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αβ T-cell receptor (TCR) activation plays a crucial role for T-cell func-
tion. However, the TCR itself does not possess signaling domains.
Instead, the TCR is noncovalently coupled to a conserved multisub-
unit signaling apparatus, the CD3 complex, that comprises the
CD3eγ, CD3eδ, and CD3ζζ dimers. How antigen ligation by the TCR
triggers CD3 activation and what structural role the CD3 extracellu-
lar domains (ECDs) play in the assembled TCR–CD3 complex remain
unclear. Here, we use two complementary structural approaches to
gain insight into the overall organization of the TCR–CD3 complex.
Small-angle X-ray scattering of the soluble TCR–CD3eδ complex
reveals the CD3eδ ECDs to sit underneath the TCR α-chain. The ob-
served arrangement is consistent with EM images of the entire TCR–
CD3 integral membrane complex, in which the CD3eδ and CD3eγ
subunits were situated underneath the TCR α-chain and TCR β-chain,
respectively. Interestingly, the TCR–CD3 transmembrane complex
bound to peptide–MHC is a dimer in which two TCRs project out-
ward from a central core composed of the CD3 ECDs and the TCR
and CD3 transmembrane domains. This arrangement suggests a po-
tential ligand-dependent dimerization mechanism for TCR signaling.
Collectively, our data advance our understanding of the molecular
organization of the TCR–CD3 complex, and provides a conceptual
framework for the TCR activation mechanism.
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Tcells are key mediators of the adaptive immune response.
Each αβ T cell contains a unique αβ T-cell receptor (TCR),

which binds antigens (Ags) displayed by major histocompatibility
complexes (MHCs) and MHC-like molecules (1). The TCR
serves as a remarkably sensitive driver of cellular function: al-
though TCR ligands typically bind quite weakly (1–200 μM),
even a handful of TCR ligands are sufficient to fully activate a
T cell (2, 3). The TCR does not possess intracellular signaling
domains, uncoupling Ag recognition from T-cell signaling. The
TCR is instead noncovalently associated with a multisubunit sig-
naling apparatus, consisting of the CD3eγ and CD3eδ hetero-
dimers and the CD3ζζ homodimer, which collectively form the
TCR–CD3 complex (4, 5). The CD3γ/δ/e subunits each consist of
a single extracellular Ig domain and a single immunoreceptor ty-
rosine-based activation motif (ITAM), whereas CD3ζ has a short
extracellular domain (ECD) and three ITAMs (6–11). The TCR–
CD3 complex exists in 1:1:1:1 stoichiometry for the αβTCR:
CD3eγ:CD3eδ:CD3ζζ dimers (12). Phosphorylation of the in-
tracellular CD3 ITAMs and recruitment of the adaptor Nck lead
to T-cell activation, proliferation, and survival (13, 14). Un-
derstanding the underlying principles of TCR–CD3 architecture
and T-cell signaling is of therapeutic interest. For example,
TCR–CD3 is the target of therapeutic antibodies such as the
immunosuppressant OKT3 (15), and there is increasing interest

in manipulating T cells in an Ag-dependent manner by using
naturally occurring and engineered TCRs (16).
Assembly of the TCR–CD3 complex is primarily driven by

each protein’s transmembrane (TM) region, enforced through
the interaction of evolutionarily conserved, charged, residues in
each TM region (4, 5, 12). What, if any, role interactions be-
tween TCR and CD3 ECDs play in the assembly and function of
the complex remains controversial (5): there are several plausible
proposed models of activation, which are not necessarily mutually
exclusive (5, 17–19). Although structures of TCR–peptide–MHC
(pMHC) complexes (2), TCR–MHC-I–like complexes (1), and the
CD3 dimers (6–10) have been separately determined, how the αβ
TCR associates with the CD3 complex is largely unknown. Here,
we use two independent structural approaches to gain an under-
standing of the TCR–CD3 complex organization and structure.

Results
Placement of the αβ TCR and CD3eδ ECDs via Small-Angle X-ray
Scattering. We first set out to determine the relative positions
of the TCR and CD3 ECDs. In the absence of the interaction
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between TCR and CD3 TM helices (Fig. 1A) (12, 20), there is no
detectable interaction between αβ TCR and CD3 ECDs (9),
suggesting any TCR–CD3 ECD intermolecular interactions are
very weak. To generate a stable complex of soluble TCR and
CD3eδ suitable for structural analysis, we developed a system in
which the hydrophobic TM domains were replaced by a parallel
heterotrimeric coiled coil (21), providing an analogous structure
to the proposed TCRα–CD3eδ TM arrangement (Fig. 1B) (10,
12, 20). Our constructs included the membrane-proximal stalks
of the LC13 TCR and CD3eδ to ensure the correct relative jux-
tapositioning of subunits. The complex was coexpressed in insect
cells and, after purification, interacted with the expected affinity
to both its cognate pMHC (Fig. S1) and the anti-CD3e antibody
OKT3 (as detailed later) (22). The LC13 TCR–CD3eδ complex
molecular mass was 102 kDa as determined by multiangle laser
light scattering (MALLS; Fig. S1), similar to that predicted for
the glycosylated LC13 TCR–CD3eδ complex (88.1 kDa).

We deduced the structure of the LC13 TCR–CD3eδ by using
a series of small-angle X-ray scattering (SAXS) experiments. As
controls, we analyzed the ECDs of the LC13 TCR and CD3eδ
alone as well as the cognate LC13 TCR ligand, HLA-B8, and a
Fab fragment of the anti-CD3e antibody OKT3. Each of these
samples was free of protein aggregation as evidenced by the
linearity of Guinier plots (Fig. S2B), and was judged to be mo-
nomeric in solution based on the calculated molecular mass, ra-
dius of gyration (Rg), and maximal particle dimension (Table S1).
Moreover, we observed a good agreement between the calculated
scattering curve of each component’s previously reported crystal
structure and our experimentally derived SAXS data (Fig. S2).
Next, we performed SAXS measurements on the isolated TCR–

CD3eδ construct, which had a mass of 105 kDa, indicative of a
monomeric species. Reconstruction of the particle shape ab initio
using the DAMMIF program revealed TCR–CD3eδ to possess an
elongated bow shape with approximate dimensions of 150 × 45 × 55
Å and contain a central bulged region (Fig. 1C). To understand
how the TCR and CD3 subunits are organized within this com-
plex, we used the program CORAL (complexes with random loops)
(23) to find the optimal position and orientation of available high-
resolution domain structures (LC13 TCR, CD3eδ, and the coiled-
coil subunit), as well as determining the approximate conforma-
tion of missing portions of the polypeptide chain, namely the N
terminus of CD3e and the membrane-proximal stalks of TCR and
CD3. The independent CORAL models each fitted well to the
SAXS data for values of q < 0.2 Å and overlaid very well with
each other and the ab initio model (Fig. 1 D and E and Fig. S2).
Taken together, our data indicate that the CD3eδ heterodimer
occupies the central bulged region whereas the TCR and coiled
coil are located at the extremities of the particle. The CD3eδ
ECDs are poised to make contact with the ECD and stalks of
TCRα, with the CD3eδ ECDs placed below rather than alongside
the TCR ECDs (Fig. 1 C–E).
SAXS data of LC13 TCR–CD3eδ in complex with the OKT3

Fab fragment or the high-affinity ligand pHLA-B44 (22) further
improved our understanding of the TCR–CD3 architecture. The
availability of cocrystal structures of CD3eγ–OKT3 Fab (8) and
LC13 TCR–HLA-B44 (22) combined with the capability of
CORAL to simultaneously fit multiple scattering curves from
subsets of the entire system allowed us to generate a highly
constrained pseudo–high-resolution model. LC13 TCR–CD3eδ
formed stable complexes with OKT3 Fab and HLA-B44, as
judged by the SAXS-derived measurements (Table S1) and the
size and shape of the corresponding ab initio models, which
displayed an additional region of density that corresponded to
the bound ligand or OKT3 Fab fragment (Fig. S3). The gener-
ated CORAL models fitted well to the SAXS data and exhibited
a V-shaped structure in which one of the arms of the V is oc-
cupied by the bound antibody (Fig. 1F and Fig. S4). Based on our
model, the regions that are consistently in close proximity in
independent CORAL models, and thus well positioned to make
potential intersubunit interactions, are the membrane-proximal
stalks of TCR and CD3.

EM of Membrane-Associated TCR–CD3 Complex. We sought to place
the TCR–CD3eδ ECDs in the larger, membrane-associated
TCR–CD3 complex. We first examined full-length versions of
the human TCRs LC13 and 1G4 complexed to CD3 by negative-
stain electron microscopy (EM) (Fig. S5). EM of membrane-
bound TCR–CD3 has been previously reported, but produced
particles whose composition and relative arrangement were dif-
ficult to interpret (24). Although we obtained monodisperse
particles that suggested monomeric TCR–CD3 complexes, the
averages were heterogeneous and did not show sufficient features
to definitively determine the TCR–CD3 oligomerization state or
relative placement of TCR and CD3 domains (Fig. S5).
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Fig. 1. Generation of a stable TCR–CD3eδ complex and analysis via SAXS. (A)
Cartoon depicting the TM domain-based assembly of TCRα with CD3eδ. The
polar Asp (marked as “D”) and Lys (marked as “K”) residues that mediate
assembly are depicted. Transmembrane α-helices are represented by circles.
(B) The parallel heterotrimeric coiled coil used to link TCR and CD3eδ viewed
down the long axis of the helices. (C) The ab initio model of LC13 TCR–CD3eδ
shown in two orientations. (D) Overlay of the LC13 TCR–CD3eδ ab initio
model (light gray spheres) with a representative CORAL model in which the
TCR (α, blue; β, cyan), CD3 (e, red; δ, orange) and coiled coil (black) are
represented as dots. (E) Independent LC13 TCR–CD3eδ models predicted via
CORAL. (F) CORAL-constrained model for the LC13 TCR–CD3eδ complex
bound to OKT3 Fab and HLA-B44 pMHC. In E and F, potential N-linked
glycosylation sites in the TCR and CD3 subunits are indicated by asterisks.
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To increase the molecular weight of the TCR–CD3 complex for
study via EM, we set out to express a stable TCR–CD3 trans-
membrane complex bound to pMHC. As pMHC–TCR interactions
are generally low affinity, we used a version of the human 1G4 TCR
that was affinity-matured to 20-pM affinity for its cognate ligand,
HLA-A2 presenting the NY-ESO1 peptide (A2-ESO1) (25). 1G4
TCR has also recently been functionally reconstituted in HEK-293
cells (26). We created one baculovirus each for TCR and CD3
expression in mammalian cells (27), with individual TCR/CD3
chains cleaved into individual polypeptides through use of viral 2A
peptides (Fig. 2A) (28). Cells transduced with both viruses stained
robustly with antibodies against TCR and CD3, as well as with
fluorescently labeled A2-ESO1 (Fig. 2B). When we stained for
epitope tags fused to the N termini of CD3γ and CD3δ, we ob-
served excellent correlation between the two chains, indicating the
expected 1:1 ratio (Fig. 2C). To solubilize and purify the TCR–
CD3 complex, we tandem-affinity purified the complex via histi-
dine and Fc tags on CD3γ/δ and A2-ESO, respectively (Fig. S6).
The protein was then cleaved from the Fc via engineered protease
sites recognized by Rhinovirus 3C protease. To reduce sample
heterogeneity, intracellular domains (ICDs) had engineered pro-
tease sites and were concurrently removed via 3C protease
(Fig. S6). The purified protein contained CD3 and pMHC,
indicative of a correctly assembled complex (Fig. 2 D–F).
To observe the overall molecular architecture of the pMHC–

TCR–CD3 complex, we analyzed soluble pMHC–TCR (Fig. 3A),

membrane-bound pMHC–TCR–CD3 (Figs. 2 and 3B), and
membrane-bound pMHC–TCR–CD3 decorated with an anti-
CD3 Fab (7) (Fig. 3C and Fig. S7) by negative-stain EM (Fig. S8).
Class averages showed the soluble pMHC–TCR complex to be
monomeric (Fig. 3A) and to be consistent with the previously
solved X-ray crystal structure of 1G4 TCR bound to A2-ESO1
(Fig. S9) (29, 30).
EM images of pMHC–TCR–CD3 clearly revealed largely di-

meric complexes (Fig. 3B and Fig. S8), and class averages
revealed them to consist of two elongated “wings” projecting out
from a central region of additional density (Fig. 3B). The ob-
served wings in the 2D class averages were consistent with the
observed size and shape for the pMHC–TCR ECDs (Fig. 3 A
and B). Notably, the particles did not show any observable
bulging outward at the base of the wings. Instead, the density in
between the two wings likely consists of the CD3 ECDs and the
TCR–CD3 TM regions (Fig. 3B). The EM class averages are
therefore consistent with what we observed for the soluble TCR–

CD3eδ via SAXS (Fig. 1), and suggest that the CD3eγ hetero-
dimer is placed as CD3eδ, but on the other side of the TCR,
proximal to the TCR β-chain (Fig. 3B). The relative orientation
of the dimer arms exhibited significant variability and flexibility
relative to the central CD3/TM region (Movie S1), but were gen-
erally oriented at obtuse angle relative to one another, with many
class averages displaying an essentially antiparallel arrangement
(Fig. S8 and Movie S1).
When we observed the Fab-decorated pMHC–TCR–CD3

complex, the two-winged particles were replaced by particles that
had four arms (Fig. 3C). Class averages of the particles showed
that the anti-CD3 Fab (appearing as the shorter arms in the
complex) was not appended to the wings of the previous pMHC–
TCR–CD3 particles (Fig. 3B), but rather to the central region
between the wings (Fig. 3C). Given that the Fab-binding epitope
of CD3e is composed of the membrane-distal Ig loops (7), the
CD3 ECDs are likely “bent” at an angle relative to the TCR.
Indeed, the class averages of Fab-decorated membrane-bound
particles bore a close resemblance to one half of the CORAL-
generated SAXS model of the soluble TCR–CD3eδ (Figs. 1E
and 3C), thereby supporting our use of the trimeric coiled-coil
domain as a TM mimetic. Interestingly, we observed only two
OKT3 Fab fragments per dimeric TCR–CD3 particle despite the
presumed presence of four CD3e chains, suggesting that only
one of the CD3 heterodimers is accessible in the fully assembled
TCR–CD3 complex (Fig. 3C). However, we cannot discount the
possibility that the dimeric TCR–CD3 complex retains only two
CD3 heterodimers, as has been previously suggested (31). Class
averages of the Fab-decorated particles still retained consider-
able flexibility, illustrated by the longer arms in the particles
being located in cis as well as in trans of the central CD3/TM
region mass (Fig. 3C) and by the relative mobility of each wing
relative to the central CD3/TM region (Movie S2).

Discussion
Our analyses have determined that the CD3 ECDs are situated
underneath, rather than alongside, the TCR constant domains
(Figs. 1 D–F and 3C). The TCR and CD3 ECD–TM domain
“connecting peptides” are highly conserved and affect TCR–CD3
function when altered (32–37). Given the longer length of the
TCR connecting peptides relative to the CD3 connecting pep-
tides, there is sufficient space for the TCR to be placed over the
CD3 ECDs, consistent with what was observed for our pMHC–
TCR–CD3 complexes (Fig. 3 B and C), the SAXS TCR–CD3
ECD structure (Fig. 1 D and E), and previously discovered TCR
ECD mutations that affect TCR–CD3 assembly and function,
which are primarily located toward the “bottom” of the TCR
Cα/Cβ domains (5, 38, 39).
There is evidence pointing to the existence of monomeric (12,

40, 41) and multimeric (41–44) TCR–CD3 complexes. These
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Fig. 2. Production and characterization of full-length 1G4 TCR–CD3 com-
plex. (A) Schematic for expression of 1G4 TCR–CD3 complex in HEK-293 cells
via coinfection of baculoviruses. The baculoviruses respectively encode for
TCRα/β and CD3e/γ/δ/ζ, with each polypeptide chain separated by a viral 2A
peptide (P2A). Each CD3 subunit contains a Rhinovirus 3C protease cleavage
site (dashed yellow line) to remove intracellular domains after protein ex-
pression. (B) Expression of folded TCR–CD3 complex on HEK-293 cells as
demonstrated by an anti-TCR antibody (Left), anti-CD3e antibody (Center),
and cognate pMHC (Right). A high-affinity TCR allows for staining of mo-
nomeric pMHC. (C) Equal staining for orthogonal epitope tags on the N
termini of CD3γ and CD3γδ indicate 1:1 incorporation of CD3eγ and CD3eδ
into the TCR–CD3 complex. (D) Size-exclusion chromatography for the TCR–
CD3 complex bound by pMHC. (E) Western blot of size-exclusion chroma-
tography fractions of the pMHC–TCR–CD3 complex peak shows staining for
pMHC (via anti-β2m antibody) and CD3γ/δ (via anti-His antibody). The blot
was simultaneously treated with both primary antibodies. (F) SDS-PAGE gel
of final 1G4 TCR–CD3–ESO–A2 material showing presence of TCR, CD3, and
MHC. CD3ζ is not visible because of its small size after protease cleavage (5 kDa).
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oligomeric states may arise from differences in preparation of
the TCR–CD3 complexes (41), developmental TCR–CD3 asso-
ciation with the pre-Tα molecule (45), or cell-intrinsic differences
such as membrane composition (41). Our data provide additional
evidence that the TCR–CD3 complex can exist as a stable dimer,
even upon solubilization in detergent (41, 44). The consistent site
of dimerization and lack of higher-order species (Fig. 3 and Figs.
S5 and S8) suggest the observed particles dimerize through a
specific interaction site, likely mediated through the TCR–CD3
TMs and/or membrane-proximal portions of the ECDs. Although
our data do not definitively speak to the oligomeric state of the
TCR–CD3 complex on the surface of T cells, it leaves open the
possibility that the observed dimerization may be brought about by
binding to Ags, which could place the TCR–CD3 complex into a
signaling-permissive state (46) (Fig. 4). However, TCR–CD3 likely
requires molecular reorientation beyond simple dimerization to
initiate signaling, as seen from previous observations that not all
bivalent antibodies can induce TCR–CD3 signaling (47) and that

relatively high-affinity pMHC ligands bound in certain topologies
cannot activate T cells, even when oligomerized (48).
Our data provide a structural framework that can potentially

begin to reconcile disparate observations about how the TCR
relays a ligation event to signaling. Such observations include
studies showing that monomeric pMHC possesses little to no
ability to induce signaling regardless of affinity (49), there exist
signaling-permissive and -nonpermissive pMHC–TCR docking ge-
ometries (48), conformational changes occur in the TCR upon
pMHC ligation (46, 50–52), the CD4 and CD8 coreceptors are
required to place Lck relative to the CD3 ITAMs (53, 54), phos-
phatases are occluded from the T-cell Ag-presenting cell synapse
(18, 26, 55), and mechanotransduction appears to be important for
TCR signaling (19, 36, 56–59) (Fig. 4). In the dimeric model we
have visualized by EM, the combined interactions of the TCR–CD3
TMs, connecting peptides, and ECDs appear to create a centrally
disposed interacting unit that could act as a fulcrum to transmit
information of Ag binding to the CD3 ICDs upon engaging pMHC
on an opposing cell (Figs. 1 D–F, 3, and 4). The TCR–CD3
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Fig. 3. Negative-stain EM of soluble pMHC–1G4–TCR complex (A), membrane-bound pMHC–1G4–TCR–CD3 complex (B), and pMHC-1G4–TCR–CD3 complex
decorated with anti-CD3 Fab (C) indicates a dimeric membrane-bound TCR–CD3 complex. (Left) Cartoon representation of the domain structure of each complex.
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complexes (Bottom Right). Red circles (B and C) are density noted in the class averages not accounted for by the TCR or pMHC ECDs, likely consisting of the CD3
ECDs and the TCR/CD3 transmembrane helices. The side length of the class averages in A is 25.6 nm, and the side length of the class averages in B and C is 42.6 nm.
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complex may rely upon dimerization and/or reorientation of the
observed TCR wings by a vectorial force from the opposing cell
(Fig. 4) to trigger the transmission of a signal, consistent with the
notion that two TCRs need to be engaged in a signaling-permissive
orientation beyond simple dimerization (60, 61) and explaining why
monomeric Ags in solution and certain multimeric Ags are not
signaling competent.
Collectively, our structural models provide several important

pieces of structural information about the TCR–CD3–pMHC
complex, namely that the assembly is dimerized and the TCR is
situated over top, rather than alongside, the CD3 ectodomains.
With this snapshot in hand, mechanistic models of TCR acti-
vation can be probed experimentally with much higher pre-
cision and clarity.

Methods
Expression and Purification of Soluble TCR–CD3δe Complex. To generate stably
associated protein complexes, the C terminus of the human LC13 TCRα, CD3e,
and CD3δ ECDs (residues 1–227, 1–105, and 1–80, respectively) were fused to
the N terminus of an engineered heterotrimeric coiled-coil domain (21) by
using splice-by-overlap PCR. LC13 TCR and CD3 chains were then separately
cloned into modified versions of the bicistronic baculovirus expression vector
pFastbac dual (Invitrogen), downstream of a GP67 signal sequence. The final
vector sequences were as follows: vector 1, LC13 TCRα-CoilA (AEIAAIEYEQAAI-
KEEIAAIKDKIAAIKEYIAAI) and LC13 TCRβ-Thrombin-His6); vector 2, CD3e-coilB
(EKIAAIKEEQAAIEEEIQAIKEEIAAIKYLIAQI), and CD3δ-coilC (AEIAAIKYKQA-
AIKNEIAAIKQEIAAIEQMIAAI). Viral stocks derived from both vectors were
separately amplified in Sf9 cells and used to coinfect High Five cells (Invi-
trogen) according to the manufacturer’s instructions. Insect cell supernatant
was concentrated, and buffer exchanged into 10 mM Tris, pH 8, containing
0.5 M NaCl and 10 mM imidazole before purification via nickel-affinity chro-
matography. Protein was further purified via size-exclusion and anion-
exchange chromatography by using Superdex 200 16/60 and HiTrapQ HP
columns (GE Healthcare).

Expression and Purification of Full-Length 1G4 TCR–CD3 Complex. TCR and CD3
constructs, each codon-optimized for human expression, were synthesized as
single ORFs (Genscript), with each gene separated by a short GSG linker
followed by a 2A sequence from porcine teschovirus (P2A; ATNFSLLKQA-
GDVEENPGP). The construct designs were as follows: for TCR, the previously
reported affinity-matured version of 1G4 was constructed as 1G4β-2A-1G4α;
for CD3, CD3e-2A-CD3γ-2A-CD3δ-2A-CD3ζ. Native leader sequences for each
protein were used. Initial characterization experiments and EM characteriza-
tion of 1G4–CD3 were conducted with each CD3 chain having an orthogonal
epitope tag to ensure that all chains were present (CD3e Flag, CD3γ HA, and
CD3δ Myc, all on the N terminus; CD3ζ 1D4 on the C terminus). TCRα/β were
each tagged with His6 and EE tags on the N terminus. For purification of pMHC-
bound 1G4–CD3, CD3γ, and CD3δ were expressed with N-terminal His6 tags
and the TCR chains were untagged. Additionally, 3C protease sites (LVELFQGP)
were installed 9 aa after the predicted end of the transmembrane region
for each CD3 chain. The constructs were cloned into the BacMam expression
vector pVLAD6 and transfected to create baculovirus as previously described
(27). Viruses were amplified to P2 before protein expression.

TCR–CD3 complexes were expressed in HEK-293S GnTi− cells, which were
maintained as previously described (27). SI Methods provides further details.

SAXS. SAXS data were collected at the Australian Synchrotron by using a 1M
Pilatus detector. For individual components, buffers/samples were loaded
into 1-mm quartz capillaries and continuously flowed through the beam
during data collection. For multicomponent protein complexes, samples were
loaded onto an in-line Superdex 200 (10/300) size-exclusion column (GE
Healthcare). In both cases, multiple 1-s exposures were collected, checked for
radiation damage, and averaged where appropriate. SI Methods provides
further details.

EM. Purified 1G4–MHC, 1G4–CD3, 1G4–CD3–MHC, and 1G4–CD3–MHC–anti-
CD3 Fab complexes were prepared by conventional negative staining with
0.75% (wt/vol) uranyl formate (62). Images were collected with a Tecnai T12
electron microscope (FEI) equipped with an LaB6 filament and operated at
an acceleration voltage of 120 kV. Images were recorded by using low-dose
procedures on an UltraScan 895 4K × 4K CCD camera (Gatan) using a defocus
of −1.5 μm and a nominal magnification of 52,000×. The calibrated mag-
nification was 70,527×, yielding a pixel size of 2.13 Å on the specimen level.
Purified LC13-CD3 was stained with 2% (wt/vol) uranyl acetate and imaged
on a Tecnai TF30 transmission electron microscope operated at 300 kV.
Images were recorded on a 2K × 2K CCD camera using an underfocus range
of 0.4–2.6 μm and a nominal magnification of 52,000×, yielding a pixel size
of 1.8 Å on the specimen level. The use of two electron microscopes results
from different sample preparation and data collection locations. SI Methods
provides details of data processing.
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