO biological 

processes (GCR signaling pathway, Negative regulation of GCR signaling pathway) and two 

GO molecular functions (GCR binding, GCR activity) were identified. The Venn diagram 

shows the limited overlap among gene sets from the four data sources, highlighting the 

differences in membership among gene sets from different sources.
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Table 1

Gene Set Analysis Methods and Software Tools: (Focused on GWAS data)

Method: Test type: Input: References:

Gamma method 2s, SC Genotypes [51]

Adaptive rank truncated product method 2s, SC Genotypes or P-values [52]

VEGAS 2s*, SC P-values [53]

BGSAsnp 2s, SC Genotypes [54]

GRASS 2s, SC Genotypes [55]

HYST 2s, SC P-values, R2 coef. [66, 67]

PRP 2s, SC, Top P-values [68]

GSA-SNP 2s, C, SC P-values [69]

gamGWAS 2s, C P-values [63]

Pathway-PDT (family-based tests) 2s, C Genotypes [70]

WebGestalt 2s, C Genes [71]

i-GSEA4GWAS 2s, C P-values [72]

ICSNPathway 2s, C P-values [73]

GenGen 2s, C Genotypes [74]

ALIGATOR 2s, C P-values [62]

GeSBAP 2s, C P-values [75]

GSEA 2s, C Genotypes [76]

GSEA-P 2s, C Ranked gene list [77]

MAGENTA 2s, C P-values [78]

Modified Fisher’s method 1s, 2s, SC P-values [49]

Modified Fisher’s method 1s, 2s, SC P-values [50]

Plink set-based test 1s, SC Genotypes [79]

GSEA-SNP 1s, SC P-values [80]

GLOSSI 1s, SC P-values [81]

Supervised PC 1s, SC Genotypes [56]

SNP ratio test 1s, SC Genotypes [82]

PAGWAS (hierarchical model) 1s, SC Genotypes [57]

GLMM 1s, SC P-values [58]

BMApathway 1s, SC Genotypes [59]

Synthetic Feature Random Forest 1s Genotypes [60]

SGL-BCGD 1s, SC Genotypes [61]

INRICH 1s, C Genomic regions [83]

GREAT C Genomic regions [84]

SSEA 1s, SC P-values [85]

PARIS 1s, C P-values [46]

Gowinda 1s, C SNPs [86]
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Method: Test type: Input: References:

GeneSetDB (hypergeometric) C P-values [87]

Gene set bagging C Genotypes [88]

PoDA 1s, C Genotypes [89]

ProxyGeneLD NA [48]

GWAS Pathway Identifier NA [90]

ConsensusPathDB NA [18]

Markov Random Field Model Top Genes [91]

EnrichNet Top Genes [92]

TopoGSA Top Genes [93]

CePa Top Genes [94, 95]

THINK-Back-DS C, Top P-values, Genes [96]

PINA v2.0 C, Top Genes [34]

PANOGA Top P-values [35]

dmGWAS Top P-values [36]

HotNet2 Top P-values [37]

Metacore Top Genes [12]

DAPPLE Top Genes or genomic regions [97]

GRAIL Top, TM SNPs or genomic regions [98]

Chilibot Top, TM Genes [99]

1S = one-step, 2S = two-step, C = competitive; SC = self-contained; Top = topology-based; TM = text mining;

*
VEGAS is a gene-based test and can be used as the first step in a two-step GSA.
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