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Abstract: Gliomas, the most common primary brain tumors in adults, constitute clinically, histologically, and molecu-
larly a most heterogeneous type of cancer.  Owing to this, accurate clinical prognosis for short-term vs. long-term 
survival for patients with grade II or III glioma is currently nonexistent. A rigorous, multi-method bioinformatic ap-
proach was used to identify the top most differentially expressed genes as captured by mRNA sequencing of tumor 
tissue. Mathematical modeling was employed to develop the model, and three different and independent methods 
of validation were used to assess its performance. I present here a mathematical model that can identify with a 
high accuracy (sensitivity=92.9%, specificity=96.0%) those patients with glioma (grade II or III) who will experience 
short-term survival (≤ 1 year), as well as those with long-term survival (≥ 3 years), at the time of diagnosis and prior 
to surgery and adjuvant chemotherapy. The 5 gene input variables to the model are: FAM120AOS, PDLIM4, OCIAD2, 
PCDH15, and MXI1. MXI1, a transcriptional repressor, represents the top biomarker of survival and the most prom-
ising target for the development of a pharmacological treatment.
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Introduction

Gliomas constitute approximately 80% of all 
malignant primary brain tumors in adults [1]. 
According to their histology and morphological 
features, gliomas are classified by the World 
Health Organization (WHO) mainly into astrocy-
tomas, oligodendrogliomas, and oligoastrocyto-
mas [2]. In addition to this lineage-based clas-
sification, gliomas are graded by WHO into four 
grades (I-IV), ranging from the most benign with 
low proliferative potential (grade I) to the most 
aggressive with very high proliferative activity 
(grade IV), such as glioblastomas. Ho- 
wever general, the WHO grading system is used 
as a predictor of biological progression and 
clinical outcome; and in the clinic, it is influenc-
ing the choice of treatment [2]. Excluding the 
two extreme grades (I and IV), however, accu-
rate clinical prognosis for short-term vs. long-
term survival for patients with grade II or grade 
III glioma is currently nonexistent. This has to 
do with, inter alia, the following two observa-
tions: 1) Gliomas are histologically and molecu-
larly very heterogeneous, and, therefore, they 

result in widely different clinical outcomes in 
terms of survival - so much so, that even among 
the same type of gliomas, there is wide variabil-
ity in terms of survival [1,3]. 2) The WHO grading 
system is in effect a malignancy scale based on 
tumor histology [2], with only four broad classi-
fications, and with a large overlap between the 
two middle classifications, i.e. grade II and 
grade III. For instance, patients with grade II 
astrocytoma have a five-year survival rate of 
~50%; whereas patients with grade III astrocy-
toma have a five-year survival rate of ~30% [1, 
3]. Furthermore, as can be seen in Table S1, 
which contains clinical information about all 89 
subjects used in this study, out of the 75 sub-
jects (Subjects No 1-75) that were long-term 
survivors (survival ≥ 3 yrs), 40 had grade II glio-
ma and 35 had grade III glioma. This clearly, 
therefore, underscores the need for an accu-
rate prognostic method for clinical outcome in 
terms of survival that can be used in the clinic 
to guide the choice of treatment for patients 
with grade II or grade III glioma. Other studies 
have accentuated the same clinical need, as 
well [4-6]. The hypothesis of this study is that 
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there exists a significant difference in the tumor 
gene expression that determines short-term 
versus long-term survival in patients with either 
grade II (G2) glioma or grade III (G3) glioma. In 
order to enhance this genetic difference, and in 
order to place greater emphasis on the detec-
tion of the specific genetic difference that is 
characteristic of those particularly aggressive 
tumors that result in very poor clinical outcome, 
i.e. very short survival, I defined the boundaries 
of the two groups as follows: 1) short-term sur-
vivors (STS) with survival ≤ 1 year and 2) long-
term survivors (LTS) with survival ≥ 3 years. 
Using mRNA sequencing of tumor tissue from 
14 short-term survivors and 75 long-term survi-
vors, and by employing a rigorous, multi-meth-
od bioinformatic approach that I have devel-
oped and presented previously [7-10], I identi-
fied 29 genes that were the most significant in 
terms of differential expression between short-
term and long-term survivors. Furthermore, 
using a general methodology that I have devel-
oped and presented previously [7, 11, 12], I 
generated a function that - based on the input 
of 5 genes from the 29 most significant genes 
- was able to identify/classify accurately all but 
one of the short-term survivors [sensitivi-
ty=(13/14)=0.929] and all but three of the 
long-term survivors [specificiy=(72/75)=0.960]. 
This model was designed to detect/identify 
those patients with either G2 or G3 glioma who 
- owing to the aggressive genetic make-up of 
the tumor tissue, and contrary to expectations 
according to the WHO grading system - will turn 
out to have a very poor clinical outcome (sur-
vival ≤ 1 year); in fact, their clinical outcome will 
be the same as, if not worse than, that of 
patients with the most aggressive type of glio-
ma (grade IV), such as glioblastoma (survival 
~14 months). The ability to identify those 
patients at the time of the diagnosis and to 
select more appropriate, intensive treatment(s) 
- that constitutes the clinical utility of this 
model.

Methods

Data acquisition

I downloaded the normalized data for 89 sub-
jects with glioma (G2 or G3) [14 short-term sur-
vivors and 75 long-term survivors] generated 
from mRNA sequencing of tumor tissue (using 
the Illumina HiSeq 2000 sequencer) from The 
Cancer Genome Atlas (TCGA) of the National 
Cancer Institute under the category LGG (ac- 
cessed on 2013-09-06).

Clinical study design

Hypothesis: The hypothesis of this study is that 
there exists a significant difference in the ex- 
pression of a number of exome genes of the 
tumor tissue, and that that significant genetic 
difference is responsible for the discrimination 
between short-term survival and long-term sur-
vival in patients with either G2 or G3 glioma.

Inclusion/exclusion criteria: As was stated ab- 
ove, I defined the boundaries of the two groups 
as follows: 1) short-term survivors with survival 
≤ 1 year and 2) long-term survivors with surviv-
al ≥ 3 years. The purpose of this was a) to en- 
hance the tumor genetic contrast between the 
two groups by imposing a two-year gap between 
their survival boundaries, and b) to place great-
er emphasis on the detection of the specific 
genetic difference that is characteristic of 
those particularly aggressive tumors that result 
in very poor clinical outcome, i.e. very short su- 
rvival.

All subjects selected for this study had supra-
tentorial G2 or G3 glioma; all had one of the 
following types of glioma: astrocytoma, oli- 
godendroglioma, or oligoastrocytoma; and all 
had surgery and adjuvant chemotherapy (main-
ly temozolomide).

None of the subjects selected for this study had 
a prior diagnosis of brain cancer, and none of 
them received radiation therapy.

Table S1 contains clinical and demographical 
information about all 89 subjects selected for 
this study.

Statistical methods

Control genes: Using 18 control genes, I first 
assessed the quality of the data by examining 
the expression of all 89 subjects [14 short-term 
survivors (STS) and 75 long-term survivors 
(LTS)] with respect to those 18 control genes. 
There was no statistically significant differential 
expression between the two groups with re- 
spect to any of those 18 genes. Table S2 shows 
those results in great detail. The significance 
tests used here are the same as those used in 
the main differential expression analysis, and 
they are, therefore, fully described next.

Differential expression analysis: In order to 
assess statistical significance, I used the fol-
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lowing three different and independent me- 
thods. 

1) ROC curve analysis. Using a methodology 
that I have developed and introduced previous-
ly [7-14], I performed ROC curve analysis on all 
gene variables in order to assess their discrimi-
nating power with respect to the two groups 
(STS vs. LTS); and with respect to this method, I 
set statistical significance at ROC AUC ≥ 0.930 
(or ROC AUC ≤ -0.930 for those variables where 

the mean expression value of the STS group is 
less than that of the LTS group).

2) Fold Change. For all gene variables, I defined 
fold change (FC) as the mean expression value 
of the STS subjects over the mean expression 
value of the LTS subjects, and I set statistical 
significance at FC ≥ 1.50 (or FC ≤ -1.50 for 
those variables where the mean expression 
value of the STS group is less than that of the 
LTS group).

Table 1. Top 29 most significantly differentially expressed genes
No Gene ID DE (STS) ROC AUC FC P ML SDL MS SDS Notes
1 ABI1 ↓ -0.9505 -1.920 3.17E-10 2653.474 843.333 1381.926 395.935 MW
2 ADO ↓ -0.9438 -1.627 1.15E-12 1259.006 195.237 773.854 228.252 TT
3 AP1S3 ↑ 0.9400 3.973 1.49E-09 15.175 11.468 60.287 40.091 MW
4 ARNTL2 ↑ 0.9352 3.529 2.83E-09 31.718 32.163 111.939 63.775 MW
5 ASCC1 ↓ -0.9314 -1.920 4.64E-09 1140.867 277.625 594.266 216.801 MW
6 CMYA5 ↑ 0.9486 8.946 4.26E-10 90.587 237.137 810.392 681.291 MW
7 CTBP2 ↓ -0.9333 -1.605 8.89E-09 1326.318 280.781 826.362 196.115 TT
8 DIAPH1 ↑ 0.9305 1.672 5.23E-09 1027.339 366.561 1717.753 413.980 MW
9 EIF4EBP2 ↓ -0.9314 -1.587 1.17E-08 4246.702 893.414 2676.768 595.612 TT
10 EMP3 ↑ 0.9362 9.438 2.50E-09 121.852 250.739 1149.994 733.065 MW
11 ETV7 ↑ 0.9410 5.667 1.30E-09 7.867 10.086 44.585 43.793 MW
12 FABP5 ↑ 0.9305 9.416 5.23E-09 25.399 32.416 239.143 208.037 MW
13 FAM120AOS ↑ 0.9571 1.504 1.06E-10 640.018 107.859 962.671 166.590 MW
14 FBXO17 ↑ 0.9371 6.376 2.20E-09 73.694 74.914 469.885 254.136 MW
15 GJD3 ↑ 0.9333 5.973 3.63E-09 12.486 17.679 74.581 71.060 MW
16 LOC254559 ↓ -0.9352 -3.671 2.83E-09 1929.637 871.222 525.618 575.678 MW
17 MAP1LC3C ↑ 0.9762 32.187 2.33E-12 1.569 1.397 50.486 52.122 MW
18 MARCH5 ↓ -0.9457 -1.539 6.56E-10 1054.041 162.799 684.873 141.365 MW
19 MRPL43 ↓ -0.9324 -1.686 4.11E-09 1103.024 268.844 654.234 190.321 MW
20 MXI1 ↓ -0.9438 -2.049 8.39E-09 2964.509 851.196 1446.766 589.826 TT
21 OCIAD2 ↑ 0.9400 7.625 1.49E-09 87.062 81.982 663.873 617.919 MW
22 PCDH15 ↓ -0.9438 -6.073 4.17E-16 1262.292 740.195 207.866 206.486 AW
23 PDLIM4 ↑ 0.9495 12.332 3.68E-10 69.461 139.253 856.613 1071.121 MW
24 RAP2A ↓ -0.9305 -2.317 1.16E-11 6054.014 2475.325 2612.444 996.043 AW
25 RBM17 ↓ -0.9448 -1.691 1.98E-08 2122.824 506.611 1255.584 303.376 TT
26 SEPHS1 ↓ -0.9419 -1.776 1.14E-09 1581.372 479.258 890.179 202.707 MW
27 SLC12A7 ↑ 0.9324 2.265 4.11E-09 378.113 225.375 856.256 286.952 MW
28 SLC27A3 ↑ 0.9362 3.583 2.50E-09 120.516 109.021 431.788 282.630 MW
29 TMPRSS3 ↑ 0.9381 15.190 1.93E-09 5.256 7.993 79.834 85.619 MW
The top 29 most significantly differentially expressed genes between the STS and the LTS subjects in alphabetical order. The 
arrows indicate differential expression [over-expression (↑) or under-expression (↓)] of the STS subjects as compared with the 
LTS subjects. The ROC AUC value, the fold change (FC) value, the P-value, the mean expression value of the LTS subjects (ML) 
and their standard deviation (SDL), the mean expression value of the STS subjects (MS) and their standard deviation (SDS) are 
listed for each gene variable. (AW): The Aspin-Welch unequal-variance test was used for the calculation of the P-value for those 
variables. (MW): The Mann-Whitney U test was used for the calculation of the P-value for those variables. (TT): The independent 
t-Test for parametric variables was used for the calculation of the P-value for those variables. As can be seen, all of those 29 
genes met the overall criterion of significance set for, and required by, this study: 1) ROC AUC ≥ 0.930 (or ROC AUC ≤ -0.930), 2) 
FC ≥ 1.50 (or FC ≤ -1.50), and 3) P < 2.43 x 10-6.
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3) P-value. I used the independent t-Test (TT) 
for parametric gene variables (both normality 
and homogeneity of variance conditions were 
met); the Aspin-Welch unequal-variance test 
(AW) for gene variables that met the normality 
condition but not the homogeneity of variance 
condition; and the Mann-Whitney U test (MW) 
for the non-parametric gene variables. Taking 
into account that there are 20,531 gene vari-
ables (these are all the exome genes that were 
quantified by the mRNA sequencing of all tumor 
tissue samples using the Illumina HiSeq 2000 
sequencer), and using the Bonferroni correc-
tion, I set the significance level for the entire 
study at α=2.43 x 10-6. Therefore, in order for 
any variable to be deemed significant according 
to the P-value method, the following condition 
must be met: P < α. Regarding the Mann-Wh- 
itney U test (MW), since none of the non-para-
metric variables had any sets of ties (a subject 
from one group having the same expression 
value as a subject from the other group), I used 
the exact probability for all MW tests.

Incorporating the three aforementioned inde-
pendent methods of statistical significance as- 
sessment, and in order to minimize the number 
of both false positives and false negatives [15-
18], I set the overall significance criterion as fol-
lows: in order for any variable to be included in 
the final list of the most significant variables, it 
would have to meet the significance criteria of 
each one of those three different and indepen-
dent methods. Therefore, the overall criterion 
of significance required: 1) ROC AUC ≥ 0.930 
(or ROC AUC ≤ -0.930), 2) FC ≥ 1.50 (or FC ≤ 
-1.50), and 3) P < 2.43 x 10-6. 

Twenty nine genes fulfilled the overall criterion 
of significance and made up the final list of the 
most significantly differentially expressed ge- 
nes between the two groups. Table 1 shows in 
great detail those results.

The model

Development of the model: Using a split of 
approximately 75% and 25%, I randomly parti-
tioned all of the subjects of this study (89 in all) 
into two fixed sets: a) the training set compris-
ing 66 subjects (10 STS and 56 LTS) and b) the 
validation set comprising 23 subjects (4 STS 
and 19 LTS). The training set was used only for 
the development of the model, whereas the 
validation set was used only for the validation 

of the model. This split into two fixed sets, 
whereby one is used only for training and the 
other only for validation, represents the sim-
plest implementation of K-fold cross validation 
[19, 20]. The aforementioned 29 most signifi-
cant gene variables provided the pool for the 
input variables of the model.

The conditions for the development of a model 
(function) were as follows: 1) A function could 
have as its input variables any subset of the 29 
most significant gene variables described ab- 
ove. 2) Only the 66 subjects (10 STS and 56 
LTS) of the training set may be used for the 
development of a function. 3) The 23 subjects 
(4 STS and 19 LTS) of the validation set may be 
used as unknown (test) subjects for the valida-
tion of a function since they were different from, 
and independent of, the 66 subjects of the 
training set. 4) Pertaining to the development 
phase, a function was deemed promising only if 
it exhibited a sensitivity ≥ 0.90 and a specificity 
≥ 0.90 in connection with the 66 subjects of 
the training set. 5) Pertaining to the validation 
phase, a function was deemed promising only if 
it exhibited a sensitivity ≥ 0.90 and a specificity 
≥ 0.90 in connection with the 23 unknown sub-
jects of the validation set.

I was able to generate the following function 
that met all of the aforementioned conditions:
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where X1=FAM120AOS, X2=PDLIM4, X3=OCIA- 
D2, X4=PCDH15, and X5=MXI1. The X1-X5 are 
the normalized RNA-Seq gene expression val-
ues of the above listed 5 genes, and they con-
stitute the 5 input variables of the F1 function.

The cut-off score of the F1 was determined by 
taking into account the calculation of the opti-
mal point on the ROC curve based on the 66 F1 
scores of the 66 subjects used in the develop-
ment phase [optimal point is defined as the 
point with the highest sensitivity and the lowest 
false positive rate (1-specificity)]. The cut-off 
score of the F1 was determined to be 24.72. If a 
subject’s F1 score is ≥ 24.72, then that subject 
is classified as STS; otherwise, if the F1 score is 
< 24.72, then that subject is classified as LTS.

The results of the F1 in the development phase 
are shown in Table S3 and Figure S1.
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Validation of the model: The F1 was validated 
with the following three different and indepen-
dent validation methods:

1) Fixed validation (test) set. As was explained 
above in the Development of the model, the 
data of all 89 subjects were randomly parti-
tioned into two fixed sets: a) the training set 
comprising 66 subjects (10 STS and 56 LTS) 
and b) the validation set comprising 23 sub-
jects (4 STS and 19 LTS). The training set was 
used only for the development of the model, 
whereas the validation set was used only for 
the validation of the model. The F1 was validat-
ed with the 23 unknown subjects (4 STS and 
19 LTS) of the validation set. Table S4 shows 
those results.

2) Ten-fold cross validation. The data of all 89 
subjects were randomly partitioned into a train-
ing set and into a test set 10 times, and each 
one of those 10 times (folds) the performance 
of the model was assessed [21]. All of the spe-
cific details and the confusion matrix, with the 
results for all 10 folds, are shown in Table S5.

3) Leave-one-out cross validation. Out of the 
89 subjects, one subject was randomly select-
ed and used as a test subject. During the sec-

ond round, another subject was randomly 
selected and used as a test subject. This con-
tinued until all 89 subjects had been selected 
and served as test subjects [21]. Since there 
were totally 89 subjects, there were 89 rounds 
of cross validation. All of the specific details 
and the confusion matrix, with the results for all 
89 rounds of cross validation, are shown in 
Table S5.

Supervised principal component analysis 
(PCA)

PCA is one of the most widely used statistical 
multivariate methods. In order to increase con-
siderably its classification accuracy and attain 
the best possible PCA results in terms of clas-
sification accuracy, I employed the PCA meth-
odology I have developed and presented else-
where [9]. Briefly, using all 89 subjects, I per-
formed supervised PCA employing the correla-
tion matrix and only the 29 most significant 
gene variables described above. Table S6 sho- 
ws those results.

Computer software

All analyses in this study were carried out with 
custom software written by JBN in MATLAB 

Figure 1. Heat map of the expression of the 29 most significant tumor tissue genes of all 89 subjects. Heat map of 
the tumor tissue gene expression, generated from mRNA sequencing, of 75 LTS subjects (columns # 1-75) (x-axis) 
and 14 STS subjects (columns # 76-89) (x-axis) with respect to the 29 most significant genes (rows # 1-29) (y-axis). 
The order of those 29 genes is alphabetical (the same as the one in Table 1). All 29 gene variables were standard-
ized (mean=0 and SD=1). The intensity scale of the standardized expression values represents, therefore, the z 
scores; and it ranges from -7.5 [blue: low expression (7.5 SD below the mean)] to +7.5 [red: high expression (7.5 SD 
above the mean)], with 0 [white (mean=0)] representing the reference intensity value (mean expression value of all 
89 subjects). As can be seen, based on the expression of those 29 most significant genes, there is a distinct overall 
separation between the LTS and the STS subjects.
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R2012b. All computer programs in connection 
with the model were also created by JBN using 
MATLAB R2012b.

Results

Top 29 most significant genes

As was stated in the Methods, having employed 
three different and independent methods of 
statistical significance, namely, ROC curve 
analysis, fold change, and P-value, I was able to 
identify 29 genes that were the most significant 
in terms of differential expression between the 
two groups (STS vs. LTS). Figure 1 depicts the 
heat map that resulted by plotting the expres-
sion of the 29 most significant genes for all 89 
subjects (14 STS and 75 LTS). Figure 2 also 
depicts the differential expression of the 29 
most significant genes between the two groups 
(14 STS and 75 LTS) in a filled-contour plot. The 
direction of the differential expression of those 
29 genes, along with all statistical results, 
appears in Table 1. As can been seen by the 
relative expression intensities (Figures 1 and 
2), there is a distinct overall separation between 
the two groups. 

Mathematical modeling of survival

As was explained in great detail in the Methods, 
I was able to generate the following function:
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where X1=FAM120AOS, X2=PDLIM4, X3=OCIA- 
D2, X4=PCDH15, and X5=MXI1. The X1-X5 are 
the normalized RNA-Seq gene expression val-
ues of the above listed 5 genes, and they con-
stitute the 5 input variables of the F1 function. 
This F1 function (the model), based on the input 
of 5 genes from the 29 most significant genes, 
was able to identify/classify accurately all but 
one of the short-term survivors [sensitivity= 
(13/14)=0.929] and all but three of the long-
term survivors [specificity=(72/75)=0.960]. 
Figure 3 and Table S7 show the results of the 
overall performance of the F1. Those results of 
the overall performance of the F1 were obtained 
by combining the results from the development 
and the validation phases. Figure 4 depicts the 
3D space position of all 89 subjects used in 
this study (14 STS and 75 LTS) according to 

Figure 2. Filled-contour plot of the expression of the 29 most significant tumor tissue genes of all 89 subjects. Tu-
mor tissue gene expression, generated from mRNA sequencing, of 75 LTS subjects (columns # 1-75) (x-axis) and 
14 STS subjects (columns # 76-89) (x-axis) with respect to the 29 most significant genes (rows # 1-29) (y-axis). The 
order of those 29 genes is alphabetical (the same as the one in Table 1). All 29 gene variables were standardized 
(mean=0 and SD=1). The intensity scale of the standardized expression values represents, therefore, the z scores; 
and it ranges from -2 [dark blue: low expression (2 SD below the mean)] to +2 [dark red: high expression (2 SD 
above the mean)], with 0 [light green (mean=0)] representing the reference intensity value (mean expression value 
of all 89 subjects). As can be seen, based on the expression of those 29 most significant genes, there is a distinct 
overall separation between the LTS and the STS subjects.
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their F1 scores. Figure S1 and Table S3 show 
the performance results of the F1 in the devel-
opment phase, i.e. in connection with the 66 
subjects of the training set; whereas Table S4 
shows the performance results of the F1 in the 
validation phase, i.e. in connection with the 23 
unknown subjects of the validation set.

As can be seen in Table S4, in the validation 
phase, and according to the cut-off score of 
24.72 that was determined in the development 
phase, the F1 misclassified 3 unknown LTS sub-
jects (Subjects No 25, 53, and 75) and one 
unknown STS subject (Subject No 79). If the 
results from the development and the valida-
tion phases are combined, and if a new ROC 

method [fixed validation (test) set], in total, 
there were 4 misclassifications out of 89 sub-
jects, and that yielded a misclassification rate 
of 0.045 in connection with the F1.

In addition to the above validation method 
[fixed validation (test) set], the performance of 
the F1 was further assessed by two other differ-
ent and independent methods: 

1) Ten-fold cross validation. According to this 
validation method, in total, there were 5 mis-
classifications out of 89 subjects, and that 
yielded a misclassification rate of 0.056 and a 
mean-squared error of 0.056 in connection 
with the F1. All of the specific details and the 

Figure 3. Overall results of the F1 function. The F1 uses 5 of the 29 most signifi-
cant genes as its input variables. Using the expression value of those 5 genes for 
a particular subject, the F1 yields the F1 score of that subject; and, based on the 
determined cut-off score of 25.165, the F1 classifies that subject as a long-term 
survivor (LTS) if the F1 score is < 25.165 or as a short-term survivor (STS) if the 
F1 score is ≥ 25.165. The results of the overall performance of the F1 were ob-
tained by combining the results from the development and the validation phas-
es. As can be seen by its overall performance in this dot plot & bar graph, the F1 
classified correctly all but one of the STS subjects [sensitivity=(13/14)=0.929] 
and all but three of the LTS subjects [specificity=(72/75)=0.960]. The mean F1 
score of the LTS subjects was 20.511 (top of the green bar) and their standard 
deviation (whiskers above or below the top of the green bar) was 2.790. Using 
bootstrapping with a sample size of 100,000, the 99.99% confidence interval 
of the mean F1 score of the LTS subjects was: [19.150, 21.738]. The mean F1 
score of the STS subjects was 30.157 (top of the orange bar) and their standard 
deviation (whiskers above or below the top of the orange bar) was 4.068. Using 
bootstrapping with a sample size of 100,000, the 99.99% confidence interval of 
the mean F1 score of the STS subjects was: [26.160, 34.108].The significance 
level was set at α=0.001 (two-tailed), and the probability of significance for the 
F1 was P=4.05 × 10-18 (independent t-Test with T-value=-10.986). The F1 is para-
metrically distributed with respect to both groups. The F1 scores of all 89 sub-
jects are shown in Table S7.

curve analysis is performed 
on all F1 scores of all 89 
subjects (66 subjects from 
the development phase and 
23 unknown subjects from 
the validation phase), then 
there exists a better cut-off 
score, i.e. one that yields a 
higher specificity, than the 
original cut-off score of 
24.72 that was determined 
during the development ph- 
ase (see “Development of 
the model” section in the 
Methods). According to the 
aforementioned new ROC 
curve analysis, that more 
optimal cut-off score is 
25.165, such that if a sub-
ject’s F1 score is ≥ 25.165, 
then that subject is classi-
fied as STS; otherwise, if the 
F1 score is < 25.165, then 
that subject is classified as 
LTS. According to the new, 
more optimal cut-off score 
of 25.165, as can be seen 
in Table S4, subject no 75 
(an unknown LTS subject 
with F1 score of 25.1102) is 
no longer misclassified by 
the F1. The new, more opti-
mal cut-off score of 25.165 
yields a higher specificity 
[(72/75)=0.960 as opposed 
to (71/75)=0.947], without 
affecting the sensitivity 
[(13/14)=0.929]. Therefore, 
according to this validation 

http://www.ajcr.us/files/ajcr0001984suppldata.pdf
http://www.ajcr.us/files/ajcr0001984suppldata.pdf
http://www.ajcr.us/files/ajcr0001984suppldata.pdf
http://www.ajcr.us/files/ajcr0001984suppldata.pdf
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confusion matrix, with the results for all 10 
folds, are shown in Table S5.

2) Leave-one-out cross validation. According to 
this validation method, in total, there were 5 
misclassifications out of 89 subjects, and that 
yielded a misclassification rate of 0.056 and a 
mean-squared error of 0.056 in connection 
with the F1. All of the specific details and the 
confusion matrix, with the results for all 89 
rounds of cross validation, are shown in Table 
S5.

In order to compare the performance of the 
model (F1) with well-known and popular statisti-
cal multivariate methods, such as principal 
component analysis (PCA), I performed a super-
vised PCA, as was explained in the Methods, 
seeking, thus, to increase considerably the 
classification accuracy of PCA and attain the 
best possible PCA results in terms of classifica-
tion accuracy. Given that the first principal com-
ponent (PC1) has the highest classification 
accuracy of all principal components, and look-
ing at the PC1 scores of all 89 subjects in Table 
S6, one can see that the supervised PCA mis-
classified 11 out of 89 subjects (misclassifica-
tion rate=0.124); whereas the F1 misclassified 

4 out of 89 subjects (misclassification 
rate=0.045).

Finally, it should be noted here that the F1 
needs to be further validated with a larger, 
independent cohort.

As was mentioned earlier, the five genes 
that constitute the five input variables to 
the F1 are: FAM120AOS, PDLIM4, OCIAD2, 
PCDH15, and MXI1, and their respective 
function and properties will be discussed 
next.

Discussion

On the 5 gene input variables to the model

1) FAM120AOS. This gene encodes a pro-
tein whose function remains unknown. 
Nevertheless, FAM120AOS has been obse- 
rved to play a role in medulloblastoma [22], 
in glioblastoma [23], and in the NCI-60 
human tumor cell lines [24].

2) PDLIM4. This gene encodes a protein 
whose function is protein binding. PDLIM4 
has been observed to be involved in medul-
loblastoma [22], in glioblastoma [23], and 
in breast and colorectal cancers [25].

Figure 4. 3D space position of all 89 subjects according to 
their F1 scores. The F1 scores of all 89 subjects [75 LTS (#1-
75) and 14 STS (#76-89)] are plotted in the z-axis. The sub-
ject number (#1-89) is plotted in the x-axis and the y-axis. The 
order of the subjects is the same as the one that appears in 
Table S7. A plane parallel to the x-y plane that intersects the z-
axis at the point 25.165, which is the cut-off score, represents 
the cut-off plane. Subjects that are classified as STS lie above 
the cut-off plane, whereas subjects that are classified as LTS 
lie below the cut-off plane.

3) OCIAD2. This gene, whose official full name 
is: ovarian carcinoma immunoreactive antigen 
domain containing 2, encodes a protein whose 
function remains unknown. OCIAD2 has been 
observed to be involved, among other, in glio-
blastoma [23], in lung adenocarcinoma [26], 
and in breast and colorectal cancers [25].

4) PCDH15. This gene is a member of the cad-
herin superfamily, whose members encode 
integral membrane proteins that mediate calci-
um-dependent cell-cell adhesion. As can be 
seen in Table 1, PCDH15 is significantly under-
expressed in the STS subjects compared with 
the LTS subjects. That suggests that in the 
case of the STS subjects, the tumor cells have 
significantly lower cell-cell adhesion, or, to put it 
equivalently, they have significantly higher mo- 
bility, which facilitates greater spreading and 
metastasis, than the tumor cells of the LTS sub-
jects. PCDH15 has been observed to be in- 
volved in pediatric low-grade glioma [27], in 
medulloblastoma [28], and in colon and rectal 
cancers [29].

5) MXI1. This gene encodes a protein whose 
function is to inhibit transcriptional activity. 

http://www.ajcr.us/files/ajcr0001984suppldata.pdf
http://www.ajcr.us/files/ajcr0001984suppldata.pdf
http://www.ajcr.us/files/ajcr0001984suppldata.pdf
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More on the biological function of this gene and 
its implications for this study will be discussed 
next. MXI1 has been observed to be involved in 
numerous types of cancer, including in glioblas-
toma [23, 30], in oligodendroglioma [31], in 
colon and rectal cancers [29], in breast cancer 
[32], and in pancreatic cancer [33].

On the biological and clinical importance of 
MXI1

As was mentioned above, and based on current 
knowledge, MXI1 is a transcriptional repressor, 
and it has been theorized that one of its targets 
is MYC, a well-known oncogene. According to 
the results of this study, however, the expres-
sion of MYC in the STS subjects is not signifi-
cantly different from that in the LTS subjects. 
That suggests that both the role and the range 
of MXI1 as a transcriptional repressor are much 
wider than previously thought. Insofar as the 
results of this study are concerned, MXI1 acts 
as a tumor suppressor. Other studies have also 
suggested different and more general mecha-
nisms of action for the tumor-suppressing func-
tion of MXI1, such as arresting the cell cycle via 
binding to, and inhibiting, cyclin B1 (CCNB1) in 
the case of glioma cells [34]. I should point out 
here that the results of this study are in accord 
with the observations and the proposed mech-
anism of action for MXI1 of the aforementioned 
study, for there is an inversely proportional 
trend regarding the expression of cyclin B1 in 
connection with the expression of MXI1. More 
specifically, the STS subjects have a significant-
ly lower expression of MXI1 and higher expres-
sion of cyclin B1 compared with the LTS sub-
jects. Other studies have proposed even more 
different and much wider mechanisms of action 
regarding the function of MXI1 as a transcrip-
tional repressor and inhibitor of cell prolifera-
tion, such as different isoforms of MXI1, with 
different properties and effects, binding to, and 
acting on, many different families of proteins to 
arrest the cell cycle in different ways [35].

As can be seen in Table 1, MXI1 is significantly 
under-expressed in the STS subjects compared 
with the LTS subjects. That suggests that in the 
tumor cells of the STS subjects, transcriptional 
repression is significantly lower than that in the 
tumor cells of the LTS subjects; and from that it 
follows that the tumor cells of the STS subjects 
experience significantly higher rates of cell pro-
liferation than the tumor cells of the LTS sub-

jects. This conclusion accords very well with the 
experimental observations (clinical outcome 
between STS and LTS subjects) and provides 
the theoretical (biological) foundation of the 
model. Finally, I should point out here that, 
based on the results of this study, MXI1 pres-
ents itself not only as the top biomarker for sur-
vival in patients with either G2 or G3 glioma, 
but also as the most promising target for the 
development of a drug treatment.

On the development of a possible treatment

The results in Table 1 show that the top 29 
genes are the most significant discriminators 
between the STS and the LTS subjects, and 
that they can collectively account for the overall 
differential survival between the two groups. 
Those 29 most significant genes, therefore, 
represent a comprehensive list of targets wh- 
erefrom a pharmacological treatment may be 
developed. Such a treatment would be adminis-
tered right after surgery, and prior to the admin-
istration of the adjuvant chemotherapy, in order 
to treat the post-surgery residual tumor load in 
the identified STS subjects by normalizing the 
expression of those 29 genes, i.e. by suppress-
ing those genes that are over-expressed and by 
increasing the expression of those genes that 
are under-expressed. The goal of such a treat-
ment would be to render the post-surgery resid-
ual tumor cells in the identified STS subjects 
sensitive to the adjuvant chemotherapy, result-
ing thus in long-term survival, just like in the 
case of the LTS subjects.

The results of this study in connection with the 
model demonstrated that the five genes that 
constitute the five input variables to the model, 
namely, FAM120AOS, PDLIM4, OCIAD2, PCD- 
H15, and MXI1, can discriminate between the 
STS and LTS subjects with a high accuracy. 
Moreover, as was discussed above, all of those 
five genes have been observed to be involved 
in numerous types of cancer. Those five genes, 
therefore, represent a selective and prime list 
of targets wherefrom a pharmacological treat-
ment may be developed. Furthermore, as was 
mentioned in the previous section, MXI1, based 
on its biological function and significance, is 
the top target in that selective and prime list.  

On the clinical utility of the model

The clinical utility of the model presented here 
is defined by its ability to detect/identify those 
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patients with either G2 or G3 glioma who - 
owing to the aggressive genetic make-up of the 
tumor tissue - will turn out to have a very poor 
clinical outcome (survival ≤ 1 year). Currently, 
the means to identify those patients at the time 
of the diagnosis and prior to surgery and adju-
vant chemotherapy is nonexistent. This means 
that an appropriate treatment will not be timely 
available for those patients. For instance, at 
the time of the diagnosis, a patient with G2 
(grade II) glioma who - on account of the genetic 
make-up of the tumor tissue - will turn out to be 
a short-term survivor (survival ≤ 1 year) will not 
receive the same intensive treatment as a 
patient with glioblastoma (grade IV glioma), 
even though the former will experience the 
same or, more likely, shorter survival than the 
latter. According to the WHO grading system, at 
the time of the diagnosis, the clinical outcome 
of the former patient (with grade II glioma) will 
be considered far better than that of the latter 
patient (with grade IV glioma).

Finally, the clinical utility of the model is further 
defined by the potential to develop a pharmaco-
logical treatment based on the aforementioned 
identified gene targets. If such a treatment 
became a reality, then the model could be us- 
ed, at the time of the diagnosis, to identify the 
STS patients, i.e. the subset of patients for 
whom such a treatment would be appropriate 
and necessary.
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