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Living cells deploy many resources to sense their environments,
including receptors, downstream signaling molecules, time, and
fuel. However, it is not known which resources fundamentally
limit the precision of sensing, like weak links in a chain, and which
can compensate each other, leading to trade-offs between them.
We present a theory for the optimal design of the large class of
sensing systems in which a receptor drives a push–pull network.
The theory identifies three classes of resources that are required
for sensing: receptors and their integration time, readout mole-
cules, and energy (fuel turnover). Each resource class sets a funda-
mental sensing limit, which means that the sensing precision is
bounded by the limiting resource class and cannot be enhanced
by increasing another class—the different classes cannot compen-
sate each other. This result yields a previously unidentified design
principle, namely that of optimal resource allocation in cellular
sensing. It states that, in an optimally designed sensing system,
each class of resources is equally limiting so that no resource is
wasted. We apply our theory to what is arguably the best-charac-
terized sensing system in biology, the chemotaxis network of
Escherichia coli. Our analysis reveals that this system obeys the
principle of optimal resource allocation, indicating a selective pres-
sure for the efficient design of cellular sensing systems.
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Biochemical networks are the information-processing devices
of life. Like any device, they require resources to be built and

run. Components are needed to construct the network, space is
required to accommodate the components, time is needed to
process the information, and energy is required to make the
components and operate the network. These resources constrain
the design and performance of any biochemical network. How-
ever, it is not clear which resources are indispensable, thus
fundamentally limiting the performance of the network, and
which resources might trade-off against each other. Here, we
consider the interplay among cellular resources, network design,
and performance in a canonical biochemical function, namely
sensing the environment.
Living cells can measure chemical concentrations with extra-

ordinary precision (1–3), raising the question what sets the funda-
mental limit to the accuracy of chemical sensing (1). Cells measure
chemical concentrations via receptors on their surface. These
measurements are inevitably corrupted by noise that arises from the
stochastic arrival of ligand molecules by diffusion and from the
stochastic binding of the ligand to the receptor. Berg and Purcell
pointed out that the sensing error is fundamentally bounded by this
noise extrinsic to the cell, but that cells can reduce the error by
taking multiple independent measurements (1). One way to in-
crease the number of measurements is to add more receptors (1, 4).
Another is to take more measurements per receptor over time;
here, the cell infers the concentration not from the instantaneous
number of ligand-bound receptors, but rather from the average
receptor occupancy over an integration time T (1, 4–11).
This time integration has to be performed by the signaling

networks that transmit the information from the surface of the
cell to its interior (10). Although the work of Berg and Purcell
and subsequent studies identify time and the number of receptors

as resources that limit the accuracy of sensing, the fundamental
limits that have emerged ignore the cost of making and operating
the signaling network. Making proteins is costly; producing
proteins that confer no benefit to the cell can slow down bac-
terial growth (12). Moreover, many networks are driven out of
thermodynamic equilibrium by the continuous turnover of fuel
molecules such as ATP, leading to the dissipation of heat (13–
17). In fact, one can estimate that the fuel needed to operate
a sensory network is comparable to that to make new com-
ponents after cell division (SI Text).
In this manuscript, we present a theory for the optimal design

of sensing systems, which maximizes sensing precision given the
available cellular resources. The theory applies to the large
class of sensing systems in which a receptor drives a Goldbeter–
Koshland push–pull network (18). These systems are ubiquitous in
prokaryotic and eukaryotic cell signaling (19): examples include
GTPase cycles, as in the Ras system, phosphorylation cycles, as in
MAPK cascades, and two-component systems like the chemotaxis
system of Escherichia coli.
We derive for this class of systems how the sensing accuracy

depends on not only the number of receptors and their integra-
tion time, but also on the resources required to build and operate
the downstream signaling network: the copies of signaling mole-
cules and fuel. This allows us to address the following questions:
How do the sensing limits set by the latter resources compare with
the canonical limit of Berg and Purcell, which is set by the
resources time and the number of receptors? How does the limit
set by one resource depend on the levels of the other resources?
Can resources compensate each other to achieve a desired sensing
precision, leading to trade-offs between them, or are the limits set
by the respective resources fundamental, i.e., independent of the
levels of the other resources? In addition, what do these rela-
tionships imply for the optimal design of a system that maximizes
sensing precision?

Significance

Cells continually have to sense their environments to make
decisions—to stay put or move, to differentiate or proliferate,
or even to live or die. However, they are thwarted by noise at
the cellular scale. Cells use signaling networks to filter this
noise as much as possible and sense accurately. To operate
these networks, resources are required: time, protein copies,
and energy. We present a theory for the optimal design of
cellular sensing systems that maximize sensing precision given
these resources. It reveals a new design principle, namely that
of optimal resource allocation. It describes how these resources
must be allocated so that none are wasted. We show that the
chemotaxis network of Escherichia coli obeys this principle.
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We find that the resource limitations of these systems emerge
naturally when the signaling networks are viewed as devices that
discretely, rather than continuously, sample the receptor state via
collisions of the signaling molecules with the receptor proteins.
This analysis reveals that three classes of resources are required:
(i) receptors and their integration time, (ii) copies of down-
stream molecules, and (iii) energy (fuel). Indeed, these classes
cannot compensate each other: each imposes a sensing limit, and
it is the limiting class that imposes the fundamental limit on the
accuracy of sensing. However, there can be trade-offs within
each class of resources. Receptors and integration time trade-off
against each other in achieving a desired sensing accuracy, and
power and response time trade-off against each other to meet
the energy requirement for taking a measurement.
Our theory makes a strong prediction for the optimal design of

sensing systems. Because the fundamental resource classes can-
not compensate each other in achieving a desired sensing pre-
cision, any class that is not limiting the sensing precision is in
excess and thus wasted. This naturally leads to a previously un-
identified design principle, namely that of optimal resource al-
location. It states that in an optimally designed sensing system
each fundamental class of resources is equally limiting so that no
resource is wasted. We test this prediction for the chemotaxis
system of Escherichia coli, which is a specific example of the class
of push–pull sensing systems (Fig. 1). Our analysis reveals that
this network obeys the principle of optimal resource allocation.
This indicates that there is a selective pressure on not only the
topology of sensing networks that enhances robustness of ad-
aptation (20–22), but also on the efficient allocation of cel-
lular resources for precise sensing.

Results
Sensing at the Molecular Level.We consider a cell with RT receptor
proteins that independently bind ligand L, R+L⇌RL (Fig. 2A).
The receptor drives a push–pull network, which is a canonical
nonequilibrium motif in prokaryotic and eukaryotic cell signaling

(19). In these systems, the receptor itself or the enzyme associ-
ated with it, such as CheA in E. coli (Fig. 1), catalyzes the
chemical modification of a readout protein x, such as CheY.
Active readout molecules xp can decay spontaneously or be
deactivated by an enzyme, like the phosphatase CheZ in E. coli.
The cell infers the ligand concentration c from the instantaneous

concentration of the output xp, by inverting the mean input–output
relation xpðcÞ. Linearizing xpðcÞ and using error propagation, the
expected fractional error in the concentration estimate is then as
follows (1, 5, 11):

�
δc
c

�2

=
1
c2

σ2x p�
dxp

dc

�2: [1]

The error is low if the readout responds sensitively to changes in
ligand concentration, as measured by the gain dxp=dc, but is not
noisy, as quantified by the variance σ2xp.
We can compute σ2xp from the linear-noise approximation (SI

Text), and using Eq. 1, this yields Eq. S8 for the sensing error. It is
a complicated expression in terms of the eight fundamental vari-
ables in the system: the six rate constants describing the forward
and reverse rates of the three reactions (including ligand–receptor
binding), and the total copy numbers XT and RT (Fig. 2A).
Inspired by the analysis of a simpler system, we can arrive at a

much more illuminating expression for the sensing error, by viewing
the signaling network as a device that samples the receptor state

A B

Fig. 1. The chemotaxis network of E. coli obeys the principle of optimal
resource allocation, which states that in an optimally designed system each
cellular resource is equally limiting. (A) Cartoon of the sensing system. The
receptor is via the adaptor protein CheW associated with the kinase CheA.
This complex, coarse-grained as R in our model, can bind extracellular ligand
L and activate the intracellular messenger protein CheY (x in our model) by
phosphorylating it; phosphorylated CheY controls the rotation direction of
the motor. Deactivation, i.e., dephosphorylation, of CheY is catalyzed by the
phosphatase CheZ; the effect of CheZ is coarse-grained into the deactivation
rate. The proteins CheR and CheB, which implement adaptation, have been
omitted, because we are interested in the lower bound on the accuracy of
sensing in static environments. (B) The principle of optimal resource alloca-
tion, Eq. 5, predicts that the number of CheY proteins, XT , scales linearly
with the number of receptor–CheA complexes, RT , with a slope given by the
relaxation time of the signaling network, τr , over the correlation time of the
receptor ligand-binding state, τc . Plotted are data from ref. 23 for two E. coli
strains under two different growth conditions; the number of CheA dimers is
a proxy for the number of receptor–CheA complexes. The line is a best fit to
the data, having a slope of ≈ 3. The resource allocation principle, Eq. 5, thus
predicts that τr=τc ≈ 3. This is on the same order of magnitude as that given
by the relaxation time, τr ≈ 100 ms (24), and correlation time τc ≈ 10 ms, es-
timated from the measured receptor–ligand dissociation constant (25) and
association rate (26).

A B D E

C

Fig. 2. Sensing at the molecular level. The sensing precision in terms of the
rate constants fkig (A) does not reveal the resource requirements (Eq. S8). To
reveal these, the signaling network is viewed as a device that discretely
samples the ligand-binding state of the receptor. The accuracy of sensing
depends on how the samples are taken (B and C), erased (D), and on how
reliable they are (E). (B) The ligand-bound receptor drives the modification
of a downstream readout (i.e., the push–pull network RL+ x→RL+ x*). (C)
The signaling network in B discretely samples the receptor state, illustrated
for one receptor. The states of the receptor over time are encoded in the
states of the N molecules that collided with it: the readout is modified if the
receptor is bound; otherwise, it is unmodified. Molecules that collide with
the unbound receptor are indistinguishable from those that have never
collided, leading to an additional error. (D) Active molecules can be de-
graded, erasing samples. (E) All reactions are in principle reversible, com-
promising the encoding of the receptor state into the readout. The sensing
error is determined by collective variables that reveal the resource require-
ments for sensing: the probability p that the receptor is bound to ligand, the
receptor–ligand correlation time τc , the flux _n, the relaxation time τr , and
the free-energy drops Δμ1 and Δμ2 across the activation and deactivation
reactions of the readout, respectively.
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(SI Text). The general principle is that the activation reaction,
x+RL�!kf xp +RL generates samples of the ligand-binding state
of the receptor by storing the receptor state in the stable modi-
fication states of the readout molecules (Fig. 2 B and C).
Readout molecules that collide with a ligand-bound receptor are
activated, whereas those that collide with an unbound receptor
remain inactive. In this way, each readout molecule that has
interacted with the receptor provides a memory or sample of the
ligand-occupation state of that receptor molecule; collectively,
the readout molecules encode the history of the receptor states.
Intuitively, we expect that if there are N receptor–readout
interactions, then the cell has N samples of the receptor state
and the error in the concentration estimate, δc=c, is reduced by
a factor of

ffiffiffiffi
N

p
, or less if the samples are not independent. To

derive the effective number of independent samples, we need to
consider not only the creation of samples, but also the erasure of
samples and the quality of the samples (Fig. 2 D and E). The
decay of the readout, xp�!kr x (Fig. 2D), is equivalent to discarding
or erasing samples. Additionally, reactions are microscopically
reversible, which means that readout activation can occur in-
dependently of the receptor, x�!k−r xp, and receptor-mediated
modifications can occur in the wrong direction, xp +RL�!k−f x+RL
(Fig. 2E). These reverse reactions compromise the encoding of the
receptor state into the readout: an active xp molecule no longer
encodes the ligand-bound state of the receptor at a previous time
with 100% fidelity, because it could have been activated inde-
pendently of the receptor; similarly, x, rather than xp, may reflect
a modification by a ligand-bound receptor. These reverse reactions
thus reduce the reliability of a receptor sample. Energy is needed to
break time reversibility and to protect the coding.
How receptor samples are taken (Fig. 2 B and C), erased (Fig.

2D), and how they are stored in the readout x (Fig. 2E), determine
the number of receptor samples, their independence, and their
accuracy, which together set the sensing precision (SI Text):

�
δc
c

�2

=
1

pð1− pÞ
1
NI

+
1

ð1− pÞ2
1
N
: [2]

Here, p is the probability that a receptor is bound to ligand, and
1=ðpð1− pÞÞ is the “instantaneous error,” i.e., the sensing error
based on a single concentration estimate via a single receptor.
The quantity NI , discussed below, is the average number of sam-
ples that are independent. The second term, with N the total
number of samples, accounts for the fact that the cell cannot
distinguish between those molecules x that have collided with
an unbound receptor (and hence provide information on the
receptor occupancy), and those that have not collided with the
receptor at all (Fig. 2C; SI Text). However, when p is small and/or
N is large, the second term is small compared with the first. Eq. 2
then shows that the sensing error has a form that one would expect
for a sampling protocol: the sensing error is that of an estimate
based on a single concentration measurement, 1=ðpð1− pÞÞ, di-
vided by the average number of independent measurements, NI .
The number of independent measurements NI can be expressed

in terms of collective variables that, as we will show, describe the
resource limitations of the cell (Fig. 2E):

NI =
1

ð1+ 2τc=ΔÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
fI

ðeΔμ1 − 1ÞðeΔμ2 − 1Þ
eΔμ − 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{q

_nτr
p

z}|{N

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Neff

: [3]

This expression has a clear interpretation. Cells count only those
samples created less than a relaxation time τr in the past; nothing
that happened earlier can influence the current state, including
its ability to sense. Hence, τr is the effective integration time. The

quantity _n is the flux of x across the cycle of activation by the
receptor and deactivation; it is given by _n= kfxRTp− k−fxpRTp,
where x and xp are the average number of x and xp in steady state.
The product _nτr is thus the number of cycles of readout mole-
cules involving collisions with ligand-bound receptor molecules
during the system’s relaxation time τr . The quantity _nτr=p is the
total number of readout cycles involving collisions with receptor
molecules, be they ligand bound or not. It is thus the total num-
ber of receptor samples taken during τr , N.
Not all of these samples are reliable. The effective number of

samples taken during τr is Neff = qN, where 0≤ q≤ 1 measures
the quality of each sample. Here, Δμ1 and Δμ2 are the average
free-energy drops across the activation and deactivation pathway
respectively, in units of kBT (Fig. 2E); Δμ=Δμ1 +Δμ2 is the total
free-energy drop across the cycle. When Δμ=Δμ1 =Δμ2 = 0, an
active readout molecule is as likely to be created by the ligand-
bound receptor as it is created spontaneously and there is no
coding and no sensing; indeed, in this limit, q= 0 and Neff = 0. In
contrast, when Δμ1;Δμ2 →∞, q→ 1 and Neff →N.
The factor fI denotes the fraction of samples that are in-

dependent. It depends on the correlation time τc of receptor–
ligand binding and on the time interval Δ= 2τr=ðNeff=RTÞ
between samples of the same receptor. Samples farther apart are
more independent.

Fundamental Resources and Trade-Offs.We can use Eqs. 2 and 3 to
understand how cellular resources limit the precision of sensing.
A resource or combination of resources that fundamentally limits
sensing is a (collective) variable Qi that, when fixed, puts a non-
zero lower bound on the sensing error, no matter how the other
variables are varied. A fundamental resource class Qi is thus
mathematically defined by the following: MINQi=constðδc=cÞ2 =
f ðconstÞ> 0. To find these classes, we numerically or analytically
minimized the sensing error, constraining (combinations of)
variables yet optimizing over the other variables. As we show in
SI Text, when only RTτr=τc is constrained, ðδc=cÞ2 ≥ 4=ðRTτr=τcÞ;
when only XT is fixed, ðδc=cÞ2 ≥ 4=XT ; when only _wτr is limiting,
ðδc=cÞ2 ≥ 4=ð _wτrÞ. When all resources are present in finite amounts,
the minimum sensing error is set by the highest lower bound:

�
δc
c

�2

≥MAX
�

4
RTτr=τc

;
4
XT

;
4
_wτr

�
: [4]

Fig. 3 A–C shows that the resource classes RTτr=τc, XT , and _wτr
are indeed fundamental: the minimum sensing error is bounded
by the limiting class and cannot be reduced by increasing another
resource. Clearly, increasing a single resource, e.g., XT , cannot
reduce the sensing error indefinitely. The sensing error will even-
tually plateau, namely when it becomes limited by another re-
source, e.g., RTτr=τc. These fundamental resource classes thus
cannot compensate for each other in achieving a required sens-
ing precision and hence do not trade-off against each other.
However, within these classes, trade-offs are possible. We now
elucidate why the fundamental classes cannot compensate each
other, whereas resources within a given class can, leading to
trade-offs between them.

Time/Receptor Copy Numbers, RTτr=τc. An independent sample of
the same receptor can be taken roughly every 2τc. Naturally,
samples can be taken more frequently. In fact, cells can time-
integrate as in the theory of Berg and Purcell (1): if XT →∞, the
receptors are sampled infinitely fast and Δ→ 0 and Neff →∞.
However, increasing XT cannot reduce the sensing error ad
infinitum, because the number of receptor samples that are in-
dependent will saturate at the Berg–Purcell factor, RTτr=τc, and
the sensing error ðδc=cÞ2 will plateau at 4=ðRTτr=τcÞ. Indeed,
RTτr=τc is the maximum number of independent concentration
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measurements—the total number of receptors RT times the
maximum number of independent measurements per receptor
τr=τc. This shows that there is no fundamental relationship be-
tween sensing and receptor copy number: the latter can be
traded against time to reach a desired sensing precision. Essen-
tially, the error is determined by the total number of samples and
it does not matter, as long as the samples are independent,
whether these samples are from the same receptor over time or
from many receptors at the same time.

Downstream Readout Molecules, XT . The concentration measure-
ments need to be stored in the readout molecules. Each readout

molecule provides at most one sample, because at any given time
it exists in only one modification state, regardless of how many
times it has collided with the receptor or how long the in-
tegration time τr is. There is no mechanistic sense in which
a single molecule “integrates” the receptor state. As a conse-
quence, no matter how the network is designed, how much time
or energy it uses, or how many receptors it has, cells are fun-
damentally limited by the pool of readout molecules: the sensing
error ðδc=cÞ2 ≥ 4=XT .

Energy, _wτr. The free-energy drop across a cycle, Δμ, must be
provided by a fuel molecule such as ATP. The power, the rate at
which the fuel molecules do work, is _w= _nΔμ, and the total work
performed during τr is w≡ _wτr . This work is spent on taking
samples of receptor molecules that are bound to ligand, because
only they can modify downstream readout molecules. Hence, the
work needed to take one effective sample of a ligand-bound
receptor is w=ðpNeffÞ, with Neff given by Eq. 3. Fig. 3D shows
this quantity as a function of Δμ. While w=ðpNeffÞ=Δμ=q increases
continuously with Δμ, two limiting regimes can be observed.
When Δμ> 4kBT, the work to take one effective sample of

a ligand-bound receptor becomes simply w=ðpNeffÞ=Δμ. In this
regime, the readout reactions are essentially irreversible, q→ 1,
and each sample requires the turnover of one fuel molecule,
using Δμ of energy. Energy limits the accuracy of sensing, not
because it limits the reliability q of each sample, but because it
limits the total number of samples Neff = _nτr=p by limiting the
receptor sampling frequency _n: ðδc=cÞ2 ≥ 1=ð _nτrÞ=Δμ=ð _wτrÞ.
Intriguingly, this bound suggests that for a fixed amount of en-
ergy, w= _wτr , spent during the relaxation time τr , the sensing error
can be reduced to zero by reducing Δμ to zero. However, this lower
bound only applies when q→ 1, i.e., when Δμ> 4kBT.
When Δμ< 4kBT, the system transitions to a quasiequilibrium

regime in which each fuel molecule provides a small but nonzero
amount of energy. In this regime, the system can still consume
significant amounts of energy when the fuel molecules are con-
sumed at a rapid rate _n by many distinct readout molecules. In
the limit that _n→∞ and Δμ→ 0 at fixed _w= _nΔμ, the effective
number of samples given by Eq. 3 reduces to Neff → _wτr=ð4pÞ.
Each readout–receptor interaction corresponds to an in-
creasingly noisy measurement of the receptor state ðq→ 0Þ, but
many noisy measurements ðN = _nτr=p→∞Þ contain the same
information as 1 perfect measurement—provided that collec-
tively at least 4kBT was spent on them. Indeed, as Fig. 3D shows,
4kBT is the fundamental lower bound on the work needed to
take one accurate sample of a ligand-bound receptor. It puts
another bound on the sensing error: ðδc=cÞ2 ≥ 4=ð _wτrÞ. The
bound can be reached when RTτr=τc and XT are not limiting, and
Δμ→ 0.
Eq. 4 shows that the sensing precision depends on the work

done in the past relaxation time, w= _wτr , setting up a trade-off
among speed, power, and accuracy, as found in adaptation (13).
When the response needs to be rapid, τr needs to be small and
the power demand is high: the samples, which require energy,
must be taken close together in time. However, when the cell can
wait a long time τr before responding, the power _w required to
make w large can be infinitesimal: the samples can be created far
apart in time. There is no minimum power requirement for sensing.

Optimal Resource Allocation. Because the fundamental resource
classes cannot compensate each other in achieving a desired
sensing precision, any class that is in excess of the minimum
amount necessary to achieve that precision is wasted. For ex-
ample, the benefit of sampling the receptor faster by increasing
XT in reducing the sensing error saturates, whereas the total
protein and energetic costs continue to rise with XT (Fig. 3E). To
the extent that all resources affect growth, evolutionary pressure
should tend to drive systems so that no resource is wasted, which

A

B

E

C

D

Fig. 3. Trade-offs in nonequilibrium sensing. (A) When two resources A and
B compensate each other, one resource can always be decreased without
affecting the sensing error, by increasing the other resource; concomitantly,
increasing a resource will always reduce the sensing error. When both
resources are instead fundamental, the sensing error is bounded by the
limiting resource and cannot be reduced by increasing the other. (B and C)
The three classes time/receptor copies, copies of downstream molecules, and
energy are all required for sensing, with no trade-offs among them (Fig. 4).
The minimum sensing error obtained by minimizing Eq. 2 is plotted for
different combinations of (B) XT and w, and (C) RT ð1+ τr=τcÞ and w (SI Text).
The curves track the bound for the limiting resource indicated by the gray
lines, showing that the resources do not compensate each other. The plot for
the minimum sensing error as a function of RT ð1+ τr=τcÞ and XT is identical
to that of (C) with w replaced by XT . (D) The energy requirements for
sensing. In the irreversible regime ðΔμ→∞Þ, the work to take one sample
of a ligand-bound receptor, w=ðpNeffÞ, equals Δμ, because each sample
requires the turnover of one fuel molecule, consuming Δμ of energy. In the
quasiequilibrium regime ðΔμ→0Þ, each effective sample of the bound re-
ceptor requires 4kBT , which defines the fundamental lower bound on the
energy requirement for taking a sample. When Δμ= 0, the network is in
equilibrium and both w and Neff are 0. ATP hydrolysis provides 20kBT ,
showing that phosphorylation of readout molecules makes it possible to
store the receptor state reliably. The results are obtained from Eq. 3 with
Δμ1 =Δμ2 =Δμ=2. (E) Sampling more than once per correlation time requires
more resources, although the benefit is marginal. As the sampling rate is
increased by increasing the readout copy number XT , the number of in-
dependent measurements NI saturates at the Berg–Purcell limit RT τr=τc , but
the energy consumption and protein cost ð∝XT Þ continue to rise.
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occurs when all are equally limiting. Resource-optimal systems
sample the receptor about once per correlation time and use just
enough fuel and downstream molecules to do so. Quantitatively,
from Eq. 4, all resources are equally limiting when

RTτr=τc ≈XT ≈w: [5]

In an optimal sensing system, the number of independent concen-
tration measurements RTτr=τc equals the number of readout mol-
ecules XT that store these measurements and equals the work (in
units of kBT) to create the samples.

Comparison with Experiment. Eq. 5 makes a strong prediction for
the optimal design of the large class of sensing systems that are
based on the push–pull motif. We can test this prediction for the
chemotaxis system of E. coli (Fig. 1), which has been well char-
acterized experimentally. In this system, the receptor forms
a complex with the kinase CheA. This complex, which is coarse-
grained into R, can bind the ligand L and activate the in-
tracellular messenger protein CheY (x) by phosphorylating it.
Deactivation of CheY is catalyzed by CheZ, the effect of which is
coarse-grained into the deactivation rate (SI Text).
The number of chemotaxis proteins depends on the growth

rate: the number of receptors and CheY proteins varies as much
as 10-fold as a function of strain and growth medium (23). In-
terestingly, however, these variations occur in concert for all
components and thus hardly change their relative amounts (23).
This is the scaling behavior predicted by Eq. 5, assuming that τr is
robust to variations in the growth rate.
Not only the scaling of the number of CheY proteins, XT , with

the number of receptor–CheA complexes, RT , can be tested, but
also the magnitude of their ratio. A fit of the data of Li and
Hazelbauer, shown in Fig. 1B, shows that XT=RT ≈ 3 for different
strains and growth media (23). Eq. 5 thus predicts that τr=τc ≈ 3.
The relaxation rate τ−1r is ≈ 2 s−1 for the attractant response and
≈ 20 s−1 for the repellent response (24), yielding τr ≈ 100 ms.
Hence, Eq. 5 predicts that τc ≈ 30 ms. This prediction can be
tested, assuming that the correlation time τc of the receptor–
CheA complex is that of receptor–ligand binding. Specifically, we
can estimate τc from the receptor–ligand dissociation rate koff
as τc ’ 1=ð2koffÞ, ðp≈ 0:5Þ. The dissociation constant of Tar-
aspartate (receptor–ligand) binding KD ≈ 0:1  μM (25), and with an
association rate kon ≈ 109M−1 · s−1 (26), this yields koff ≈ 100 s−1
and an estimated correlation time τc ≈ 10 ms, in line with the
prediction of Eq. 5.
Eq. 5 also predicts that the total number of CheY molecules

XT equals the chemical work w= _nΔμτr (in units of kBT) to
phosphorylate CheY during τr . In steady state, the flux _n of
CheY phosphorylation balances the flux of CheYp dephos-
phorylation. The latter equals the inverse lifetime τ−1l ≈ τ−1r times
the number of CheYp molecules in steady state, αXT , where α is the
fraction of CheY that is phosphorylated. This yields w≈ αΔμXT .
The fraction α≈ 0:16 (24). CheY phosphorylation is driven by ATP
hydrolysis, which means that Δμ= 20kBT. Hence w≈ 3XT , thus on
the order of XT , as Eq. 5 predicts. We thus argue that in the che-
motaxis system of E. coli, the resources are optimally allocated, i.e.,
according to Eq. 5.

Discussion
Fig. 4 summarizes our analysis. The sensing precision is limited
by three classes of resources. The resource class time/receptors
RTτr=τc determines the maximum total number of independent
concentration measurements that can be taken. However, these
measurements need to be stored in downstream molecules.
Moreover, energy is needed to store the samples reliably and to
protect the coding. These three classes of resources are indeed
fundamental. The sensing error is bounded by the limiting class
like the weakest link in a chain, and other classes cannot compensate

for it. For example, adding receptors and readout molecules does
not improve sensing if not enough energy is used to take the
samples (Fig. 3B); similarly, waiting more time to take another
sample is not beneficial if the cell has no more readout molecules
left to write the sample to, or cannot expend energy fast enough
to accomplish the writing (Fig. 3C). However, within the funda-
mental resource classes, trade-offs are possible: time can be traded
against the number of receptors to reach a required number of
measurements, whereas power can be traded against speed to
meet the energy requirement for a desired sensing accuracy.
These design principles are in marked contrast to those of
equilibrium sensing systems, which are not driven out of equi-
librium via fuel turnover: the sensing precision of these systems is
limited by the number of receptors; downstream networks can
never improve the accuracy of sensing (27).
We find that at least 4kBT is needed for reliably encoding

a measurement. One of the most widely used coding strategies is
phosphorylation, which requires ATP. In vivo, ATP hydrolysis
provides about 20kBT. This is sufficient to take one receptor
sample essentially irreversibly (Fig. 3D), which means that q
reaches unity. Readout phosphorylation thus makes it possible to
store the receptor state reliably.
Nonequilibrium networks can exhibit more complicated fea-

tures than those of the simple push–pull motif, as in the MAPK
cascade. The molecular picture for time integration suggests that
our results hold generally, even in these more complicated sys-
tems. Indeed, we find the same or more severe resource limi-
tations in signaling cascades and in networks with simple
negative or positive feedback (SI Text). Although cascades can
increase the response time (10), which increases information
transfer, they do not make sensing more efficient in terms of
energy or readout molecules.
In an optimally designed system, each fundamental resource is

equally limiting. This leads to a specific prediction for the design
of an optimal sensing system: the integration time, energy, and
copy numbers of receptor and readout should satisfy Eq. 5.
Importantly, this design principle of optimal resource allocation
is independent of the resource costs. This is because the sensing
precision is bounded by the limiting resource class; resources
that are in excess cannot improve sensing and are thus wasted, no
matter how cheap they are. Fig. 3 C and D show that, even close
to the optimum where all resources are equally limiting, the
minimum error closely follows the lower bound of Eq. 4 (SI
Text), supporting the idea that Eq. 5 is indeed fairly insensitive to
the resource costs. It explains perhaps why Eq. 5 so successfully
predicts the design of the E. coli chemotaxis system.
The optimal trade-off between nonfundamental resources

within the fundamental resource classes will depend on their

Fig. 4. The relationship between resources and the precision of biochemical
sensing. The sensing precision is fundamentally limited by time and receptor
copies, energy, and copies of downstream readouts. These three classes of
resources cannot compensate each other, and it is the limiting resource that
sets the fundamental limit to the precision of sensing. Within each class,
however, trade-offs are possible: Power can be traded against speed to meet
the energy requirement for reaching a desired sensing accuracy, whereas
time can be traded against the number of receptors.
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fitness costs and benefits. For example, how receptors are traded
against time in reaching a desired sensing precision will depend
on the benefit of a fast response time and the cost of making the
receptor proteins.
To understand how E. coli moves in a concentration gradient,

we have to understand not only how the sensing system filters
high-frequency ligand-binding noise by time averaging the re-
ceptor state—the topic of this study—but also how, on much
longer timescales, the adaptation system computes the change in
the concentration and filters low-frequency noise induced by the
cell’s random motion in the concentration gradient (28). Re-
cently, Lan et al. (13) found a trade-off between the speed,
power, and accuracy of adaptation, which mirrors the trade-off
between power, speed, and precision of sensing observed here.
Interestingly, the adaptation and sensing system share the re-
ceptor. In fact, the adaptation system continually performs work
to keep the receptor activity close to 0.5. There is thus an ener-
getic adaptation cost associated with the receptors, in addition
to the energetic cost of synthesizing them. This adaptation cost
will affect the trade-off between the nonfundamental resources
receptors and time. It will not, however, affect the design prin-
ciple of optimal resource allocation, which is based on the fun-
damental resource classes and hence insensitive to resource costs.
Whether other sensing systems satisfy the design principle of

Eq. 5 remains an interesting question. Two-component systems
are ideal for testing this once kinetic data and protein expression
levels become available (29). Eq. 5 not only makes predictions
for individual systems but also predicts that the fundamental

resources should vary proportionally to each other across different
systems. For example, the relation predicts that the lifetime τr of the
modified readout should increase, ceteris parabus, with its expression
level XT . The design principle of Eq. 5 can also be used to construct
optimal synthetic networks that minimize resource consumption.
Finally, the process of sampling a time series, like the receptor

state over time, defines a specific, familiar computation that
could be conducted by any machine; it is instantiated in the
biochemical system by the readout–receptor pair. We find that
the free-energy drops across the “measurement” and “erasure”
steps, Δμ1 and Δμ2, should be identical to minimize the energetic
cost, even though the fuel molecule need only be involved in one
of the reactions, preparing a nonequilibrium state that relaxes via
the other. This allocation of energy differs from that typically
considered in the computational literature, in which only the
erasure step requires energy (30). In the cellular system, both
steps are computational erasures: although only the erasure step
erases memory of the receptor state, both steps erase the state
of the molecule involved in the collision. Interestingly, when
p= 0:5, the average work to measure the state of the receptor is
2kBT, which is perhaps surprisingly close to the Landauer bound,
kBT lnð2Þ (30).
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