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Game theory provides a quantitative framework for analyzing the
behavior of rational agents. The Iterated Prisoner’s Dilemma in
particular has become a standard model for studying cooperation
and cheating, with cooperation often emerging as a robust out-
come in evolving populations. Here we extend evolutionary game
theory by allowing players’ payoffs as well as their strategies to
evolve in response to selection on heritable mutations. In nature,
many organisms engage in mutually beneficial interactions and
individuals may seek to change the ratio of risk to reward for
cooperation by altering the resources they commit to cooperative
interactions. To study this, we construct a general framework for
the coevolution of strategies and payoffs in arbitrary iterated
games. We show that, when there is a tradeoff between the ben-
efits and costs of cooperation, coevolution often leads to a dra-
matic loss of cooperation in the Iterated Prisoner’s Dilemma. The
collapse of cooperation is so extreme that the average payoff in
a population can decline even as the potential reward for mutual
cooperation increases. Depending upon the form of tradeoffs,
evolution may even move away from the Iterated Prisoner’s Di-
lemma game altogether. Our work offers a new perspective on the
Prisoner’s Dilemma and its predictions for cooperation in natural
populations; and it provides a general framework to understand
the coevolution of strategies and payoffs in iterated interactions.

cooperation | game theory | evolution | Prisoner’s Dilemma |
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Iterated games provide a framework for studying social inter-
actions (1–6) that allows researchers to address pervasive bi-

ological problems such as the evolution of cooperation and
cheating (2, 7–12). Simple examples such as the Iterated Prisoner’s
Dilemma, Snowdrift, and Stag Hunt games (13–18) showcase a
startling array of counterintuitive social behaviors, especially
when studied in a population replicating under natural selection
(16, 19–25). Despite the subject’s long history, a systematic
treatment of all evolutionary robust cooperative outcomes for
even the simple Iterated Prisoner’s Dilemma has only recently
emerged (21, 26–29).
Understanding the evolution of strategies in a population under

fixed payoffs already poses a steep challenge. To complicate matters
further, in many biological settings the payoffs themselves may also
depend on the genotypes of the players. Changes to the payoff
matrix have been studied in a number of contexts, including one-
shot two-player games (13), payoff evolution without strategy evo-
lution (30, 31), under environmental “shocks” to the payoff matrix
(32–34), and using continuous games (22, 23, 35). Here we adopt
a different approach, and we explicitly study the coevolutionary
dynamics between strategies and payoffs in iterated two-player
games. We decouple strategy mutations from payoff mutations, and
we leverage results on the evolutionary robustness of memory-1
strategies with arbitrary payoff matrices to explore the relationship
between payoff evolution and the prevalence of cooperation in
a population. We identify a feedback between the costs and benefits
of cooperation and the evolutionary robustness of cooperative
strategies. Depending on the functional form (35) of the relation-
ship between costs and benefits, this feedback may either reinforce
the evolutionary success of cooperation or else precipitate its col-
lapse. In particular, we show that cooperation will always collapse
when there are diminishing returns for mutual cooperation.

Methods and Results
Iterated Two-Player Games. In an iterated two-player game, players X and Y
face each other in an infinite number of successive “rounds.” In each round
the players simultaneously choose their plays and receive associated
payoffs. We study games with a 2× 2 payoff matrix, so that the players
have two choices in each round. We label these choices “cooperate” (c)
and “defect” (d), using the traditional language for the Prisoner’s Dilemma.
The four corresponding payoffs for player X facing player Y are Rxy =�
RxyðccÞ,Rxy ðcdÞ,RxyðdcÞ,RxyðddÞ

�
, where X’s play is denoted first. In general,

X may choose her play in each round depending on the outcomes of all
previous rounds.

We will focus on memory-1 players (21, 26–29, 36–39), whose choice each
round depends only on the previous round. Such a strategy is described by
the probabilities of cooperation given the four possible outcomes of the
previous round: p= ðpcc , pcd , pdc , pddÞ. The long-term average payoff to
player X facing opponent Y, denoted sxy , can be calculated directly from her
strategy px, her opponent’s strategy py, and her payoffs Rxy. When the
population is monomorphic in the player’s payoffs, as typically occurs under
weak mutation (Fig. 1), all players have the same payoff matrix and
Rxy =Ryx =R (SI Appendix).

Evolution of Strategies.We consider a well-mixed population of N individuals
evolving under weak mutation who are each characterized by a memory-1
strategy. An individual’s reproductive success depends on her total payoff
when pitted in pairwise iterated games against all other individuals in the
population, so that the composition of strategies in the population evolves
over time. The strategies that tend to succeed in evolving populations can be
understood in terms of evolutionary robustness (21, 26). A strategy is evo-
lutionary robust if, when resident in a population, no new mutant strategy is
favored to spread by natural selection. Evolutionary robustness is a weaker
condition than that of an evolutionary stable strategy (ESS) (16, 40) (SI
Appendix). Robustness is a useful notion because there is rarely if ever an ESS,
as many strategies px ≠py are neutrally equivalent and can invade each
other by genetic drift (41). And so we focus on the evolutionary robust
strategies, which are neutral to one another but resist invasion by any
strategy outside of the set. Indeed, it is already known that the evolutionary
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robust strategies that cooperate among themselves can dominate in evolv-
ing populations playing the Iterated Prisoner’s Dilemma (21, 26).

It may seem restrictive to focus on memory-1 strategies (36, 37). However,
Press and Dyson (27) have shown that a memory-1 player can treat all
opponents as although they also have memory-1. As a result of this lemma,
a memory-1 player that resists invasion by all memory-1 opponents also resists
invasion by all longer-memory opponents. So, even though we restrict our
analysis to memory-1 strategies, we nonetheless identify the memory-1
strategies that are robust against all opponents, regardless of the opponent’s
memory capacity within a given iterated game (SI Appendix). However, our
analysis does not allow a player to retain memory of prior interactions with
different opponents, in which case such a superlong-memory player could
discern the composition of strategies in the population and gain an evolu-
tionary advantage (42–44).

Coevolution of Strategies and Payoffs. Here we expand the traditional pur-
view of evolutionary game theory by allowing heritablemutations that affect
a player’s payoffs, as well as mutations that affect her strategy, so that the
composition of payoffs and strategies in a population coevolve over time
(Fig. 1). We study evolution in the iterated two-player public-goods game,
with payoffs initially chosen to produce a Prisoner’s Dilemma.

In the public-goods game, a player cooperates by contributing an amount
C to a public pool, producing a group benefit whose size depends in some
way on the total amount contributed by both players. The benefit is then
shared between the two players. We consider a generalized form of the
public-goods game in which a player X contributes a cost CX when she
cooperates, which produces a benefit BX if her opponent also cooperates or,
alternatively, produces a benefit 2αXBX if her opponent refuses to co-
operate. The term 2αX represents a “synergy factor” that determines how
the total benefit scales when both players cooperate compared with when

only one cooperates. In the standard public-goods game α= 1=2 for all
players, and so the benefit added to the public pool by a cooperating player
does not depend on whether her opponent cooperates. In the volunteer’s
dilemma (45), by contrast, α= 1 for all players and no additional benefit is
added to the public pool when two players cooperate as opposed to one.

We allow heritable mutations that affect the payoff matrix, by allowing
small changes to a player’s cost C or synergy factor α. It is natural to assume
that the benefit of mutual cooperation increases with the cost of contribu-
tion, and so we enforce the relationship B−C = fðCÞ for some function fðCÞ
which we usually choose to be monotonically increasing. Given the choice of
function fðCÞ, the genotype of player X is comprised of her strategy vector
p, her contributed cost CX , and her synergy factor αX . The payoff matrix that
results when player X faces player Y has entries RxyðccÞ= fðCX Þ=2+ fðCY Þ=2,
RxyðcdÞ= αXfðCX Þ− ð1− αX ÞCX , RxyðdcÞ= αY fðCY Þ+αYCY , and Rxy ðddÞ= 0,
where we have assumed that when both players cooperate they receive
equal payoffs, and so they both benefit from any increase in the amount of
the public good. The resulting long-term payoffs to players X and Y in the
iterated game, however, depend on the players’ strategies as well as this
payoff matrix.

We consider populations evolving under weak mutation, so that any new
mutant genotype either fixes or is lost before another genotype is introduced
(Fig. 1). As a result, a mutation that changes a player’s strategy is introduced
into a population of individuals who all share the same payoff matrix.
Strategy mutations are drawn uniformly from the space of all memory-1
strategies, whereas mutations that alter an individual’s cost C or synergy
factor α are drawn locally.

Collapse of Cooperation in the Iterated Prisoner’s Dilemma. How does co-
operation fare when both strategies and payoffs evolve in a population? To
study this we first analyze coevolution of strategies and payoffs in games
restricted to the Iterated Prisoner’s Dilemma. We assume a linear relationship
between B and C, by stipulating fðCÞ= γC + k, where we choose γ > 0 to
ensure that the benefits of mutual cooperation increase with costs. (Later,
we will explore other functional relationships between B and C.) We choose
γ and k such that B< 2C, to ensure that the game is always a Prisoner’s
Dilemma: each player has an incentive to defect even though the players
would receive a greater total payoff for mutual cooperation. Also, we as-
sume for now that α= 1=2 is fixed for all players.

Starting from a gamewith fixed payoffs B= 6 and C = 4, cooperation quickly
rises to high frequency in populations undergoing strategy evolution alone
(Fig. 2A), in agreement with previous results (14, 21). However, when both
strategies and payoffs coevolve there is a striking reversal of fortunes. Evolu-
tion favors increasing the benefits of mutual cooperation as well as the ben-
efits of unilateral defection (Fig. 2B). The evolution of the payoff matrix is
accompanied by a dramatic collapse of cooperation, so that the population is
eventually dominated by defection (Fig. 2A). Paradoxically, defection comes to
dominate even as the payoffs available for mutual cooperation continually
increase (Fig. 2B). Moreover, this collapse of cooperation is often accompanied
by an erosion of mean population fitness (Fig. 2C).

There is a simple intuition for this disheartening evolutionary outcome:
Initially, the population is typically composed of self-cooperating strategies
and so mutations to C that increase the reward for mutual cooperation,
B−C, are favored. However, such mutations also decrease the ratio B=C,
which increases the temptation to defect, making the dilemma progressively
more acute so that eventually defection outcompetes cooperation (10).

The Volume of Robust Strategies. We can understand the collapse of co-
operation, and the coevolution of strategies and payoffs more generally, by
determining which strategies are evolutionary robust and how robustness
varies as payoffs evolve. To do so, we have analytically characterized all
evolutionary robust memory-1 strategies for arbitrary 2× 2 two-player iter-
ated games (Fig. 3 and SI Appendix). In particular, we have proven the fol-
lowing necessary condition: a robust memory-1 strategy must be one of
three types––self-cooperate, self-defect, or self-alternate. Self-cooperative
strategies C cooperate at equilibrium against an opponent using the same
strategy, meaning pcc = 1. Conversely, self-defecting strategies D satisfy
pdd = 0. Self-alternating strategies A alternate between cooperation and
defection in subsequent rounds, meaning pcd = 0 and pdc = 1. Monte Carlo
simulations on the full space of memory-1 strategies confirm that pop-
ulations adopt one of these three types >97% of the time, reflecting the fact
that all robust strategies fall within these three types. However, the robust
strategies are strict subsets of these types and, crucially, the volume of ro-
bust strategies within each type depends on the payoffs of the game (Fig. 3).
The robust volumes can be computed analytically (SI Appendix) and they

Selection

Population size N

Resident, X

Mutant, Y
c d

c  f(CX)+ f(CY),
f(CX)+ f(CY)

Xf(CX)-(1- X)CX,
Xf(CX)+ XCX

d Yf(CY)+ YCY,
Yf(CY)-(1- Y)CY

 0,
0

strategy:
q=(qcc, qcd, qdc, qdd)

cost contributed: 
CY

synergy factor:
 Y

strategy:
p=(pcc, pcd, pdc, pdd)

cost contributed: 
CX

synergy factor:
 X

X

Y

Fig. 1. Evolving the rules of the game. We study the coevolution of strat-
egies and payoffs in a replicating population of N individuals playing an
iterated, two-player public-goods game. Each individual has a “genotype”
consisting of a memory-1 strategy vector, p, a cost C contributed to the
public good, and a synergy factor α. A player X who contributes a cost CX

generates a benefit BX when her opponent also cooperates, and generates
a benefit 2αXBX when she alone cooperates. The benefit B is determined
by the cost C according to the equation B−C = fðCÞ, where B−C is the
payoff for mutual cooperation and fðCÞ is typically assumed to be a
monotonically increasing function of C. The payoff matrix when player X
faces player Y is determined by their associated trait values C and α, as
shown in the figure. The payoffs actually received in the iterated game
depend on both players’ strategies as well as the payoff matrix. Mutations
are introduced that change either a player’s strategy p, her cost of contri-
bution, C, or her synergy factor α. Mutant strategies are drawn uniformly
from the four-dimensional space of memory-1 strategies. Mutations to
payoffs are generated through local mutations to the traits C and α.
Natural selection and genetic drift occur according to a “copying” pro-
cess (52), in which two players, X and Y, are selected at random from
the population, and Y adopts the genotype of X with probability fy→x =
1
��

1+ exp½σðsy − sxÞ�
�
, where sx and sy denotes the total payoffs the players

receive in pairwise match-ups against the entire population, and σ is the
strength of selection. We model evolution under weak mutation, so that a
new mutant Y is introduced into a monomorphic population with resident
genotype X, and then either Y fixes in the population, with probability
(52) ρ=

�
1+

PN−1
i=1 ∏i

j=1e
−σ½ðj−1Þsyy + ðN−jÞsyx− jsxy − ðN− j−1Þsxx ��−1, or else Y is lost

(SI Appendix).
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determine whether a population tends to adopt self-cooperation, self-
defection, or self-alternation (Fig. 2 A and B).

For the generalized public-goods game illustrated in Fig. 1, for example,
the evolutionary robust strategies of each type satisfy

Cr =
�
ðpcc , pcd , pdc , pddÞ

��pcc = 1, pdc ≤
ðfðCÞ+CÞð1− αÞ
αC − ð1− αÞfðCÞ ð1−pcdÞ,

pdd ≤
fðCÞ

αC − ð1− αÞfðCÞ ð1−pcdÞ
�
,

Dr =
�
ðpcc , pcd , pdc , pddÞ

��pdd = 0, pcc ≤ 1−
fðCÞ

ð1− αÞC − αfðCÞpdc ,

pcd ≤ 1−
αðfðCÞ+CÞ

ð1− αÞC −αfðCÞpdc

�
,

Ar =
�
ðpcc , pcd , pdc , pddÞ

��pcd = 0, pdc = 1, pcc ≤ 2
αC − ð1− αÞfðCÞ

C
,

pdd ≤
2fðCÞ+ ð1− 2αÞC

C

�
:

As these equations show, in the case of the Prisoner’s Dilemma with α∈ ð0,1Þ
increasing the temptation to defect [i.e., decreasing fðCÞ=C] will enlarge the
volume of robust self-defecting strategies and reduce the volume of the
robust self-cooperating strategies. Thus, it is the ratio of benefits to costs
(10) that matters for the prospects of cooperation in the Iterated Prisoner’s
Dilemma, as payoffs and strategies coevolve.

The robust self-cooperators, self-defectors, and self-alternators contain many
of the “classic” strategies known to be successful in the Iterated Prisoner’s

Dilemma (1, 20, 21, 28). For example, “win–stay–lose–shift” (21) belongs to
the robust self-cooperators [provided fðCÞ=C >α=ð2− αÞ], and “always defect”
belongs to the robust self-defectors. Tit-for-tat is a special, limiting case that
satisfies the conditions to be a self-cooperator, a self-defector, and a self-alter-
nator. Tit-for-tat belongs to the robust self-cooperators only if it plays cooperate
on the first move, and if the game contains no noise (SI Appendix).

Functional Relationships Between Costs and Benefits. So far we have assumed
that benefits of cooperation increase linearly with costs. However, our
analysis in terms of volumes of robust strategies allows us to study any
functional relationship between benefits and costs. We can therefore extend
our results to explore more generally under what circumstances the collapse
of cooperation will occur.

We first consider cases in which fðCÞ is monotonically increasing with C––
that is, when the benefit of mutual cooperation always increases with the
cost of cooperation [see SI Appendix for analogous results with fðCÞ
monotonically decreasing]. If fðCÞ increases superlinearly with C then any
social dilemma will quickly disappear, as benefits for cooperation quickly
become much greater than costs, and cooperative strategies reach high
frequency (SI Appendix, Figs. S4 and S6). If fðCÞ increases linearly with C but
with intercept k< 0, then again cooperation persists at high levels (SI
Appendix, Fig. S5). In the more realistic and interesting cases, for which the
benefits of mutual cooperation either saturate or increase sublinearly with
C, then the collapse of cooperation will always occur as C increases, just as in
the linear case with k> 0. The collapse of cooperation occurs in all these
cases because the volume of robust self-cooperating strategies decreases
with the ratio fðCÞ=C, which in turn decreases as C gets large. Examples of
these functional forms, which feature diminishing returns for increasing

A B

C

Fig. 2. Collapse of cooperation in the Prisoner’s Dilemma. We simulated populations playing the iterated public-goods game, proposing mutant strategies
until reaching equilibrium, and then also proposing mutations to the cost C, each at rate μ=2. In these simulations α= 1=2 was fixed for all players. Mutations
to strategies were drawn uniformly from the full space of memory-1 strategies. Mutations perturbing the cost C by Δ were drawn uniformly from the range
Δ∈ ½−0:1,0:1�, with the corresponding change to the benefit B chosen to enforce the relationship B−C = γC + k. Evolution was modeled according to an
imitation process under weak mutation (21, 28, 52). (A) Cooperative strategies are initially robust and dominate the population, but they are quickly replaced
by defectors as payoffs evolve. Dots indicate the proportion of 105 replicate simulated populations, at each time point, within distance δ= 0:01 of the three
strategy types self-cooperate, self-defect, and self-alternate. Lines indicate analytic predictions for the frequencies of these strategy types, which depend
upon the corresponding volumes of robust strategies (SI Appendix, Fig. S2). (B) As payoffs evolve, the Prisoner’s Dilemma becomes more acute, with both
greater costs C and benefits B of cooperation. Cooperation collapses even though the payoff for mutual cooperation, B−C, increases over time. (C) The mean
population fitness can decline over time, depending on the choice of parameter γ. Populations of size N= 100 were initiated with B= 6 and C = 4 (which
determine k), and they were evolved under selection strength σ =1 (corresponding to strong selection on strategies), with γ =0:1 in A and B. The collapse of
cooperation also occurs under weak selection (i.e., Nσ ∼ 1; SI Appendix, Fig. S9), under local mutations to strategies (SI Appendix, Fig. S11), and also when
mutations to payoffs are more rare than mutations to strategies (SI Appendix, Fig. S10).
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costs of cooperation, are shown in SI Appendix, Fig. S6A for fðCÞ= ffiffiffiffi
C

p
and SI

Appendix, Fig. S6B for fðCÞ saturating.
Alternatively, fðCÞ may be a nonmonotonic function of C such that there

is an optimal value of C. In this scenario the long-term prevalence of co-
operation in a population will depend on the ratio fðCÞ=C at the optimal
value; and its prevalence can again be calculated using our analytical
framework (SI Appendix, Fig. S8).

Evolution Away from the Prisoner’s Dilemma. So far we have explored public-
goods games whose payoffs form a Prisoner’s Dilemma. However, our
analysis in terms of the volume of robust strategies applies to arbitrary 2× 2
games and mutation schemes, and so it can be used to study evolution be-
tween qualitatively different types of games. To explore this possibility, in-
stead of fixing the synergy parameter α= 1=2 for all players, as in Fig. 2, we
now allow mutations that change both α and C. The parameter α has
a simple biological interpretation in terms of synergism (α< 1=2) or antag-
onism (α> 1=2) between mutual cooperators: the total amount of public
good produced per cost C may be augmented or depreciated when both
players cooperate, as opposed to when only one cooperates. As before, we
assume fðCÞ is a linear function of C. If α and C evolve independently and can
adopt any values then this mutation scheme produces all possible qualitative
2× 2 games, i.e., all 12 different orderings of the 4 payoffs RðccÞ, RðcdÞ,
RðdcÞ, and RðddÞ up to symmetry (SI Appendix, Fig. S3). In particular, when
fðCÞ�ðfðCÞ+CÞ< α<C

�ðfðCÞ+CÞ the payoffs correspond to a Prisoner’s
Dilemma; when C

�ðfðCÞ+CÞ< α< 1 the payoffs encode a Snowdrift game; and
when 0< α< fðCÞ�ðfðCÞ+CÞ the payoffs encode a Stag Hunt game (13–18).

Fig. 4 illustrates the emergence of qualitatively new games in a population
initialized at the Iterated Prisoner’s Dilemma. In this figure we assume that
mutations that increase the cost Cwill either increase antagonism (Fig. 4, Top)
or increase synergy (Fig. 4, Bottom). As payoffs and strategies coevolve in this
more general framework, the benefits and costs of cooperation initially in-
crease, resulting again in the collapse of cooperation (Fig. 4A). However, the
subsequent increase (or decrease) in α leads to qualitatively different out-
comes for the payoff matrix. Under the mutation scheme in which α increases
with C, the Prisoner’s Dilemma eventually gives way to a Snowdrift game and
populations are dominated by self-alternating strategies (Fig. 4, Top). Under
the mutation scheme in which α decreases with C, the Prisoner’s Dilemma
gives way to a Stag Hunt game and self-cooperating strategies recover high
prevalence in populations (Fig. 4, Bottom).

When α and C are allowed to evolve independently, the resulting co-
evolutionary dynamics are similar to the case of increasing antagonism: both
α and C increase and the population is eventually dominated by self-alter-
nating strategies (SI Appendix, Fig. S7). If α is constrained to the range ½0,1�
then a Snowdrift game emerges and is stable (SI Appendix, Fig. S7 A and B),
whereas if α is unconstrained it evolves to values exceeding unity and the
game RðdcÞ>RðcdÞ>RðccÞ>RðddÞ emerges (SI Appendix, Fig. S7 C and D).

The instability of the Iterated Prisoner’s Dilemma in favor of the Iterated
Snowdrift or Iterated Stag Hunt games is striking, although the potential for
increasing antagonism or synergy in evolving games may be subject to
physical constraints in natural populations.

Discussion
We have studied coevolution of strategies and payoffs in
populations of individuals reproducing according to their
payoffs in pairwise interactions. We have focused primarily on
payoff mutations that enforce a tradeoff, by simultaneously
increasing the benefits and costs of cooperation. However, our
framework for analyzing payoff-strategy coevolution, based on
computing the evolutionary robustness of strategy sets, can be
applied to any mutation scheme and can produce a potentially
vast array of evolutionary outcomes. For example, the way in
which benefits are shared between players who mutually co-
operate but contribute differentially to the public good may
alter how payoffs and hence strategies evolve (23). In general,
for two-player public-goods games, if there are diminishing
returns for increasing costs of cooperation, then the ratio
f ðCÞ=C will decrease over time and the frequency of cooper-
ators will collapse. Alternatively, if the ratio f ðCÞ=C increases
over time, then cooperation will become increasingly preva-
lent. However, this latter scenario may be implausible, because
it implies that the benefits for mutual cooperation can accel-
erate without bound.
What types of payoff mutations can arise in a natural pop-

ulation will depend upon the biological context. Examples of the
tradeoff between costs and benefits that we have studied (Figs. 2
and 4) are found in nature at many scales (8, 9, 46), from human
societies, where individuals modulate both how frequently and
how much they punish free-riders (8, 47), to microorganisms
such as the marine bacteria Vibrionaceae (9). Our framework
decouples strategy and payoff evolution, allowing us to explore
the relationship between the “behavior” prevalent in populations
(that is, the frequency of cooperation) and the amount contrib-
uted to the public good when cooperation occurs (that is, the
cost C). In Vibrionaceae populations, for example, individuals
cooperate in a public-goods game by sharing siderophores re-
quired for iron acquisition. Mutations that alter whether the
siderophore biosynthetic pathway is activated or not alter an
individual’s strategy, whereas mutations that improve or degrade

Fig. 3. Evolutionary robust strategies in iterated two-player games. For an arbitrary 2× 2 payoff matrix, an evolutionary robust memory-1 strategy must be
one of three possible types: those that cooperate against an opponent who cooperates (Left, pcc = 1), those that defect against an opponent who defects
(Center, pdd = 0), and those that alternate between cooperate and defect against an alternating opponent (Right, pcd = 0 and pdc = 1). Within each of these
strategy types, the strict subsets that are evolutionary robust can be determined analytically from the payoff matrix, as indicated on the figure (see SI Ap-
pendix for full derivations). The regions of robust self-cooperating and robust self-defecting strategies are 3D, whereas the robust self-alternating strategies
are 2D. Monte Carlo simulations exploring the full space of memory-1 strategies confirm that these are the only evolutionary robust solutions (SI Appendix,
Fig. S1). As payoffs evolve in a population, the volumes of robust strategies change according to the equations in the figure, and they determine the
evolutionary dynamics of cooperation and defection (Fig. 2).
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the siderophore transport pathway alter an individual’s payoffs,
by imposing a greater or lesser metabolic cost along with an
increased benefit from the public good.
Decoupling strategy evolution from payoff evolution may not

be appropriate in all biological contexts. Alternative modeling
frameworks such as continuous games, which allow players to
modulate their levels of investment in a social interaction (22, 23,
35), can provide a contrasting or complementary perspective on
the evolution of cooperation. What is clear from Vibrionaceae
populations, as well as many other biological systems with op-
portunities for cooperative interactions (9, 46, 48–51), is that
both cooperators and defectors are often found at appreciable

frequencies in nature. As we have shown, the predicted preva-
lence of these behaviors depends critically on the payoffs result-
ing from social interactions. Understanding the feedback between
strategy evolution and payoff evolution is therefore critical for
understanding social interactions in natural populations.
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