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Markov chain Monte Carlo methods (MCMC) are essential tools for
solving many modern-day statistical and computational problems;
however, a major limitation is the inherently sequential nature of
these algorithms. In this paper, we propose a natural generaliza-
tion of the Metropolis−Hastings algorithm that allows for parallel-
izing a single chain using existing MCMC methods. We do so by
proposing multiple points in parallel, then constructing and sam-
pling from a finite-state Markov chain on the proposed points such
that the overall procedure has the correct target density as its station-
ary distribution. Our approach is generally applicable and straightfor-
ward to implement. We demonstrate how this construction may be
used to greatly increase the computational speed and statistical
efficiency of a variety of existing MCMC methods, including
Metropolis-Adjusted Langevin Algorithms and Adaptive MCMC.
Furthermore, we show how it allows for a principled way of using
every integration step within Hamiltonian Monte Carlo methods;
our approach increases robustness to the choice of algorithmic param-
eters and results in increased accuracy of Monte Carlo estimates
with little extra computational cost.

Markov chain Monte Carlo | Bayesian inference | parallel computation |
Hamiltonian dynamics

Since its introduction in the 1970s, the Metropolis−Hastings
algorithm has revolutionized computational statistics (1). The

ability to draw samples from an arbitrary probability distribution,
πðXÞ, known only up to a constant, by constructing a Markov
chain that converges to the correct stationary distribution has
enabled the practical application of Bayesian inference for mod-
eling a huge variety of scientific phenomena, and has resulted in
Metropolis−Hastings being noted as one of the top 10 most im-
portant algorithms from the 20th century (2). Despite regular
increases in available computing power, Markov chain Monte
Carlo (MCMC) algorithms can still be computationally very
expensive; many thousands of iterations may be necessary to ob-
tain low-variance estimates of the required quantities with an of-
tentimes complex statistical model being evaluated for each set of
proposed parameters. Furthermore, many Metropolis−Hastings
algorithms are severely limited by their inherently sequential nature.
Many approaches have been proposed for improving the sta-

tistical efficiency of MCMC, and although such algorithms are
guaranteed to converge asymptotically to the stationary distri-
bution, their performance over a finite number of iterations can
vary hugely. Much research effort has therefore focused on de-
veloping transition kernels that enable moves to be proposed far
from the current point and subsequently accepted with high prob-
ability, taking into account, for example, the correlation structure of
the parameter space (3, 4), or by using Hamiltonian dynamics (5) or
diffusion processes (6). A recent investigation into proposal kernels
suggests that more exotic distributions, such as the Bactrian kernel,
might also be used to increase the statistical efficiency of MCMC
algorithms (7). The efficient exploration of high-dimensional and
multimodal distributions is hugely challenging and provides the
motivation for many further methods (8).
Computational efficiency of MCMC algorithms is another im-

portant issue. Approaches have been suggested for making use of
the increasingly low-cost parallelism that is available in modern-day

computing, with the most straightforward based on running mul-
tiple Markov chains simultaneously (9). These may explore the
same distribution, or some product of related distributions, as
in parallel tempering (10). Furthermore, the locations of other
chains may additionally be used to guide the proposal mecha-
nism (11). More recent work combines the use of multiple chains
with adaptive MCMC in an attempt to use these multiple sources
of information to learn an appropriate proposal distribution (12,
13). Sometimes, specific MCMC algorithms are directly amenable
to parallelization, such as independent Metropolis−Hastings (14)
or slice sampling (15), as indeed are some statistical models via
careful reparameterization (16) or implementation on specialist
hardware, such as graphics processing units (GPUs) (17, 18);
however, these approaches are often problem specific and not
generally applicable. For problems involving large amounts of data,
parallelization may in some cases also be possible by partitioning
the data and analyzing each subset using standard MCMCmethods
simultaneously on multiple machines (19). The individual Markov
chains in these methods, however, are all based on the standard
sequential Metropolis−Hastings algorithm.
The idea of parallelizing Metropolis−Hastings using multiple

proposals has been investigated previously; however, the main
shortcoming of such attempts has been their lack of computa-
tional efficiency. Algorithms such as Multiple Try Metropolis
(20), Ensemble MCMC (21), and “prefetching” approaches (22,
23) all allow the computation of multiple proposals or future
proposed paths in parallel, although only one proposal or path is
subsequently accepted by the Markov chain, resulting in wasted
computation of the remaining points. Another class of approaches
involves incorporating rejected states into the Monte Carlo esti-
mator with an appropriate weighting, such that the resulting es-
timate is still unbiased. An overview of such approaches is given by
Frenkel (24). In particular, the work presented by Tjelmeland (25)
makes use of multiple rejected states at each iteration and is re-
lated to the ideas presented here, although recent investigations
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suggest that including all rejected proposals may in fact sometimes
result in a Monte Carlo estimate with asymptotically larger vari-
ance than using only accepted states (26).
In this paper, we present a generalization of Metropolis−Hastings

that may be used to parallelize a wide variety of existing MCMC
algorithms, including most of those mentioned previously, from
simple random-walk Metropolis to more recent Langevin-based
algorithms, defined either on Euclidean or Riemannian spaces,
and Adaptive MCMC. The approach we propose is highly scalable
and may offer a couple of magnitudes improvement in time-
normalized efficiency over existing algorithms. The approach offers
additional practical benefit for Hamiltonian Monte Carlo (HMC)
methods, by improving robustness to the choice of tuning param-
eters and providing a principled way of making use of the inter-
mediate integration steps that are calculated at every iteration.

Metropolis−Hastings for a Single Proposed Point
The original Metropolis algorithm is straightforward to under-
stand since it is implemented with a symmetric proposal distri-
bution (27). If the probability at the proposed point is greater
than at the current point, the move is always accepted. Other-
wise, it is only accepted with probability proportional to the ratio
of the new point and the old point; intuitively, it is visited less
often to ensure that the long-term frequency of visits is pro-
portional to its underlying probability. The extension by Hastings
(28) ensures convergence to the correct stationary distribution
when using nonsymmetric proposals; the new acceptance ratio
effectively removes the bias introduced by the fact that now some
reverse moves will have a different probability of being proposed
than the forward move.
Let Kðxi; xjÞ be a Markov chain on a state space X, defined by a

possibly nonsymmetric proposal distribution conditioned on the
current point xi. A useful interpretation of the Metropolis−Hastings
algorithm (29) is that we wish to turn the Markov chain K into
another Markov chain that has the stationary distribution, πðXÞ.
According to the Metropolis−Hastings algorithm, we propose
a move from xi to xj with probability Kðxi; xjÞ and then accept this
move with some probability Aðxi; xjÞ∈ ½0; 1�. We observe that
Að·; ·Þ here may also be considered as a Markov chain. The
product of these Markov chains, Kðxi; xjÞAðxi; xjÞ, ðxi ≠ xjÞ, con-
verges to the desired stationary distribution if it is reversible,

πðxiÞK
�
xi; xj

�
A
�
xi; xj

�
= π

�
xj
�
K
�
xj; xi

�
A
�
xj; xi

�
; [1]

which is an easy to satisfy, sufficient condition for the necessary
balance condition to hold,

πðxiÞ=
Z

π
�
xj
�
K
�
xj; xi

�
A
�
xj; xi

�
dxj: [2]

For any two states xi and xj, we have from Eq. 1,

A
�
xj; xi

�
=

1
R
�
xi; xj

�A�xi; xj�≤ 1; [3]

where Rðxi; xjÞ= πðxjÞKðxj ;xiÞ
πðxiÞKðxi;xjÞ. From this, a general form for acceptance

probabilities for reversible Metropolis−Hastings algorithms (29)
follows as, 0≤Aðxi; xjÞ≤minð1;Rðxi; xjÞÞ, since Aðxi; xjÞ≤Rðxi; xjÞ
from the inequality in Eq. 3. Taking Aðxi; xjÞ to be its maximum,
we recover the optimal Metropolis−Hastings acceptance proba-
bility (30).
It is straightforward to see that by proposing a point xj from

the transition kernel Kðxi; ·Þ, and accepting with probability
Aðxi; xjÞ, detailed balance is satisfied and the chain retains the
correct stationary distribution. It is important at this stage to
realize that when we accept or reject the proposed step, we are in

fact simulating from the finite state Markov chain Að·; ·Þ. The
traditional Metropolis−Hastings approach results in a single step
being taken at each iteration based on the two-state Markov
chain shown in Fig. 1, and we note that since only one transition
within this finite-state Markov chain is made, the remaining
transition probabilities Aðxj; ·Þ are not immediately used.

Metropolis−Hastings for Multiple Proposed Points
We now consider the case where we define our Markov chain,
Að·; ·Þ, over multiple proposed states and show that this may also
be constructed to obtain a sampling algorithm that has the correct
stationary distribution. A useful representation for deriving and
proving the validity of this approach is as a Metropolis−Hastings
algorithm defined over a product space. We first note that a joint
distribution pðx1:N+1Þ may be factorized in N + 1 different ways
using the form, pðx1:N+1Þ= pðxiÞpðx∖ijxiÞ≡ πðxiÞKðxi; x∖iÞ, where we
use the notation Kðxi; x∖iÞ= pðx½1:i−1;i+1:N+1�

��xiÞ. We observe that the
ith factorization is defined such that xi is distributed according
the target density of interest, and the other points, x∖i, are dis-
tributed according to a proposal kernel conditioned on the ith
point. Following Tjelmeland (25), we may introduce a discrete
uniform auxiliary random variable I defined over the integers
½1 : N + 1�, indicating which factorization of this joint probability
distribution should be used, i.e., pðx1:N+1; I = iÞ= 1

N + 1 pðxiÞpðx∖ijxiÞ.
The Generalized Metropolis−Hastings algorithm, which we

describe shortly, is equivalent to a single Markov chain exploring
the product space pðx1:N+1; IÞ, using a combination of two differ-
ent transition kernels, each of which preserves the underlying joint
stationary distribution. First, we update the variables x∖i condi-
tioned on xi and I = i, which clearly preserves the correct stationary
distribution, since we can sample directly from the proposal kernel
Kðxi; ·Þ. We note that we are free to choose the form of this
proposal kernel, and, later in the paper, we consider the use of
kernels based on Langevin diffusions and Hamiltonian dynamics.
Secondly, we sample the auxiliary variable I conditioned on the
current states x1:N+1, using the transition matrix Að·; ·Þ, where
Aði; jÞ defines the probability of transitioning from I = i to I = j.
We see that by construction, when I = i, the random variable xi
has the correct target density πðxiÞ, and these are the samples we
collect at each iteration. Furthermore, we may calculate the sta-
tionary distribution of the transition matrix, which we denote as A∞,
and use this to sample I directly. There are two sources of increased
efficiency that arise from the Generalized Metropolis−Hastings
algorithm; the first is that the likelihoods of the multiple pro-
posed points may be computed in parallel, and the second is that
the acceptance rate is increased when using multiple proposals.
We now give an algorithmic overview, before deriving appro-

priate transition probabilities and proving that the balance con-
dition is satisfied. The Generalized Metropolis−Hastings algorithm
proceeds as follows.

1: Initialize starting point ~x1, auxiliary variable I = 1 and
counter n= 0.

2: for each MCMC iteration do
3: Update ~x∖I conditioned on I, i.e., draw N new points from

the proposal kernel pð~x∖I j~xIÞ=Kð~xI ; ·Þ.
4: Calculate the stationary distribution of I conditioned on

~x1:N+1, i.e., ∀j∈ ½1;   . . . ;  N + 1�, pðI = jj~x1:N+1Þ=A∞ð·; jÞ∝

Fig. 1. A two-state Markov chain corresponding to a single step taken using
the standard Metropolis−Hastings algorithm. Starting at xi , a single step is
made and the chain either moves to xj or remains at xi . We note that the
other transition probabilities Aðxj ,xiÞ and Aðxj ,xjÞ are not directly used.
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πð~xjÞKð~xj;~x∖jÞ, which follows from Eq. 5 and may be cal-
culated in parallel.

5: for m = 1:N do
6: Sample directly from the stationary distribution of the aux-

iliary variable, I, to obtain the sample, xn+m =~xI .
7: end for
8: Update counter, n= n+N.
9: end for

We note that for N = 1, the algorithm simplifies to the original
Metropolis−Hastings algorithm, with a single proposed point and
a single sample drawn at each iteration. In the algorithm above,
we chose to sample N times, although this need not necessarily
equal the number of proposals. We shall now derive all transition
probabilities for the matrix Að·; ·Þ, such that the balance condi-
tion is satisfied over the product space. We begin by noting that
the detailed balance condition for updating the variable I in this
product space is

1
N + 1

πðxiÞKðxi; x∖iÞAði; jÞ= 1
N + 1

π
�
xj
�
K
�
xj; x∖j

�
Aðj; iÞ; [4]

for all i and j, and the balance condition follows as

1
N + 1

πðxiÞKðxi; x∖iÞ=
XN+1

j=1

1
N + 1

π
�
xj
�
K
�
xj; x∖j

�
Aðj; iÞ; [5]

for all i. We can now derive a similar expression for the transition
probabilities as we did in the single proposal case.
Proposition 1. We may construct a finite-state Markov chain

Að·; ·Þ defining the transition probabilities for I given the current set
of states x1:N+1 using

Aði; jÞ=

8><
>:

1
N
minð1;Rði; jÞÞ; if   j≠ i;

1−
P

j≠iAði; jÞ; otherwise;
[6]

where

Rði; jÞ= π
�
xj
�
K
�
xj; x∖j

�
πðxiÞKðxi; x∖iÞ : [7]

Each transition of this Markov chain, Aði; ·Þ, satisfies the detailed
balance and balance conditions (Eqs. 4 and 5). The joint distribu-
tion pðX1:N+1; IÞ is therefore invariant when the variable I is sam-
pled using such updates.
From the reversibility condition for each pair of values ½I = i;

I = j� we have, 0≤Aði; jÞ≤minð1;Rði; jÞÞ; ðj≠ iÞ, where R is now
given by Eq. 7. In order for Að·; ·Þ to be a Markov chain, we also
require that

PN+1
j=1 Aði; jÞ= 1 and Aði; iÞ= 1−

P
j≠iAði; jÞ≥ 0.

When N > 1, we may try to satisfy these requirements for Að·; ·Þ
by considering weights cj ∈ ½0; 1� such that 0≤Aði; jÞ≤ cjmin
ð1;Rði; jÞÞ; ðj≠ iÞ. If we choose Aði; jÞ to maximize this inequality,
then the reversibility condition in Eq. 4 implies that cj = ci, i.e.,
we may choose a constant c for all proposed points. We therefore
have

P
j≠icminð1;Rði; jÞÞ≤ 1. Taking the maximum of this quan-

tity implies that
P

j≠ic≤ 1 and so letting c= 1=N satisfies this in-
equality. It is therefore now clear that Að·; ·Þ, defined in Eq. 6, is
a Markov chain that satisfies the detailed balance condition in
Eq. 4, and hence also the balance condition in Eq. 5, from which
the stationary distribution of Að·; ·Þ directly follows.
We note that the acceptance ratio depends on both the current

point and all proposed points, and consequently the probability
of transitioning from I = i to I = jmay become very small. For this
reason, we may use a similar approach as presented in ref. 25,

whereby we introduce an auxiliary variable z and make proposals
of the form, ~Kðxi; x∖iÞ=Kðxi; zÞKðz; x∖iÞ. The acceptance ratio then
simplifies to

Rði; jÞ= π
�
xj
�
~K
�
xj; x∖j

�
πðxiÞ~Kðxi; x∖iÞ

=
π
�
xj
�
K
�
xj; z

�
Kðz; xiÞ

πðxiÞKðxi; zÞK
�
z; xj

�; [8]

and, for symmetric proposals, the acceptance rate simplifies
further to Rði; jÞ= πðxjÞ=πðxiÞ.
Materials and Methods
We now detail the MCMC algorithms, statistical models, and measures of
efficiency that we use for investigating the numerical performance of this
generalized construction of Metropolis−Hastings. For the simulations, we
adopt the Bayesian approach, such that our target density is the posterior
distribution, πðxÞ=pðxjyÞ∝pðyjxÞpðxÞ. We can therefore draw samples from
the posterior distribution using Metropolis−Hastings without explicitly
having to calculate the normalizing constant, given by the marginal likeli-
hood, pðyÞ.

Metropolis-Adjusted Langevin Algorithms. Continuous-time stochastic differ-
ential equations that converge to the correct stationary distribution may
be used to make efficient moves within MCMC algorithms; however, a
Metropolis−Hastings correction step is still required, since the discretized
solution no longer converges to the correct distribution. Such an approach
works well, as it takes into account the local geometry of the target density.
Original versions of Metropolis-Adjusted Langevin Algorithms (MALA) were
based on a diffusion defined in Euclidean space (6), although recently it has
been shown that they may also be defined on the Riemannian manifold
induced by the statistical model (4). In the Riemannian case, the resulting
proposal mechanism has a position-specific covariance matrix defined by the
expected Fisher Information, which satisfies the properties of a metric tensor
(31); the resulting Markov chain therefore proposes transitions by taking into
account at each step the average local sensitivity of the statistical model with
respect to small changes in its parameters. Computationally efficient proposals
may be made using the following simplified manifold MALA (SmMALA)
transition kernel (4), which we use for the subsequent numerical simulations in
this paper, Kðxi , ·Þ=Nðxi + ðe2=2ÞGðxiÞ−1∇x logpðxi jyÞ,e2GðxiÞ−1Þ, where GðxiÞ
is the position-specific covariance matrix given by the expected Fisher In-
formation (4).

Adaptive MCMC. An alternative approach is to adaptively learn an appropriate
proposal covariance structure based on previously accepted MCMC moves.
Convergence to the stationary distribution must be proven separately for this
class of algorithms, since the chain is no longer Markovian (3). For the pur-
pose of our simulation study, we use the Langevin-based Adaptive MCMC
algorithm detailed in ref. 32. The transition kernel is given as Kðxi ,·Þ=Nðxi +
ðe2=2ÞΛDðxiÞ,e2ΛÞ, where DðxiÞ= ½δ=maxðδ,j∇logpðxi jyÞjÞ�∇logpðxi jyÞ is the
bounded drift function, with δ a fixed constant and the covariance matrix Λ
computed at each iteration based on the previously accepted moves with
diminishing adaptation (32), such that the chain asymptotically converges to
the correct stationary distribution. This Adaptive MCMC algorithm may be
straightforwardly implemented with the proposed Generalized Metropolis−
Hastings approach by simply updating the covariance matrix after every
iteration, i.e., after N points have been proposed and sampled.

HMC. We may augment the posterior distribution with an auxiliary Gaussian
random variable and interpret the negative joint log density as a Hamiltonian
system (5), Hðx,pÞ=−logpðxjyÞ+ ð1=2Þlogðð2πÞDjMjÞ+ ð1=2ÞpTM−1p, where
M is the mass matrix defining the covariance structure of the “momentum”

auxiliary variable p. Hamiltonian dynamics may then be used to inform a
transition kernel that takes into account the local geometry of the posterior,
proposing moves far from the current point that may be accepted with high
probability. However, for most statistical models, the Hamiltonian dynamics
are not analytically tractable and must be numerically approximated using a
symplectic, time-reversible integrator (33), with the discretization error sub-
sequently corrected using a Metropolis−Hastings step. Here we use the Eu-
clidean version of HMC using the Leapfrog integrator, although we note that
this may also be defined on the induced Riemannian manifold of the statistical
model (4). We wish to sample from the target density πðx,pÞ= expð−Hðx,pÞÞ.
We propose a transition by sampling an initial momentum variable from
a normal distribution, Nð0,MÞ, then deterministically calculating the mapping
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½x,p�→ ½x*,p*� using a number of numerical integration steps, each of which is
defined by

pðτ+ e=2Þ=pðτÞ+ e∇logpðxðτÞjyÞ=2

xðτ+ eÞ= xðτÞ+ eM−1pðτ+ e=2Þ

pðτ+ eÞ=pðτ+ e=2Þ+ e∇logpðxðτ+ eÞjyÞ=2:

In standard Metropolis−Hastings, only the end point of the integration path
is used as the proposal. With Generalized Metropolis−Hastings, we can make
use of all intermediate integration steps by considering them as multiple
Hamiltonian proposals. It is straightforward to obtain a suitable transition
kernel for HMC in this setting by randomly sampling the number of inte-
gration steps from a discrete uniform distribution, s∼Uð1,SÞ, and calculating
the Hamiltonian path s steps forward in time and S− s steps backward from
the current point. This results in a symmetric proposal from each point to the
set of all other points in the Hamiltonian path, such that we may use the
simplified acceptance ratio, Rði,jÞ= πðxj ,pjÞ=πðxi ,piÞ, to define the transition
probabilities for the auxiliary variable I.

Calculating the Sampling Efficiency. The samples generated using MCMC
exhibit some level of autocorrelation, due to the Markov property. One way
of evaluating the statistical efficiency of such methods is by calculating the
effective sample size (ESS), which is the number of effectively independent
samples from the total number of posterior samples collected. For each covariate,
wemay use the following standard measure, ESS=N½1+ 2

P
kγðkÞ�−1, whereN

is the number of posterior samples and
P

kγðkÞ is the sum of the Kmonotone
sample autocorrelations, estimated by the initial monotone sequence esti-
mator (34). An alternative approach is to consider the mean squared jumping
distance, MSJD= ð1=NÞPN−1

n=1 kxn+ 1 − xnk2, which is related to measuring the
lag 1 autocorrelation and may furthermore be used to optimize the param-
eters of the proposal kernel (35). We make use of both of these measures to
investigate the performance of Generalized Metropolis−Hastings.

Ordinary Differential Equation Models. Statistical models based on systems of
ordinary differential equations (ODEs) have a wide range of scientific uses,
from describing cell regulatory networks, to large-scale chemical processes

and inference in suchmechanistic models presents many challenges, both due
to the computational effort involved in evaluating the solution for each set of
proposed parameters, as well as the challenge of sampling from potentially
strongly correlated posterior distributions, resulting from any nonlinearities
present in the model equations. We consider ODEs of the form _u= fðu,θÞ,
which we solve numerically for the implicitly defined solution states u. Given
uncertain measurements of each solution state yi =ui + γi , with γ defined
according to the chosen error model, we wish to infer the posterior
distribution over the model parameters θ. We use the Fitzhugh−Nagumo
model as an illustrative example of such a system (4), which consists of two
states, _V = cðV −V3=3+RÞ and _R=−ðV − a+bRÞ=c. Following ref. 4, we use
200 data points generated from the Fitzhugh−Nagumo ODE model between
t = 0 and t = 20 inclusive, with model parameters a= 0:2, b= 0:2, and c= 3
and initial conditions V0 =−1 and R0 =1. Gaussian-distributed error with SD
equal to 0.5 was then added to the data, which was subsequently used for
inference of the model parameters.

Logistic Regression Models. We also consider a Bayesian logistic regression
example defined by an N×D design matrix, X, where N is the number of
samples, each described using D covariates, such that pðy = 1jX,θÞ= σðXθÞ
and pðy = 0jX,θÞ= 1− σðXθÞ, where σ denotes the logistic function. We per-
form inference over the regression coefficients θ∈RD by defining Gaussian
priors pðθÞ=Nð0,αIÞ, with α= 100. For implementing SmMALA, the metric
tensor for this model follows straightforwardly as GðθÞ=XTΛX + αI, where Λ
is a diagonal matrix with elements Λðn,nÞ = σðθTXT

ðn, · ÞÞð1− σðθTXT
ðn, · ÞÞÞ; see ref. 4

for further details.

Results
Statistical Efficiency with Increasing Number of Proposals. We investi-
gate the statistical efficiency of Generalized Metropolis−Hastings
using increasing numbers of proposals. Once N proposals have
been selected, the likelihood and transition probabilities may
be calculated in parallel, either over N cores on a single processor
or over N separate computer processors. This leads to roughly an
N-fold increase in computational speed per sample, although we
bear in mind that some computational efficiency will be lost due

Fig. 2. Results are based on 10 MCMC runs, each of 5,000 samples, using both the SmMALA and Adaptive MCMC kernels for posterior inference over the
Fitzhugh−Nagumo ODE model (Top) and the logistic regression model (Bottom). The first-column plots show the effective sample size (ESS) for step sizes
resulting in a range of acceptance rates. The second- and third-column plots show the ESS and MSJD for increasing numbers of proposals with N = [1, 5, 10, 20,
50, 100, 200, 500, 1,000]. The fourth-column plots show the corresponding acceptance rates when the samples are drawn directly from the stationary dis-
tribution of the finite-state Markov chain.
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to communication overhead, which will of course be subject to
the hardware- and software-specific details of the algorithm’s
implementation. The greatest improvements will result from
complex mathematical models, whose solution is computationally
expensive relative to the communication expense.
We first use the SmMALA and Adaptive MCMC kernels

within Generalized Metropolis−Hastings and consider their
performance as a function of the step size, e. We tune the step
size to achieve a given average acceptance rate of the finite-state
Markov chain, which we can directly compute as 1− ½1=ðN + 1Þ�PN+1

i=1 Aði; iÞ. Fig. 2 shows results for posterior sampling using the
ODE model and the logistic regression model. In both cases, the
optimal acceptance rate is in the region of 60–70%, consistent
with previous theoretical results for standard Langevin-based
Metropolis−Hastings (36).
Using step sizes based on these optimal acceptance rates,

we now compare standard Metropolis−Hastings to Generalized
Metropolis−Hastings. Rather than sampling from each finite-
state Markov chain using the transition matrix A, we draw N
independent samples directly from its stationary distribution,
A∞. The second- and third-column plots in Fig. 2 show that as N
increases, not only do we gain in computational speed, due to
parallelism, but we also benefit from increased statistical effi-
ciency, as measured by the ESS and MSJD. The reason for this is
clear from the fourth-column plots in Fig. 2; the average rejection
rate is far lower when drawing samples directly from the stationary
distribution, compared with the 65% average acceptance rate
calculated when sampling using the transition matrix probabili-
ties. Although the ESS increases with larger N, the mean squared
jumping distance does not increase much above N = 100, which is
due to the fact that all proposed points are conditioned on the
same state.
This scheme raises many interesting theoretical questions for

future research. In these experiments, we observe empirically that
using the stationary probabilities to define our transitions results
in a lower rejection rate for each state. Is there perhaps a general
optimal transition matrix A? We note that this approach also
opens up the possibility of designing a nonreversible transition
matrix, which should further improve the overall statistical effi-
ciency of the sampling (37).

Multiple Proposals Using HMC. The use of Hamiltonian dynamics
for proposing moves within MCMC may be statistically efficient
for many problems (33); however, the computational cost is
often high, since multiple integration steps of the Hamiltonian
system are required for a single transition. The Generalized
Metropolis−Hastings framework allows for a principled way of
using all integration points on the Hamiltonian path as multiple
proposals, since their transition probabilities may be easily calcu-
lated from the change in total energy given by the Hamiltonian.
The performance of this algorithm is then no longer dependent on
the total change in energy between the initial and end points, but
rather the change in energy between each pair of integration points.
We consider a simple example to illustrate clearly the per-

formance improvement that arises from using information from
all integration points along each proposed Hamiltonian path. We
note that in this example, the improvement comes mainly in the
form of variance reduction, rather than computational speed-ups
resulting from parallelization, although some parallelization may
still be obtained when calculating the forward and backward
paths of the Hamiltonian dynamics.
We draw samples with HMC, using both Metropolis−Hastings

and Generalized Metropolis−Hastings, from a strongly correlated
bivariate Gaussian distribution, with mean ½μ1; μ2�= ½1; 1� and co-
variance ½Σð1;1Þ;Σð1;2Þ;Σð2;2Þ�= ½1:3; 1:7; 2:4�. Table 1 shows the
summary statistics based on 30 Monte Carlo estimates of the
mean and covariance, using 20 integration steps of size 0.5.
For standard HMC, we drew 1,000 samples based on the end
points of 1,000 integration paths. For HMC with Generalized
Metropolis−Hastings, we drew 10,000 samples based on sub-
sampling the intermediate points of 1,000 integration paths,
for roughly the same computational cost. We obtain ∼60% de-
crease in variance of the resulting Monte Carlo estimates.

Robustness of HMC with Respect to Tuning Parameters. When run-
ning HMC, there is also the practical question of which tuning
parameters should be used. Although there is some guidance for
these choices (33), the performance of the sampler may be highly
dependent on fine-tuning these parameters through trial and
error. It is interesting to note that the use of Generalized Me-
tropolis−Hastings makes the performance of the HMC algo-
rithm more robust to the choice of step size, since it is only the
difference in the Hamiltonian’s energy between consecutive in-
tegration points that is important for making MCMC moves.
Likewise, we need not worry as much about using too many in-
tegration steps, since even if the final point has a low acceptance
probability, the algorithm is still able to accept transitions to
intermediate points along the integration path.
We consider the performance of HMC in Fig. 3, where we ob-

serve the posterior samples obtained using increasing integration
step sizes. The acceptance rate of HMC using standardMetropolis−
Hastings quickly falls almost to zero as the step size increases above
e= 0:6. In contrast, Generalized Metropolis−Hastings still accepts

Table 1. Monte Carlo estimates of a bivariate normal
distribution using HMC with Metropolis−Hastings and
Generalized Metropolis−Hastings

HMC with
Metropolis−Hastings

HMC with Generalized
Metropolis−Hastings

μ1 0:994±0:077 1:007±0:029
μ2 0:989±0:109 1:008±0:038
Σð1;1Þ 1:400±0:347 1:314±0:158
Σð1;2Þ 1:838±0:461 1:717±0:213
Σð2;2Þ 2:589±0:621 2:416±0:288

Fig. 3. Sampling performance of HMC using standard (Top) and Generalized (Bottom) Metropolis−Hastings for a variety of step sizes.
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moves to intermediate points along the integration path for all of
the chosen step sizes.

Conclusions
We have investigated a natural extension to the Metropolis−
Hastings algorithm, which allows for straightforward paralleli-
zation of a single chain within existing MCMC algorithms via
multiple proposals. This is a slightly surprising result, since one
of the main limitations of Metropolis−Hastings is its inherently
sequential nature. We have investigated its use with Riemannian,
Adaptive, and Hamiltonian proposals, and demonstrated the
resulting improvements in both computational and statistical
efficiency.
With limited computational resources, the question often arises

of whether it is better to run a single chain for longer, or multiple
chains for a shorter period. Theoretical arguments have been
given in the literature suggesting that a single longer run of
a Markov chain is preferable (34), and, in this setting, the pro-
posed methodology will be of clear value. However, we note that

even in themultiple-chain setting, GeneralizedMetropolis−Hastings
should still be useful, since the method enables additional ef-
ficiency improvements for all individual chains due to the par-
allelization of likelihood computations and the decreased re-
jection rates.
Generalized Metropolis−Hastings is directly applicable to a

wide range of existing MCMC algorithms and promises to be
particularly valuable for making use of the entire integration
path in HMC, decreasing the overall variance of the resulting
Monte Carlo estimator and improving robustness with respect
to the tuning parameters, and for accelerating Bayesian in-
ference over ever more complex mathematical models that are
computationally expensive to compute. The idea of satisfying
detailed balance using a finite-state Markov chain defined over
multiple proposed points offers increased flexibility in algorithmic
design. We anticipate this very general approach will lead to fur-
ther methodological developments, and even more efficient and
scalable parallel MCMC methods in the future.
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