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SUMMARY

Just as reference genome sequences revolutionized human genetics, reference maps of interactome 

networks will be critical to fully understand genotype-phenotype relationships. Here, we describe 

a systematic map of ~14,000 high-quality human binary protein-protein interactions. At equal 

quality, this map is ~30% larger than what is available from small-scale studies published in 

the literature in the last few decades. While currently available information is highly biased and 

only covers a relatively small portion of the proteome, our systematic map appears strikingly 

more homogeneous, revealing a “broader” human interactome network than currently appreciated. 

The map also uncovers significant inter-connectivity between known and candidate cancer gene 

products, providing unbiased evidence for an expanded functional cancer landscape, while 

demonstrating how high quality interactome models will help “connect the dots” of the genomic 

revolution.

INTRODUCTION

Since the release of a high-quality human genome sequence a decade ago (International 

Human Genome Sequencing Consortium, 2004), our ability to assign genotypes to 

phenotypes has exploded. Genes have been identified for most Mendelian disorders 

(Hamosh et al., 2005) and over one hundred thousand alleles have been implicated in at least 

one disorder (Stenson et al., 2014). Hundreds of susceptibility loci have been uncovered for 
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numerous complex traits (Hindorff et al., 2009) and the genomes of a few thousand human 

tumors have been nearly fully sequenced (Chin et al., 2011). This genomic revolution is 

poised to generate a complete description of all relevant genotypic variations in the human 

population.

Genomic sequencing will however, if performed in isolation, leave fundamental questions 

pertaining to genotype-phenotype relationships unresolved (Vidal et al., 2011). The causal 

changes that connect genotype to phenotype remain generally unknown, especially for 

complex trait loci and cancer-associated mutations. Even when identified, it is often unclear 

how a causal mutation perturbs the function of the corresponding gene or gene product. To 

“connect the dots” of the genomic revolution, functions and context must be assigned to 

large numbers of genotypic changes.

Complex cellular systems formed by interactions among genes and gene products, or 

interactome networks, appear to underlie most cellular functions (Vidal et al., 2011). Thus, 

a full understanding of genotype-phenotype relationships in human will require mechanistic 

descriptions of how interactome networks are perturbed as a result of inherited and somatic 

disease susceptibilities. This in turn will require high quality and extensive genome and 

proteome-scale maps of macromolecular interactions such as protein-protein interactions 

(PPIs), protein-nucleic acid interactions, and post-translational modifiers and their targets.

First-generation binary PPI interactome maps (Rual et al., 2005; Stelzl et al., 2005) have 

already provided network-based explanations for some genotype-phenotype relationships, 

but they remain incomplete and of insufficient quality to derive accurate global 

interpretations (Figure S1A). There is a dire need for empirically-controlled (Venkatesan 

et al., 2009) high-quality proteome-scale interactome reference maps, reminiscent of the 

high-quality reference genome sequence that revolutionized human genetics.

The challenges are manifold. Even considering only one splice variant per gene, 

approximately 20,000 protein-coding genes (Kim et al., 2014; Wilhelm et al., 2014) must 

be handled and ~200 million protein pairs tested to generate a comprehensive binary 

reference PPI map. Whether such a comprehensive network could ever be mapped by 

the collective efforts of small-scale studies remains uncertain. Computational predictions 

of protein interactions can generate information at proteome scale (Zhang et al., 2012) 

but are inherently limited by biases in currently available knowledge used to infer such 

interactome models. Should interactome maps be generated for all individual human tissues 

using biochemical co-complex association data, or would ‘context-free’ information on 

direct binary biophysical interaction for all possible PPIs be preferable? To what extent 

would these approaches be complementary? Even with nearly complete, high-quality 

reference interactome maps of biophysical interactions, how can the biological relevance 

of each interaction be evaluated under physiological conditions? Here, we begin to address 

these questions by generating a proteome-scale map of the human binary interactome and 

comparing it to alternative network maps.
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RESULTS

Vast uncharted interactome zone in literature

To investigate whether small-scale studies described in the literature are adequate to 

qualitatively and comprehensively map the human binary PPI network, we assembled all 

binary pairs identified in such studies and available as of 2013 from seven public databases 

(Figure S1B, see Extended Experimental Procedures, Section 1). Out of the 33,000 literature 

binary pairs extracted, two thirds were reported in only a single publication and detected 

by only a single method (Lit-BS pairs), thus potentially presenting higher rates of curation 

errors than binary pairs supported by multiple pieces of evidence (Lit-BM pairs; Tables 

S1A, S1B and S1C) (Cusick et al., 2009). Testing representative samples from both of 

these sets using the mammalian protein-protein interaction trap (MAPPIT) (Eyckerman et 

al., 2001) and yeast two-hybrid (Y2H) (Dreze et al., 2010) assays, we observed that Lit-BS 

pairs were recovered at rates that were only slightly higher than the randomly selected 

protein pairs used as negative control (random reference set; RRS) and significantly lower 

than Lit-BM pairs (Figure 1A and Table S2A; see Extended Experimental Procedures, 

Section 2). Lit-BS pairs co-occurred in the literature significantly less often than Lit-BM 

pairs as indicated by STRING literature mining scores (Figure 1A and Figure S1C; see 

Extended Experimental Procedures, Section 2) (von Mering et al., 2003), suggesting that 

these pairs were less thoroughly studied. Therefore, use of binary PPI information from 

public databases should be restricted to interactions with multiple pieces of evidence in the 

literature. In 2013 this corresponded to 11,045 high-quality protein pairs (Lit-BM-13), more 

than an order of magnitude below current estimates of the number of PPIs in the full human 

interactome (Stumpf et al., 2008; Venkatesan et al., 2009).

The relatively low number of high-quality binary literature PPIs may reflect inspection 

biases inherent to small-scale studies. Some genes such as RB1 are described in hundreds 

of publications while most have been mentioned only in a few (e.g. the un-annotated 

C11orf21 gene). To investigate the effect of such biases on the current coverage of 

the human interactome network, we organized the interactome search space by ranking 

proteins according to the number of publications in which they are mentioned (Figure 

1B). Interactions between highly studied proteins formed a striking “dense zone” in 

contrast to a large sparsely populated zone, or “sparse zone”, involving poorly studied 

proteins. Candidate gene products identified in genome-wide association studies (GWAS) 

or associated with Mendelian disorders distribute homogeneously across the publication-

ranked interactome space (Figure 1B and Figure S1D), demonstrating a need for unbiased 

systematic PPI mapping to cover this uncharted territory.

A proteome-wide binary interactome map

Based on literature-curated information, the human interactome appears to be restricted to a 

narrow dense zone, suggesting that half of the human proteome participates only rarely in 

the interactome network. Alternatively, the zone that appears sparse in the literature could 

actually be homogeneously populated by PPIs that have been overlooked due to sociological 

or experimental biases.
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To distinguish between these possibilities and address other fundamental questions outlined 

above, we generated a new proteome-scale binary interaction map. By acting on all 

four parameters of our empirically-controlled framework (Venkatesan et al., 2009), we 

increased the coverage of the human binary interactome with respect to our previous human 

interactome dataset obtained by investigating a search space defined by ~7,000 protein-

coding genes (“Space I”) and published in 2005 (HI-I-05) (Rual et al., 2005) (Figures 1C 

and 1D; see Extended Experimental Procedures, Section 3). A search space consisting of all 

pairwise combinations of proteins encoded by ~13,000 genes (“Space II”; Table S2B) was 

systematically probed, representing a 3.1-fold increase with respect to the HI-I-05 search 

space. To gain in sensitivity, we performed the Y2H assay in different strain backgrounds 

that showed increased detection of pairs of a positive reference set (PRS) composed of 

high-quality pairs from the literature without increasing the detection rate of RRS pairs. 

To increase our sampling, the entire search space was screened twice independently. Pairs 

identified in this first pass were subsequently tested pairwise in quadruplicate starting from 

fresh yeast colonies. To ensure reproducibility, only pairs testing positive at least three times 

out of the four attempts and with confirmed identity were considered interacting pairs, 

resulting in ~14,000 distinct interacting protein pairs.

We validated these binary interactions using three binary protein interaction assays that 

rely on different sets of conditions than the Y2H assay: i) reconstituting a membrane-

bound receptor complex in mammalian cells using MAPPIT, ii) in vitro using the well-

based nucleic acid programmable protein array (wNAPPA) assay (Braun et al., 2009; 

Ramachandran et al., 2008), and iii) reconstituting a fluorescent protein in Chinese hamster 

ovary cells using a protein-fragment complementation assay (PCA) (Nyfeler et al., 2005) 

(see Extended Experimental Procedures, Section 4). The Y2H pairs exhibited validation 

rates that were statistically indistinguishable from a PRS of ~500 Lit-BM interactions while 

significantly different from an RRS of ~700 pairs with all three orthogonal assays and 

over a large range of score thresholds (Figure 1D, Tables S2A and S2C), demonstrating 

the quality of the entire dataset. Using three-dimensional co-crystal structures available 

for protein complexes in the Protein Data Bank (Berman et al., 2000) and for domain-

domain interactions (Stein et al., 2011) (Figure S2, Tables S2D, S2E and S2F; see 

Extended Experimental Procedures, Sections 5 and 6), we also demonstrated that our binary 

interactions reflect direct biophysical contacts, a conclusion in stark contrast to a previous 

report suggesting that Y2H interactions are inconsistent with structural data (Edwards et 

al., 2002). Our results also suggested that Y2H sensitivity correlates with the number of 

residue-residue contacts and thus presumably with interaction affinity. The corresponding 

human interactome dataset covering Space II and reported in 2014 (HI-II-14; Table S2G) 

is the largest experimentally-determined binary interaction map yet reported, with 13,944 

interactions amongst 4,303 distinct proteins.

Overall biological significance

To assess the overall functional relevance of HI-II-14, we combined computational analyses 

with a large-scale experimental approach. We first measured enrichment for shared Gene 

Ontology (GO) terms and phenotypic annotations and observed that HI-II-14 shows 

significant enrichments that are similar to those of Lit-BM-13 (Figures 2A and 2B; see 
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Extended Experimental Procedures, Section 7). Second, we measured how much binary 

interactions from HI-II-14 reflect membership in larger protein complexes as annotated in 

CORUM (Ruepp et al., 2010) or reported in a co-complex association map (Woodsmith and 

Stelzl, 2014). In both cases, we observed a significant enrichment for binary interactions 

between protein pairs that belong to a common complex (P < 0.001; Figure 2B). Third, 

we performed a similar analysis using tissue-specific mRNA expression data across the 16 

human tissues of the Illumina Human Body Map 2.0 project as well as cellular compartment 

localization annotations from the GO Slim terms. Again, HI-II-14 was enriched for 

interactions mediated by protein pairs present in at least one common compartment 

or cell type (Figures 2C and 2D). Finally, we measured the overlap of HI-II-14 with 

specific biochemical relationships, as represented by kinase-substrate interactions. Both 

HI-II-14 and Lit-BM-13 contained significantly more PPIs reflecting known kinase-substrate 

relationships (Hornbeck et al., 2012) than the corresponding degree-controlled randomized 

networks (Figure 2E). In addition, HI-II-14 tends to connect tyrosine and serine/threonine 

kinases (Manning et al., 2002) to proteins with tyrosine or serine/threonine phospho-

sites (Hornbeck et al., 2012; Olsen et al., 2010), respectively (Figure S3A), pointing to 

the corresponding interactions being genuine kinase-substrate interactions. In short, our 

systematic interactome map, which was generated independently from any pre-existing 

biological information, reveals functional relationships at levels comparable to those seen for 

the literature-based interaction map.

To further investigate the overall biological relevance of HI-II-14, we used an experimental 

approach that compares the impact of mutations associated with human disorders to that 

of common variants with no reported phenotypic consequences on biophysical interactions 

(Figure 3). Our rationale is that a set of interactions corresponding to genuine functional 

relationships should more likely be perturbed by disease-associated mutations than by 

common variants. The following example will illustrate this concept. Mutations R24C and 

R24H in CDK4 are clearly associated with melanoma by conferring resistance to CDKN2A 

inhibition (Wölfel et al., 1995), whereas N41S and S52N mutations are of less clear 

clinical significance (Zhong et al., 2009) and have remained functionally uncharacterized. 

HI-II-14 contains five CDK4 interactors: two inhibitors (CDKN2C and CDKN2D), two 

cyclins (CCND1 and CCND3), and HOOK1, a novel interacting partner and a potential 

phosphorylation target of CDK4 (Figure S3B). In agreement with previous reports the 

comparative interaction profile shows that R24C and R24H, but not N41S and S52N, 

specifically perturb CDK4 binding to CDKN2C (Figure 3).

In total, we identified 32 human genes for which: (i) the corresponding gene product is 

reported to have binary interactors in HI-II-14, (ii) germline disease-associated mutations 

have been reported, and (iii) common coding variants unlikely to be involved in any disease 

have been identified in the 1,000 genomes project (1000 Genomes Project Consortium, 

2012). To avoid over-representation of certain genes, we selected a total of 115 variants, 

testing up to 4 disease and 4 common variants per disease gene for their impact on 

the ability of the corresponding proteins to interact with known interaction partners (see 

Extended Experimental Procedures, Section 8). Disease variants were 10-fold more likely to 

perturb interactions than non-disease variants (Figure 3 and Table S3). Strikingly, more than 

55% of the 107 HI-II-14 interactions tested were perturbed by at least one disease-associated 
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variant, and the same trend was observed when considering only mutants with evidence of 

expression in yeast as indicated by their ability to mediate at least one interaction (Figure 

S3C). Examples of novel specifically-perturbed interactions include AANAT-BHLHE40 and 

RAD51D-IKZF1 (Figure 3). In the first case, the A129T mutation in AANAT is known to be 

associated with a delayed sleeping phase syndrome, and specifically perturbs an interaction 

between AANAT and BHLHE40, the product of a gene reported to function in circadian 

rhythm regulation (Nakashima et al., 2008). In the second case, the breast cancer associated 

RAD51D E233G mutation perturbs interactions with a number of partners, including the 

known cancer gene product IKZF1 (Futreal et al., 2004).

Altogether these computational and experimental results provide strong evidence that HI-

II-14 pairs correspond to biologically relevant interactions and represent a valuable resource 

to further our understanding of the human interactome and its perturbations in human 

disease.

A “broader” interactome

Unlike literature-curated interactions, HI-II-14 protein pairs are distributed homogeneously 

across the interactome space (Figure 4A), indicating that sociological biases, and not 

fundamental biological properties, underlie the existence of a densely populated zone in the 

literature. Since 1994, the number of high-quality binary literature PPIs has grown roughly 

linearly to reach ~10,000 interactions in 2013 (Figure 4B), while systematic datasets are 

punctuated by a few large-scale releases. Although the sparse territory of the literature map 

gradually gets populated, interaction density in this zone continues to lag behind that of 

the dense zone (Figure 4B). In terms of proteome coverage, the expansion rate is faster for 

systematic maps than for literature maps, especially in the sparse territory (Figure 4C and 

Figure S4A; see Extended Experimental Procedures, Section 9). While Lit-BM-13 provides 

more information in the dense zone, HI-II-14 reveals interactions for more than 2,000 

proteins absent from Lit-BM-13. These observations are likely due to a tendency of the 

literature map to expand from already connected proteins (Figure 4D).

To more deeply explore the heterogeneous coverage of the human interactome, we 

compared HI-II-14 and Lit-BM-13 to a collection of ~25,000 predicted binary PPIs 

of high-confidence (PrePPI-HC) (Zhang et al., 2012) and a co-fractionation map of 

~14,000 potentially binary interactions (Co-Frac) (Havugimana et al., 2012). We tested the 

extent to which these two datasets contain binary interactions (see Extended Experimental 

Procedures, Section 10). Representative samples from both Co-Frac and PrePPI-HC were 

recovered by Y2H at a much lower rate than a sample of Lit-BM-13 and appeared 

statistically indistinguishable from random pairs (Figure 5A and Table S4A). A literature 

non-binary dataset (Lit-NB-13) performed similarly. However, Co-Frac and PrePPI-HC, like 

Lit-NB-13, were both significantly enriched for functionally relevant relationships. Thus, 

although these datasets represent potentially valuable resources, both Co-Frac and PrePPI-

HC appear to be more comparable to non-binary than to binary datasets. Surprisingly, 

even though PrePPI-HC and Co-Frac systematically surveyed the full human proteome and 

map different portions of the interactome (Figures S4B), both exhibit a strong tendency to 
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report interactions amongst well-studied proteins (Figure 5B). This bias is likely due to the 

integration of functional annotations in the generation of both datasets.

Because coverage might depend on gene expression levels, we also examined interactome 

maps for expression-related sparse versus dense zones. Co-Frac shows a strong bias towards 

interactions involving proteins encoded by genes highly expressed in the cell lines used 

(Figure 5B). This expression-dependent bias is echoed in the literature map, perhaps 

reflecting a general tendency to study highly expressed proteins. In contrast, both HI-II-14 

and PrePPI-HC exhibit a uniform interaction density across the full spectrum of expression 

levels, likely explained by the standardized expression of proteins tested in Y2H and by the 

independence of homology-based predictions from expression levels.

We more broadly explored the intrinsic biases that might influence the appearance of 

sparsely populated zones by examining 21 protein or gene properties, roughly classified as 

expression-, sequence-, or knowledge-based (Figures 5B and 5C, Tables S4B and S4C; see 

Extended Experimental Procedures, Section 9). For example, PrePPI-HC is virtually devoid 

of interactions between proteins lacking Pfam domains, consistent with conserved domains 

forming the basis of the prediction method. HI-II-14 appears depleted of interactions 

amongst proteins containing predicted transmembrane helices, consistent with expected 

limitations of the Y2H assay (Stagljar and Fields, 2002). Co-Frac is similarly depleted 

in interactions involving proteins with transmembrane helices, which may result from 

membrane-bound proteins being filtered out during biochemical fractionations. Compared 

to HI-II-14, HI-I-05 presented a less homogenous coverage of the space with respect to 

abundance and knowledge properties, likely reflecting the content of early versions of the 

hORFeome (Figure S4C). Importantly, no single map appeared unbiased in all 21 examined 

properties. A combined map presented a slightly increased homogeneity although intrinsic 

knowledge biases of the three maps using literature-derived evidence were still predominant.

To confirm that HI-II-14 interactions found in the sparse zones of the three other maps 

are of as high quality as those found in dense zones, we compared MAPPIT validation 

rates and functional enrichment across these zones for all protein properties examined. 

MAPPIT validation rates of dense and sparse zone pairs were consistent for nearly all 

properties (Figure 5D and Figure S4D), indicating that HI-II-14 interactions are of similar 

biophysical quality throughout the full interactome space. Functional enrichment within the 

sparse zone was statistically indistinguishable from that of the dense zone (Figure 5D and 

Figure S4E), demonstrating the functional importance of HI-II-14 biophysical interactions in 

zones covered sparsely by other types of interactome maps.

Considering all current maps, more than half of the proteome is now known to participate 

in the interactome network. Our systematic exploration of previously uncharted territories 

dramatically expands the interactome landscape, suggesting that the human interactome 

network is broader in scope than previously observed, and that the entire proteome may be 

represented within a fully mapped interactome.
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Interactome network and cancer landscape

Genes associated with the same disease are believed to be preferentially inter-connected 

in interactome networks (Barabási et al., 2011; Vidal et al., 2011). However, in many 

cases, these observations were made with interactome maps that are composites of diverse 

evidence, e.g. binary PPIs, co-complex memberships and functional associations, a situation 

further complicated by the uneven quality and sociological biases described above. Using 

HI-II-14, we revisited this concept for cancer gene products. Our goal was to investigate 

whether the cancer genomic landscape is limited to the known cancer genes curated in the 

Sanger Cancer Gene Census (Futreal et al., 2004) (“Cancer Census”), or if, alternatively, it 

might extend to some of the hundreds of additional candidate genes enriched in somatic 

mutations uncovered by systematic cancer genome sequencing (“SM genes”) (Chin et 

al., 2011) and/or identified by functional genomic strategies such as Sleeping Beauty 

transposon-based screens in mice (“SB genes”) (Copeland and Jenkins, 2010) or global 

investigations on DNA tumor virus targets (“VT genes”) (Rozenblatt-Rosen et al., 2012).

Given our homogeneous coverage of the space for known (Cancer Census genes) and 

candidate (SB, SM and VT genes) cancer genes (Figure 6A), we first tested the postulated 

central role of cancer gene products in biological networks (Barabási et al., 2011) and 

verified that both sets tend to have more interactions and to be more central in the 

systematic map than proteins not associated with cancer (Figure 6B). We then examined the 

inter-connectivity of known cancer proteins and showed that Cancer Census gene products 

interact with each other more frequently than expected by chance, a trend not apparent in 

HI-I-05 (Figure 6C). We sought to use this topological property as the basis for novel cancer 

gene discovery in the large lists of cancer candidates from genomic and functional genomic 

screens.

We examined whether products of candidate cancer genes identified in GWAS (Table S5A) 

tend to be connected to Cancer Census proteins, and observed significant connectivity in 

all four maps (Figure S5A; see Extended Experimental Procedures, Section 11). When loci 

containing a known cancer gene were excluded, only HI-II-14 showed such connectivity, 

supporting its unique value to identify cancer candidate genes beyond those already well 

demonstrated (Figure 7A and Figure S5A). In further support of their association with 

cancer, genes in cancer GWAS loci prioritized by “guilt-by-association” in HI-II-14 tend 

to correspond to cancer candidates from systematic cancer studies (Figures 7B and 7C). 

These results suggest that cancer-associated proteins tend to form subnetworks perturbed 

in tumorigenesis, and that HI-II-14 provides new context to prioritize cancer genes from 

genome-wide studies.

The following example illustrates the power of our combined approach. C-terminal Binding 

Protein 2 (CTBP2) is encoded at a locus associated with prostate cancer susceptibility 

(Thomas et al., 2008) and belongs to both SB and VT gene lists (Mann et al., 2012; 

Rozenblatt-Rosen et al., 2012). Two Cancer Census genes, IKZF1 and FLI1, encode 

interacting partners of CTBP2 in HI-II-14. These are transcription factors with tumor 

suppressor (Payne and Dovat, 2011) and proto-oncogene (Kornblau et al., 2011) roles, 

respectively, in lymphoid tumors. Given its interactions with IKZF1 and FLI1, we 

investigated the potential role of CTBP2 in lymphoid tumorigenesis. In the Cancer Cell 
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Line Encyclopedia (Barretina et al., 2012), FLI1 was significantly more often amplified in 

lymphoid than in other cell lines (Figure 7D), consistent with its proposed proto-oncogenic 

role in these tumors. In contrast, both CTBP2 and IKZF1, but not CTBP1, were deleted 

significantly more often in lymphoid cancer cell lines. Notably, deletion of CTBP2 or IKZF1 
and amplification of FLI1 were mostly non-overlapping in the different cell lines, suggesting 

that either event may be sufficient to affect tumorigenesis (Figure S5B). Altogether, these 

results suggest a role for CTBP2 in suppressing lymphoid tumors by direct repression of 

FLI1 function, potentially involving IKZF1.

Finally, we assessed how HI-II-14 interactions can be integrated with genomic and 

functional genomic datasets. Going beyond the “guilt-by-profiling” concept, we also 

used these gene sets in “guilt-by-association” predictions in a combined model (Figure 

S6A), which leads to substantially improved cancer gene rankings over those found 

using either predictive strategy alone (Figure 7E, Figures S6B and S6C, Table S5B; see 

Extended Experimental Procedures, Section 12). In contrast, a similar analysis using HI-I-05 

interactions showed that its limited size prevented inclusion of any guilt-by-association 

terms (Figure S6D). Genes significantly mutated in cancer patients from recent TCGA 

pan-cancer mutation screens (Table S5C) (Lawrence et al., 2014) were enriched amongst 

highly ranked predictions from the combined model (P = 6 × 10−3, one-sided Wilcoxon 

rank test), supporting the validity of our integrated cancer gene predictions. Our top-ranked 

prediction was the cyclin-dependent kinase 4 (CDK4), a well-known cancer gene product. 

Four other genes from the Cancer Census list appeared among the top 25 ranked genes. 

Strikingly, STAT3, which ranked third, was added to the Cancer Census after our training 

set was established, highlighting the ability of this approach to identify novel cancer gene 

products.

To characterize the biological processes in which the candidate cancer genes predicted by 

the combined model are likely to be involved, we identified binary interactions linking them 

to each other or to Cancer Census proteins in the twelve ‘pathways of cancer’ relevant 

to cancer development and progression (Table S5D) (Vogelstein et al., 2013). Of our top 

100 candidates, 60 mapped to at least one cancer pathway (Figure 7F and Figure S7), 

twice as many as would be expected from predictions using either the guilt-by-profiling 

or guilt-by-association approach alone. We propose that many novel cancer candidates 

can be annotated to specific processes based on their interactions with Cancer Census 

gene products and known participation in cellular pathways. For example, the candidate 

protein ID3, a DNA-binding inhibitor, interacts with the two Cancer Census transcription 

factors TCF12 and TCF3, suggesting a role for ID3 in the regulation of transcription by 

inhibiting binding of specific transcription factors to DNA (Loveys et al., 1996; Richter 

et al., 2012). CTBP2, which we identified as a potential suppressor in lymphoid tumors, 

represents another example (Figure 5E and Figure S7).

In summary, the increased and uniform coverage of HI-II-14 demonstrates that known and 

candidate cancer gene products are highly connected in the interactome network, which in 

turn provides unbiased evidence for an expanded functional cancer landscape.
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DISCUSSION

By systematically screening half of the interactome space with minimal inspection bias, we 

more than doubled the number of high-quality binary PPIs available from the literature. 

Covering zones of the human interactome landscape that have been weakly charted by other 

approaches, our systematic binary map provides deeper functional context to thousands of 

proteins, as demonstrated for candidates identified in unbiased cancer genomic screens. 

Systematic binary mapping therefore stands as a powerful approach to “connect the dots” of 

the genomic revolution.

Combining high-quality binary pairs from the literature with systematic binary maps, 30,000 

high-confidence interactions are now available. It is likely that a large proportion of the 

human interactome can soon be mapped by taking advantage of the emergence of reference 

proteome maps (Kim et al., 2014; Wilhelm et al., 2014), a combination of nearly complete 

clone collections (Yang et al., 2011), rapid improvements in Y2H assay sensitivity and 

emerging interaction-mapping technologies that drastically reduce cost (Caufield et al., 

2012; Stagljar and Fields, 2002; Yu et al., 2011).

Reference binary interactome maps of increased coverage and quality will be required 

to interpret condition-specific interactions and to characterize the effects of splicing and 

genetic variation on interactions (Zhong et al., 2009). While protein-protein interactions 

represent an important class of interactions between macromolecules, future efforts 

integrating this information with protein-DNA, protein-RNA, RNA-RNA or protein-

metabolite interactions will provide a unified view of the molecular interactions governing 

cell behaviour. Just as a reference genome enabled detailed maps of human genetic variation 

(1000 Genomes Project Consortium, 2012), completion of a reference interactome network 

map will enable deeper insight into genotype-phenotype relationships in human.

EXPERIMENTAL PROCEDURES

Extraction of the literature-based datasets

Human PPIs annotated with tractable publication records were extracted from seven 

databases through August 2013. Large-scale systematic datasets and pairs involving 

products of UBC, SUMO1, SUMO2, SUMO3, SUMO4 or NEDD8, were excluded. The 

remaining pairs were divided into those having no piece of binary evidence (Lit-NB) and 

those with at least one piece of binary evidence based on PSI-MI experimental method 

codes. Binary ones were divided between pairs with one and two or more pieces of evidence 

(Lit-BS and Lit-BM, respectively). For benchmark experiments in Y2H and MAPPIT, 

equivalent datasets were extracted similarly in December 2010.

Generation of the binary protein-protein interaction map

HI-II-14 was generated by screening all pairwise combinations of 15,517 ORFs from 

hORFeome v5.1 (Space II) as described previously (Dreze et al., 2010). ORFs encoding 

first pass pairs were identified either by Sanger or by Stitch-seq (Yu et al., 2011). HI-II-14 

was validated by comparing a subset of 809 interactions to a positive and a random reference 

set of 460 and 698 protein pairs, respectively, using MAPPIT, PCA and wNAPPA assays.
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Interaction perturbation by disease and common variants

Disease variants were obtained from the Human Gene Mutation Database (HGMD 2009 V2) 

(Stenson et al., 2014) and common variants were derived from the 1,000 genomes project 

(1000 Genomes Project Consortium, 2012). Only variants with a minor allele frequency 

above 1% were considered common. All successfully cloned disease and common variants 

were systematically tested for interaction with all interactors of their wild-type counterpart.

Interaction density imbalance

For each protein property, we ranked all proteins and, for any property threshold, partitioned 

the interactome space into a first region containing pairs of proteins both above (or below) 

the threshold, and a second region containing all remaining pairs. Interaction density 

imbalance of a given PPI map for a given threshold was calculated as the fraction of 

interactions observed in the first region minus the fraction of PPIs expected assuming a 

uniform distribution in the space. Dense and sparse zones were defined by identifying the 

threshold for which the deviation from expectation is maximal.

Measure of functional enrichment

For each pairwise comparison, PPI and functional maps were trimmed to interactions where 

both proteins were present in both maps and restricted to Space II to allow comparison 

between PPI maps. Functional enrichment odds ratios were calculated using Fisher’s exact 

tests.

GWAS analysis

307 distinct cancer-associated SNPs were identified from 75 GWAS publications covering 

10 types of cancer and 142 distinct loci were identified at a linkage disequilibrium threshold 

of 0.9. For each map, we calculated the number of loci encoding an interactor of a Cancer 

Census protein over the number of loci encoding a protein in the PPI map. To assess 

significance, we measured the corresponding fraction when randomly selecting for each 

locus the same number of proteins than genes with products in the PPI map.

Cancer association scoring system

For each gene, 7 features were measured. Three features represent membership in the 

SB, SM and VT lists of candidate cancer genes (“guilt-by-profiling” features). The four 

other features represent its number of interactors in HI-II-14 that are present in these 

three lists and in the Cancer Census list, normalized by the expected numbers in degree-

controlled randomized networks (“guilt-by-association” features). We measured the ability 

of each feature to prioritize known Cancer Census genes with separate logistic regression 

models. We combined all seven features in a forward stepwise logistic regression model 

using the Akaike information criterion to determine the stepwise halting. The final set of 

features selected was: the SB, SM and VT guilt-by-profiling and the Cancer Census and 

SB guilt-by-association features. “Receiver Operating Characteristic” curves were obtained 

by measuring at decreasing score threshold the fraction of known Cancer Census genes 

recovered and the corresponding fraction of proteins predicted as candidate cancer genes.
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Datasets

For reference datasets used in this study, see Extended Experimental Procedures, Section 

13. All high-quality binary PPIs described in this paper can be accessed on this website: 

http://interactome.dfci.harvard.edu/H_sapiens/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Vast uncharted interactome zone in literature and generation of a systematic binary 
dataset
(A) Validation of binary literature pairs extracted from public databases (Bader et al., 2003; 

Berman et al., 2000; Chatr-aryamontri et al., 2013; Kerrien et al., 2012; Licata et al., 2012; 

Prasad et al., 2009; Salwinski et al., 2004). Fraction of pairs recovered by MAPPIT at 

increasing RRS recovery rates (top left) and at 1% RRS recovery rate (bottom left), found to 

co-occur in the literature as reported in the STRING database (upper right), and recovered 

by Y2H (lower right). Shading and error bars indicate standard error of the proportion. P 
values, two-sided Fisher’s exact tests. For n values, see Table S6.
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(B) Adjacency matrix showing Lit-BM-13 interactions, with proteins in bins of ~350 and 

ordered by number of publications along both axes. Upper and right histograms show the 

median number of publications per bin. The color intensity of each square reflects the 

total number of interactions between proteins for the corresponding bins. Total number of 

interactions per bin (lower histogram). Number of gene products from GWAS loci (Hindorff 

et al., 2009), Mendelian disease genes (Hamosh et al., 2005) and Sanger Cancer Gene 

Census (Cancer Census) (Futreal et al., 2004) genes per bin (circles).

(C) Improvements from first-generation to second-generation interactome mapping based on 

an empirically-controlled framework (Venkatesan et al., 2009). Completeness: fraction of 

all pairwise protein combinations tested; Assay sensitivity: fraction of all true biophysical 

interactions that are identifiable by a given assay; Sampling sensitivity, fraction of 

identifiable interactions that are detected in the experiment; Precision: fraction of reported 

pairs that are true positives.

(D) Experimental pipeline for identifying high-quality binary protein-protein interactions 

(left). ORF: Open Reading Frame. Fraction of HI-II-14, PRS and RRS pairs (right) 

recovered by MAPPIT, PCA and wNAPPA at increasing assay stringency. Shading indicates 

standard error of the proportion. P > 0.05 for all assays when comparing PRS and HI-II-14 

at 1% RRS, twosided Fisher’s exact tests. For n values, see Table S6.

See also Figures S1 and S2 and Tables S1 and S2.
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Figure 2. Overall biological significance
(A) Schematic of the method to assess biological relevance of binary maps.

(B) Enrichment of binary interactome maps for functional relationships (left) and co-

complex memberships (right). Error bars indicate 95% confidence intervals. BP: Biological 

process, MF: Molecular function, CC: Cellular component. Mouse phenotypes: Shared 

phenotypes in mouse models by orthology mapping. MS: Mass-spectrometry based map. 

Enrichments: P ≤ 0.05 for all annotations and maps, two-sided Fisher’s exact tests. For n 
values, see Table S6.
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(C) and (D) Fraction of binary interactions between proteins localized in a common cellular 

compartment and proteins co-present in at least one cell type (arrows) compared to those in 

1,000 degree-controlled randomized networks. Empirical P values. For n values, see Table 

S6.

(E) Number of known kinase-substrate interactions found in binary maps (arrows) compared 

to those in 1,000 randomized networks. Empirical P values are shown. See also Figure S3.
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Figure 3. Perturbations of protein interactions by disease and common variants
Fraction of interactions of the wild-type gene product lost by mutants bearing the 

disease-associated or common variants (top right, error bars indicate standard error of 

the proportion). P value, two-sided Fisher’s exact test. Comparison of interaction profile 

of wild-type CDK4, AANAT, and RAD51D to the interaction profiles of mutant bearing 

disease or common variants (bottom). Yeast growth phenotypes on SC-Leu-Trp-His+3AT 

media in quadruplicate experiments are shown.

See also Figure S3 and Table S3.
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Figure 4. A “broader” interactome
(A) Adjacency matrices showing Lit-BM-13 (blue) and HI-II-14 (purple) interactions, with 

proteins in bins of ~350 and ordered by number of publications along both axes. The color 

intensity of each square reflects the total number of interactions for the corresponding bins.

(B) Total number of binary interactions in literature and systematic interactome maps over 

the past 20 years (top), with years reflecting either date of public release of systematic 

binary datasets or date of publication that resulted in inclusion of interactions in Lit-BM-13. 

Adjacency matrices (bottom) as in Figure 4A.

(C) Fraction of the human proteome present in binary interactome maps at selected time 

points since 1994, considering the full interactome space (left) or only dense (middle) and 

sparse (right) zones of Lit-BM-13 with respect to number of publications.
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(D) Fraction of new interactions connecting two proteins that were both absent from the 

map at the previous time point (four years interval; middle) compared to 1,000 randomized 

networks (right).
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Figure 5. Comparison of interaction mapping approaches
(A) Evaluation of the quality of Co-Frac, PrePPI-HC and pairs from small-scale experiments 

in the literature with no binary evidence (Lit-NB-13). Fraction of pairs recovered by Y2H 

as compared to pairs from Lit-BM-13 and pairs of randomly selected proteins (RRS) (left). 

Enrichment in functional interactions and co-complex memberships (right). Legend as in 

Figure 2B. For n values, see Table S6.

(B) Adjacency matrices for HI-II-14, Lit-BM-13, Co-Frac and PrePPI-HC maps, with 

proteins per bins of ~350 and ordered by number of publications, mRNA abundance in 
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HEK cells, fraction of protein sequence covered by Pfam domains, or fraction of protein 

sequence in transmembrane helices. Figure legend as in Figure 1B.

(C) Highest interaction density imbalances (observed minus expected) are shown in the four 

maps, the union of all four maps, and our previous binary map (HI-I-05) for 21 protein 

properties.

(D) Precision at 1% RRS recovery in the MAPPIT assay (top, error bars indicate standard 

error of the proportion) and functional enrichment (bottom, union of Gene Ontology and 

mouse phenotypes based annotations, error bars indicate 95% confidence intervals) of 

HI-II-14 pairs found in dense and sparse zones mirrored from Lit-BM-13, Co-Frac and 

PrePPI-HC. P > 0.05 for all pairwise comparisons of dense and sparse zones, two-sided 

Fisher’s exact tests. For n values, see Table S6.

See also Figure S4 and Table S4.
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Figure 6. Network properties of cancer gene products
(A) Adjacency matrices for Lit-BM-13 and HI-II-14 only showing interactions involving 

the product of a Cancer Census (Futreal et al., 2004) or of a candidate cancer gene. 

Figure legend as in Figure 1B. Lower histograms show for each bin, the fraction of cancer 

candidates having at least one interaction.

(B) Distribution of the number of interactions (degree) and normalized number of shortest 

paths between proteins (betweenness centrality) for products of Cancer Census and of 

candidate cancer genes in Lit-BM-13 and in HI-II-14 maps as compared to other proteins 
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(right; * for P < 0.05, NS for P > 0.05, two-sided Wilcoxon rank sum tests). For n values, see 

Table S6.

(C) Number of interactions between products of Cancer Census genes (arrows) in HI-I-05, 

HI-II-14, Lit-BM as of 2000 (Lit-BM-00) and as of 2013 (Lit-BM-13), as compared to 1,000 

degree-controlled randomized networks. Empirical P values. For n values, see Table S6.
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Figure 7. Interactome network and cancer landscape
(A) Fraction of cancer-related GWAS loci containing at least one gene encoding a protein 

that interacts with the product of a Cancer Census gene in HI-I-05, HI-II-14, Lit-BM-13, 

Co-Frac and PrePPI-HC (arrows) as compared to randomly selected loci genes. GWAS loci 

already containing a Cancer Census gene are excluded. Empirical P values. For n values, see 

Table S6.
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(B) Network representing products of genes in cancer-associated GWAS loci and their 

interactions with Cancer Census proteins in HI-II-14 (right), and a representative example of 

the network obtained for randomized loci genes (left).

(C) Fraction of GWAS loci gene products interacting with a Cancer Census protein also 

identified in systematic genomic and functional genomic studies (arrow) as compared to the 

fraction obtained for randomized loci genes (bottom right). Empirical P value.

(D) CTBP2 and IKZF1 are deleted in significantly more haematopoietic and lymphoid 

cancer cell lines than in other cancer cell lines. CCLE, Cancer Cell Line Encyclopedia. 

Each barplot compares the fraction of cell lines from the 163 haematopoietic and lymphoid 

(hatched bars) or 717 other (empty bars) cell types where CTBP1, CTBP2, FLI1 or IKZF1 
were found amplified (red) or deleted (blue). P values, two-sided Fisher’s exact tests (NS for 

P > 0.05).

(E) Predictive power of guilt-by-profiling and guilt-by-association models compared to the 

combined model (Figure S6; see Extended Experimental Procedures, Section 11). AUC: 

Area under the curve in Figure S6C. P value, two-sided Wilcoxon rank sum test. SB, 

Sleeping Beauty transposon-based mouse cancer screen; SM, Somatic mutation screen in 

cancer tissues; VT, Virus targets.

(F) Binary interactions from HI-II-14 involving the top candidates and Cancer Census gene 

products in the twelve pathways associated to cancer development and progression. See also 

Figures S5, S6 and S7 and Table S5.
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