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Tipping points are crossed when small changes in external condi-
tions cause abrupt unexpected responses in the current state of
a system. In the case of ecological communities under stress, the
risk of approaching a tipping point is unknown, but its stakes are
high. Here, we test recently developed critical slowing-down in-
dicators as early-warning signals for detecting the proximity to a
potential tipping point in structurally complex ecological commu-
nities. We use the structure of 79 empirical mutualistic networks to
simulate a scenario of gradual environmental change that leads to
an abrupt first extinction event followed by a sequence of species
losses until the point of complete community collapse. We find that
critical slowing-down indicators derived from time series of bio-
masses measured at the species and community level signal the
proximity to the onset of community collapse. In particular, we
identify specialist species as likely the best-indicator species formon-
itoring the proximity of a community to collapse. In addition, trends
in slowing-down indicators are strongly correlated to the timing of
species extinctions. This correlation offers a promising way for map-
ping species resilience and ranking species risk to extinction in
a given community. Our findings pave the road for combining the-
ory on tipping points with patterns of network structure that might
prove useful for the management of a broad class of ecological
networks under global environmental change.
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Systems as complex as the climate (1), financial markets (2), or
ecosystems (3) have experienced tipping points in the past

and may do so in the future. Tipping points are crossed when
small changes in external conditions trigger the sudden collapse
of a system to an undesirable state that is usually difficult to
reverse. For example, the shutdown of the thermohaline circu-
lation in the North Atlantic (4), or the occasional switches of
shallow lakes from clear to turbid waters (5) are examples of
sudden transitions that might have been caused by gradual
changes in external conditions. It is this “small changes can have
big effects” pattern that makes tipping points important to study
but notoriously difficult to detect. Nonetheless, recent work has
suggested that the possibility of detecting nearby tipping points
may not be that distant (6).
According to theory, before tipping points, systems tend to

recover slowly back to equilibrium upon a random disturbance
(7). This phenomenon of “critical slowing down” appears to be
generic for a wide class of local bifurcations (8), at which the
current equilibrium state of a system loses stability before being
replaced by another equilibrium state. Critical slowing down may
be captured by two simple statistical signals in the dynamics of
complex systems (6): increasing variance and rising correlation.
These signals can be used to indicate the proximity of a system to
a tipping point and are suggested to serve as indicators of loss of
resilience, or, more broadly, as early-warning signals for the
impending transition (6). Critical slowing-down indicators (CSD
indicators hereafter) have been experimentally shown to detect
abrupt transitions between alternative states in yeast cultures (9),
plankton chemostats (10), zooplankton populations (11), or even

whole lake communities (12). However, these indicators have
been mostly studied in systems with single populations or few
aggregated components that lack the complexity that charac-
terizes structurally heterogeneous systems of interacting species,
such as ecological networks.
Although ecological networks have been experiencing an in-

creasing amount of anthropogenic pressures, it is still unclear
how strongly they may respond to this stress. Responses might
range from local extinctions and species distribution shifts (13) to
whole community reorganization and massive biodiversity losses
(14). In the best-case scenarios, these responses will be gradual,
predictable, or even reversible. However, little is known on
whether ecological networks could also respond in abrupt and
unexpected ways (15). Theoretical work shows that gradual en-
vironmental change in mutualistic communities may have dif-
ferent effects on species tolerance to stress, but the path to
extinction appears to be gradual (16). Only recently, it has been
suggested that strongly nested mutualistic networks may run a
high risk of experiencing a tipping point (17). For these latter
cases, the challenge is to detect whether they are approaching a
tipping point in advance.
Here, we explore whether we can detect tipping points in

structurally diverse ecological networks with CSD indicators. We
used the structure of 79 mutualistic communities reconstructed
from empirical plant–pollinator and plant seed–disperser net-
works to simulate dynamical scenarios of gradual environmental
change that lead to species loss and community-wide collapses.
We demonstrate that CSD indicators derived from monitoring
biomasses at the species and community level may signal the
proximity to the onset of community collapse. We investigate how
species structural traits influence the predictive performance of
the indicators at the species level. Last, we suggest that species-
level indicators may be used to rank species risk to extinction even
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before the onset of community collapse. Despite the challenge of
identifying these patterns in empirical dynamics of observed pop-
ulations, to our knowledge, our work offers a first theoretical
framework for detecting tipping points and mapping species resil-
ience in mutualistic communities that can help to detect potential
abrupt transitions in a broad class of ecological networks.

Results and Discussion
The Abrupt Onset of Community Collapse.We estimated changes in
CSD indicators, variance and autocorrelation at lag 1, in simu-
lated time series of 79 empirically described bipartite plant–
pollinator and plant seed–disperser mutualistic communities
before their collapse. We assumed that species compete weakly
with each other but coexist due to their mutualistic benefits (i.e.,
obligate mutualism). We simulated community dynamics in the
presence of environmental noise, and we exposed all communi-
ties to a scenario of gradual environmental stress. Although our
simulations do not necessarily capture the complexity of ob-
served dynamics, they serve as a good first approximation. We
slowly decreased the strength of mutualistic interactions between
plant and animal species. This led to species extinctions until the
complete community collapsed. Our scenario follows the overall
weakening or even disruption of mutualistic interactions (18)
that has been observed in declining visitation rates (19), or phe-
nological mismatching (20) due to habitat fragmentation or changes
in seasonal temperature patterns.
Fig. 1 demonstrates a simulated example of a collapsing plant–

pollinator community from the Chilean Andes (Fig. 1A). As
benefits from species mutualistic interactions gradually declined,
species were progressively decreasing in biomass. In our com-
munities, we assumed a trade-off between the strength of

mutualistic interactions and the number of species interactions.
This meant that specialists benefited strongly from their part-
ners, whereas generalists did not (Materials and Methods). As
a result, all species suffered proportional losses up to a point
where the first extinction event suddenly occurred (Fig. 1B). We
defined this first extinction event as the tipping point that
marked the onset of the complete collapse of the community.
We observed an abrupt onset of community collapse in all
79 communities.
What makes such tipping points important to detect is that

they happen without any prior substantial loss in species biomass
(SI Text, section S1). Obviously, a gradually declining trajectory
toward extinction would by itself be evidence that the community
is at risk. At the moment, we are largely unaware of how general
an abrupt onset of community collapse is, although there is the-
oretical evidence that the nested pattern of mutualistic networks
would favor the occurrence of abrupt transitions (17). In that case,
CSD indicators can prove useful for anticipating abrupt tran-
sitions. Comparing time series of species far and close to the onset
of community collapse, we found that both their variability and
correlation increased (Fig. 1 C and D). A similar pattern was also
found when looking at aggregate measures of total community
biomass (Fig. 1 C andD), implying that CSD indicators can indeed
be used to identify the onset of collapse in structurally complex
mutualistic communities.

CSD Indicators at Species and Community Level. We confirmed in-
creasing patterns in critical slowing indicators in all our 79 com-
munities before the onset of community collapse. We measured
variance as coefficient of variation (CV = std dev=mean), and au-
tocorrelation at lag 1 (AR1) as the correlation of the time series to
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Fig. 1. Detection of the abrupt onset of collapse
using critical slowing-down (CSD) indicators in mu-
tualistic communities. (A) A plant–pollinator com-
munity from Cordon del Cepo, Chile. The black
boxes represent mutualistic links between plants
and animals. We used the structure of 79 empirical
mutualistic networks to simulate their dynamics and
potential collapse under gradual environmental
change. (B) Decreasing mutualistic strength γ stresses
species biomasses until unexpectedly an abrupt tran-
sition is induced. This first transition marks the onset
of a sequence of extinctions until the collapse of the
complete community. (C and D) Identifying critical
slowing down at the species and community level.
Close to the onset of community collapse, variance
and correlation tend to increase. This increase is evi-
dent measured both from species biomasses and from
the aggregated total community biomass.
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itself shifted by one time step. As CV and AR1 tend to smoothly
change up to the onset of collapse (Fig. S1), we reported only their
relative changes (natural log differences) at the start of the sim-
ulation and just before the onset of community collapse (Fig. S1
and Materials and Methods). Indicators increased both at species
and community level (Fig. 2), regardless of being estimated for
plant or animal species (Fig. S2). We also found similar patterns
when we estimated the change in indicators 10 steps instead of just
1 step before collapse (Fig. S3). AR1 trends were stronger than
CV trends (paired t test 206.45, P< 0:05, df = 11,194). However,
AR1 trends at the species level were occasionally negative, where-
as CV always increased (Fig. 2). Instead, AR1 and CV trends
estimated at the community rather than the species level were
always positive as differences across species smoothed out at the
aggregate level (Fig. 2).

Best-Indicator Species for Detecting Community Collapse. Although
these results broadly support that CSD indicators could an-
nounce abrupt transitions in a community, they are constrained
by the need of collecting high-resolution time series for all spe-
cies. However, a closer look at indicator trends across species
shows that some species have better reflected community prox-
imity to the collapse than others (Fig. 2). Such species could
qualify as best-indicator species of community collapse (i.e., the
ones with the potential to demonstrate the strongest changes
in CSD indicators). We searched for the profile of these best-
indicator species by estimating correlations between indicator
trends and species structural traits. We selected two commonly
used structural traits: degree (i.e., number of the interactions of
a species), and contribution to nestedness (i.e., the level of
shared interacting partners in the community). We chose these
traits based not only on the fact that they have been related to
the persistence of mutualistic communities (21) but also because
they can be easily derived from species interaction matrices.
We found negative correlations between CV trends and spe-

cies degree, and negative but weak correlations between AR1
trends and species degree (Fig. 3). Similar but more variable

patterns were observed for correlations between indicator trends
and contribution to nestedness (Fig. 3). Despite the variation in
the correlations, specialists (and to a less extent least contributors
to nestedness) tended to be best-indicator species of community
collapse. This can be best explained by the fact that specialists
were generally the first to collapse (Fig. S4 A and B), and that
specialists’ dynamics were less muffled by noise as opposed to
generalists whose dynamics were affected by the multiple noisy
dynamics of their partners. These observations imply that de-
clining community resilience might be strongly reflected in CSD
indicators when measured from peripheral species in a network.
Although this qualifies specialists as target species for monitoring
community resilience, CSD indicators from specialist dynamics
might not always reflect community-wide risk of collapse. As
specialists are usually most vulnerable to disturbances, changes in
their dynamics might just imply individual rather then community-
wide risk of extinction. Thus, monitoring a mix of specialists and
generalists in a network may help avoid such potential false pos-
itives. Still, the challenge will be to strike the right balance between
monitoring the minimum number of species in a network and the
effort required for robustly estimating community resilience.

From Detecting Tipping Points to Mapping Species Resilience. The
fact that most species indicated the proximity to the onset of
community collapse implies that differences in indicator trends
across species might reflect how close a species is to its own point
of extinction or more general how resilient a species is. In the
example of the plant–pollinator community from Fig. 1, we or-
dered species according to their timing of extinction, and we
colored them based on the magnitude of the change in their CVs
(Fig. 4; white reflects weak, and black reflects strong changes).
As expected, species that went first extinct showed the strongest
changes in CV. This was generally true for specialists. We con-
firmed such correlations between the timing of species extinc-
tions and trends in CSD indicators in all 79 communities.
Correlations for CV were stronger than for AR1 (Fig. S4 C and
D). This finding implies that we could rank species risk to ex-
tinction before any event of collapse by just comparing species’
relative changes in CV. Such across-species comparisons of CV
have been proposed earlier for estimating species resilience (22)
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Fig. 2. Performance of critical slowing-down (CSD) indicators measured at
the species (n = 11,195) and community (n = 79) level in 79 mutualistic
communities. Performance was estimated as the natural logarithmic ratio
of autocorrelation at lag 1 (AR1) and coefficient of variation (CV) close and
far from the onset of community collapse. The multivariate index of var-
iability was estimated on the community biomass variance–covariance
matrix. Positive values indicate an increase in the indicators before the
onset collapse. The boxplots include the median, box edges represent the
5th and 95th percentiles, and box whiskers indicate the minimum and
maximum values.
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Fig. 3. Structural traits and critical slowing-down (CSD) indicators. Spear-
man rank correlations between species traits (degree and contribution to
nestedness) and species indicators performance. Boxplots include the me-
dian, box edges represent the 25th and 75th percentiles, and box whiskers
indicate the 5th and 95th percentiles.
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and have been used for exploring population vulnerability, for
instance, to overexploitation in fish stocks (23, 24). Nonetheless,
these comparisons are based on snapshot measurements that
might be compromised by differences in species traits (like
mortality or growth rates). Instead, comparing relative changes
in CSD indicators might reduce such biases and allow direct
across-species comparisons given that all species in a community
are experiencing similar environmental stress.

Challenges to Detecting Tipping Points in Mutualistic Communities.
Although our results show that we could implement CSD indi-
cators for mapping species resilience and detecting abrupt
community transitions, we are still largely ignorant whether
abrupt collapses are the rule or rather the exception in mutual-
istic communities. Theory suggests that the nested structure of
mutualistic networks would increase the probability of abrupt
transitions (17), but it is unresolved how the overall parameter
space affects the probability of community collapse and the
performance of the CSD indicators. For example, it has been
demonstrated that species tend to reorganize their interactions
in a community, especially under stress (25). Such adaptation
would probably minimize the probability of an abrupt collapse.
Additionally, it has been theoretically shown that species respon-
ses to environmental stress in mutualistic communities are largely
dependent on how mutualistic strengths are assigned between
species (16). For example, in our communities we assumed a
trade-off between mutualistic strength and the number of species
interactions (δ = 1) (26, 27). Under such trade-off, the gradual
decrease in mutualistic strength caused the abrupt onset of com-
munity collapse as all species suffered proportional losses (Fig. 5A,
plant–pollinator community from Fig. 1). Had we, however, as-
sumed no trade-off for the same community (δ = 0), generalists
would enjoy mutualistic benefits proportional to the number of
their mutualistic partners and suffer less losses than specialists.
Consequently, we would expect specialists to first go extinct
probably in a gradual rather than abrupt way (Fig. 5B). Indeed,
only in 21 out of the 79 communities, the onset of community
collapse remained abrupt when we assumed no mutualistic trade-
off while keeping the rest of the parameters the same. Nonethe-
less, even in the case of gradual transitions, we still found positive
CSD trends mostly at the species (Fig. 5 D and F) rather than
community level (Fig. 5 C and E).
Regardless of the type of transition, our ability to detect CSD

in a network is consequent with monitoring stochastic commu-
nity dynamics around an underlying stable equilibrium (6).
However, observed population dynamics usually follow erratic,
highly variable patterns driven by a mix of nonlinear and sto-
chastic effects (28, 29), at times interrupted by long transients far

from equilibrium (30). This may question whether CSD indica-
tors could be identified at all under such nonequilibrium con-
ditions (31). Or it might be challenging to conclude whether CSD
indicators are a consequence of the progressive approach to
a tipping point or due to the natural patterns of variability in real
populations (32). Despite the real topologies we used, our sim-
ulated communities reproduced dynamics that are far from the
variability found in empirical data (Fig. S5). Such difference
challenges the capacity of interpreting natural patterns of vari-
ability from a CSD perspective. Instead, at the moment, the
theory behind CSD indicators only allows us to explore how CSD
indicators may be identified in structurally complex communities
under stable equilibrium dynamical regimes in the presence of
weak stochasticity.
Clearly, our work is only a first step when it comes to assessing

our ability to detect community collapses. Although we con-
firmed our conclusions also under an alternative stress scenario
(Figs. S6 and S7), there are more cases to be explored. For in-
stance, species will most likely be differentially affected by
changing conditions (18). Similarly, variation in stochastic effects
across species will affect indicators’ performance, as CSD indi-
cators have been shown to be sensitive to the magnitude and
color of environmental noise (33, 34). Further studies would
need to test the possibility of detecting tipping points under such
conditions and to expand the current findings to other types
of networks like food webs, competition communities, or
metapopulations.

Conclusions
In this study, we showed that CSD indicators can be used to infer
proximity to tipping points and to map species risk to extinction
in systems as structurally diverse as mutualistic networks. No
doubt we remain largely ignorant of whether such networks will
respond abruptly to increasing pressure at all. However, in the
case they do, the generality of the dynamical signatures of tip-
ping points implies that CSD indicators may be used for iden-
tifying vulnerable system components and for detecting abrupt
transitions in networks ranging from ecological communities to
globally linked financial markets.

Materials and Methods
Empirical Networks. Our mutualistic plant–pollinator and plant seed–dis-
persal networks were accessed from the Web of Life database (www.web-
of-life.es). We only selected networks that have more than 20 species. This
resulted in 79 networks covering a wide geographic range across all con-
tinents and climatic zones and with a high variation in their architectural
properties. Table S1 summarizes the ranges of the most important structural
properties of these communities.

degree
extinction sequence

CV change

Fig. 4. Mapping species resilience based on critical slowing-down (CSD) indicators. Each node represents a species in the plant–pollinator community from
Fig. 1. Species are ranked according to their order of extinction (from Left to Right), their size corresponds to the number of their interactions (degree), and
are colored according to their changes in CV before the onset of community collapse. Black colors indicate strong increases in CV. We used color boxes to
group species that went coextinct. We found a positive correlation between the magnitude of the CV change and the order of species extinctions. Similar
patterns were confirmed in all 79 communities (Fig. S4). This information can be used to rank species risk to extinction.
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Model. The empirical mutualistic networks provided the skeleton that we
used to simulate the dynamics of our communities. The dynamics of plants
P and animals A (i.e., pollinators, seed dispersers) were given by a model
presented by ref. 35:

dPi
dt

= Pi

 
αPi −

X
j

βPijPj +

P
jγPijAj

1+h
P

jγPijAj

!
+u

dAk

dt
=Ak

 
αAk −

X
j

βAkjAj +

P
jγAkjPj

1+h
P

jγAkjPj

!
+u

for  i= ½1,n�, k= ½1,m�,

[1]

where both plant and animal biomasses grow with rate α, compete within
their respective guilds with interspecific rate β, and enjoy a mutualistic
benefit following a saturating function with handling time hð= 0:1Þ and
mutualistic strength γ between plants and animals. We slightly modified the
model by assuming that there is a small immigration rate uð= 10−5Þ for all
species. Parameter u does not affect the dynamics of the model, but helps to
avoid the occurrence of underflow errors in the presence of environmental
noise. To account for asymmetries in the strength of interactions between
generalist and specialist species (36), we used a trade-off that defines the
mutualistic dependence between species j and i and that depends on species
degree (number of mutualistic links) (16):

γij =
γoyij
kδ
i

: [2]

γo represents the average level of mutualistic strength, ki the degree of
species i, and yij = 1 if species i and j interact and zero otherwise. Parameter δ
modulates the trade-off and determines the actual mutualistic interaction
strength of plant (animal) species i and the j animal (plant) species in the
community (16). Here, we adopt a scenario of equal total strengths for all
species by assuming an inversely proportional mutualistic strength to species
degree (δ= 1) that can be justified by classical empirical (26) and theoretical
work (27). Last, to ensure that our communities are feasible (all species
present) before we impose any stress, and to minimize the chance that
transitions are driven by the direct competition within plants or animals (β),
we did not allow interspecific competition to exceed intraspecific competi-
tion

�P
j

�
βij ≤ 1ði≠ jÞ�� (37). We did this by sampling competition coefficients

βij for each plant and animal guild from a uniform distribution with mini-
mum 0.001 and mean β= 1=ðnðAÞ,ðPÞÞ, where nðPÞ,ðAÞ are the number of plant
or animal species, respectively, until the assumption

P
jβij ≤ βiiði≠ jÞ was

fulfilled. Intraspecific competition βii was set to 1.

Collapsing Mutualistic Communities by Declining Mutualistic Strength. In our
numerical experiments, we slowly decreased mutualistic strength γo for all
plant–animal interactions (16). We started simulations assuming con-
ditions of obligate mutualism (38), which implies that species can survive
only in the presence of strong mutualistic benefits. We imposed obligate
mutualism by drawing negative growth rates for plants and animals αðPÞ,ðAÞ
uniformly from [−0.5, −0.1]. To ensure that the level of mutualistic
strength that we chose was relative to the actual size and structure of each
community, we assigned mutualistic strengths γo to be higher than the
limit τ (γo = 8τ) at which mutualistic benefits exceeded competitive costs
for all communities (16). Under these conditions, we randomly initialized
species biomasses from a uniform distribution ([0, 10]) and let communities
reach equilibrium. We only selected parameterizations that allowed all
species to be present in each community (feasible equilibrium). If that con-
dition was not satisfied, we resampled competition and growth rate terms
and repeated the initialization. Once we attained parameters that allowed
for a feasible equilibrium, we gradually decreased γo to zero in 200 equal
steps. At each step, we discarded transients by simulating for 500 time steps
before recording equilibrium species biomasses. We assumed that species
went extinct when their biomass was lower than 10 times the immigration
rate u (i.e., <10−4). The gradual decrease of mutualistic strength led to the
progressive loss of species until the collapse of the complete community. At
each extinction event, we recorded the level of mutualistic strength γo and
the identity of species that went extinct. We categorized the first extinction
event as abrupt or gradual depending on the slope of the decline in species
biomasses [where the slope was given by ðNðtÞ −Nðt−1ÞÞ=ðγðtÞ − γðt−1ÞÞ and t
was the time index corresponding to the first extinction event]. If the slope
was larger than 15, we characterized the onset of community collapse as
abrupt (17). If that condition was not satisfied, we characterized the tran-
sition as gradual. We repeated the above procedure to attain an abrupt
transition in all communities for 10 of the total 79 networks (on average 3.6
times for each).
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Fig. 5. The effect of trade-offs inmutualistic strengths
on CSD indicators. (A) In the presence of a trade-off,
mutualistic strengths are inversely proportional to
the number of species interactions (δ = 1). All species
suffer similar losses to the decreasing mutualistic
strength and the onset of community collapse usu-
ally occurs abruptly. (B) In the absence of a mutual-
istic trade-off (δ = 0, all of the rest of the parameters
are the same as in A), mutualistic strengths are the
same across all species. As a result, mutualistic
benefits are proportional to the number of their
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lapse in the presence of the trade-off (δ = 1). (D and
F) Indicators at species level have mostly positive
trends but perform poorer in the absence of the
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CSD Indicators as Early Warnings for the Onset of Community Collapse. We
quantified CSD indicators in themutualistic communities to test whether they
can provide early warnings for the proximity to the onset of community
collapse. We measured variance (expressed as CV = std dev=mean) (39) and
autocorrelation at lag 1 [AR1, as the corrðxt ,xt+1Þ, where xt denotes a point
in the time series] (40). To estimate these indicators, we simulated a sto-
chastic version of our differential Eqs. 1:

dPi = fðPi ,AkÞdt + σPidWi

dAk = fðPi ,AkÞdt + σAkdWk
, [3]

where fðÞ is the deterministic part of Eq. 1, and dW is a Wiener process
uncorrelated across all species with mean 0 and variance scaled by σð= 0:025Þ
and species biomasses (multiplicative noise). We used Euler integration with
time step 0.01 following Ito calculus to solve the equations and to generate
the stochastic time series for all species in the community. We chose CV as an
unbiased measure of variability rather than the commonly used SD (39) to
account for the scaling effect of environmental stochasticity to species bio-
mass (multiplicative noise). Multiplicative noise can alter patterns in variance
when studying CSD indicators (34). We discuss this issue in the SI Text, section
S3 and Fig. S8. Previous studies have shown that CSD indicators change
smoothly before bifurcation points (8, 41). We confirmed smooth changes in
CV and AR1 in our mutualistic communities under a gradual decline of
mutualistic strength (Fig. S1). Based on these observations, we only esti-
mated CV and AR1 far (i.e., γo = 8τ) and close (i.e., one step before the
threshold γo = γthr−1) to the onset of community collapse. We did this by
simulating communities for 100 time steps far and close to the first tipping
event starting from equilibrium conditions. To reduce random effects due to
noise, we repeated this 20 times. For each repetition, we estimated CV and
AR1 and used average values to estimate indicators for each species. We also

measured CV and AR1 on total community biomass by aggregating plant
and animal biomasses. We lastly computed a community level multivariate
index of variability based on the maximum eigenvalue of the variance–co-
variance matrix of all species biomasses at equilibrium (42) that is commonly
used in multivariate analysis of community changes (e.g., principal compo-
nent analysis). We quantified the strength of the change in the indicators as
the natural log difference of the indicator values close and far from the
onset of collapse [lnðindicatorthr−n=indicatoroÞ] for each species in
all communities.

Structural Traits. We used Spearman rank correlation to explore correlations
between changes in CSD indicators and structural traits for identifying po-
tential best-indicator species. The two structural traits were degree (number
of mutualistic links) and contribution to nestedness. Contribution to nest-
edness for each species quantifies the amount to which nestedness compares
with the nestedness when randomizing the interactions of that particular
species (21). In calculating nestedness contributions, the interactions of
a species are randomized according to the null model specified in ref. 43; we
used 1,000 random replicates.

We did all analyses in MATLAB (R2010b; The Mathworks) using Grind for
MATLAB (available online at www.sparcs-center.org/grind).

ACKNOWLEDGMENTS. We are grateful to the editor’s and the three review-
ers’ suggestions that improved our work. We also thank Miguel Fortuna,
Luisjo Gilarranz, Rudolf Rohr, Serguei Saavedra, Marten Scheffer, and Egbert
van Nes for valuable comments on earlier versions of the manuscript. V.D.
was funded by a Rubicon (Netherlands Organization for Scientific Research)
and a Marie Curie Intra-European Fellowship–European Union fellowships.
J.B. was supported by a European Research Council’s Advanced Grant.

1. Lenton TM, et al. (2008) Tipping elements in the Earth’s climate system. Proc Natl
Acad Sci USA 105(6):1786–1793.

2. May RM, Levin SA, Sugihara G (2008) Complex systems: Ecology for bankers. Nature
451(7181):893–895.

3. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in
ecosystems. Nature 413(6856):591–596.

4. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years.
Nature 419(6903):207–214.

5. Scheffer M (1998) Ecology of Shallow Lakes (Chapman and Hall, London).
6. Scheffer M, et al. (2009) Early-warning signals for critical transitions. Nature 461(7260):

53–59.
7. Wissel C (1984) A universal law of the characteristic return time near thresholds.

Oecologia 65(1):101–107.
8. Kuehn C (2012) A mathematical framework for critical transitions: Normal forms,

variance and applications. J Nonlinear Sci 23:457–510.
9. Dai L, Vorselen D, Korolev KS, Gore J (2012) Generic indicators for loss of resilience

before a tipping point leading to population collapse. Science 336(6085):1175–1177.
10. Veraart AJ, et al. (2012) Recovery rates reflect distance to a tipping point in a living

system. Nature 481(7381):357–359.
11. Drake JM, Griffen BD (2010) Early warning signals of extinction in deteriorating en-

vironments. Nature 467(7314):456–459.
12. Carpenter SR, et al. (2011) Early warnings of regime shifts: A whole-ecosystem ex-

periment. Science 332(6033):1079–1082.
13. Deutsch CA, et al. (2008) Impacts of climate warming on terrestrial ectotherms across

latitude. Proc Natl Acad Sci USA 105(18):6668–6672.
14. Barnosky AD, et al. (2012) Approaching a state shift in Earth’s biosphere. Nature

486(7401):52–58.
15. Scheffer M, et al. (2012) Anticipating critical transitions. Science 338(6105):344–348.
16. Saavedra S, Rohr RP, Dakos V, Bascompte J (2013) Estimating the tolerance of species

to the effects of global environmental change. Nat Commun 4:2350.
17. Lever JJ, van Nes EH, Scheffer M, Bascompte J (2014) The sudden collapse of pollinator

communities. Ecol Lett 17(3):350–359.
18. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species

interactions in terrestrial ecosystems. Ecol Lett 11(12):1351–1363.
19. Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years:

Loss of species, co-occurrence, and function. Science 339(6127):1611–1615.
20. Rafferty NE, Ives AR (2011) Effects of experimental shifts in flowering phenology on

plant-pollinator interactions. Ecol Lett 14(1):69–74.
21. Saavedra S, Stouffer DB, Uzzi B, Bascompte J (2011) Strong contributors to network

persistence are the most vulnerable to extinction. Nature 478(7368):233–235.
22. Pimm SL (2002) Food Webs (Univ of Chicago Press, Chicago).

23. Hsieh CH, et al. (2006) Fishing elevates variability in the abundance of exploited
species. Nature 443(7113):859–862.

24. Krkošek M, Drake JM (2014) On signals of phase transitions in salmon population
dynamics. Proc Biol Sci 281(1784):20133221.

25. Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of
pollination networks to the loss of species and interactions: A quantitative approach
incorporating pollinator behaviour. Ecol Lett 13(4):442–452.

26. Margalef R (1968) Perspectives in Ecological Theory (Univ of Chicago Press, Chicago).
27. May RM (1972) Will a large complex system be stable? Nature 238(5364):413–414.
28. Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos

from measurement error in time series. Nature 344(6268):734–741.
29. Costantino RF, Cushing JM, Dennis B, Desharnais RA (1995) Experimentally induced

transitions in the dynamic behavior of insect populations. Nature 375:227–230.
30. Hastings A (2004) Transients: The key to long-term ecological understanding? Trends

Ecol Evol 19(1):39–45.
31. Hastings A, Wysham DB (2010) Regime shifts in ecological systems can occur with no

warning. Ecol Lett 13(4):464–472.
32. Lawton J (1988) More time means more variation. Nature 334(6183):563.
33. Perretti CT, Munch SB (2012) Regime shift indicators fail under noise levels commonly

observed in ecological systems. Ecol Appl 22(6):1772–1779.
34. Dakos V, van Nes EH, D’Odorico P, Scheffer M (2012) Robustness of variance and

autocorrelation as indicators of critical slowing down. Ecology 93(2):264–271.
35. Bastolla U, et al. (2009) The architecture of mutualistic networks minimizes compe-

tition and increases biodiversity. Nature 458(7241):1018–1020.
36. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks fa-

cilitate biodiversity maintenance. Science 312(5772):431–433.
37. Kokkoris GD, Jansen VAA, Loreau M, Troumbis AY (2002) Variability in interaction

strength and implications for biodiversity. J Anim Ecol 71:362–371.
38. Ringel MS, Hu HH, Anderson G (1996) The stability and persistence of mutualisms

embedded in community interactions. Theor Popul Biol 50(3):281–297.
39. Carpenter SR, Brock WA (2006) Rising variance: A leading indicator of ecological

transition. Ecol Lett 9(3):311–318.
40. Held H, Kleinen T (2004) Detection of climate system bifurcations by degenerate

fingerprinting. Geophys Res Lett 31:1–4.
41. Dakos V, et al. (2012) Methods for detecting early warnings of critical transitions in

time series illustrated using simulated ecological data. PLoS One 7(7):e41010.
42. Carpenter SR, Brock WA, Cole JJ, Kitchell JF, Pace ML (2008) Leading indicators of

trophic cascades. Ecol Lett 11(2):128–138.
43. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-

animal mutualistic networks. Proc Natl Acad Sci USA 100(16):9383–9387.

Dakos and Bascompte PNAS | December 9, 2014 | vol. 111 | no. 49 | 17551

EC
O
LO

G
Y

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406326111/-/DCSupplemental/pnas.201406326SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406326111/-/DCSupplemental/pnas.201406326SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406326111/-/DCSupplemental/pnas.201406326SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406326111/-/DCSupplemental/pnas.201406326SI.pdf?targetid=nameddest=SF1
http://www.sparcs-center.org/grind

