
A calcium-dependent protease as a potential
therapeutic target for Wolfram syndrome
Simin Lua,b, Kohsuke Kanekuraa, Takashi Haraa, Jana Mahadevana, Larry D. Spearsa, Christine M. Oslowskic,
Rita Martinezd, Mayu Yamazaki-Inouee, Masashi Toyodae, Amber Neilsond, Patrick Blannerd, Cris M. Browna,
Clay F. Semenkovicha, Bess A. Marshallf, Tamara Hersheyg, Akihiro Umezawae, Peter A. Greerh, and Fumihiko Uranoa,i,1

aDepartment of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110;
bGraduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01655; cDepartment of Medicine, Boston University
School of Medicine, Boston, MA 02118; dDepartment of Genetics, iPSC core facility, Washington University School of Medicine, St. Louis, MO 63110;
eDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo 157-8535, Japan; fDepartment of Pediatrics, Washington
University School of Medicine, St. Louis, MO 63110; gDepartments of Psychiatry, Neurology, and Radiology, Washington University School of Medicine,
St. Louis, MO 63110; hDepartment of Pathology and Molecular Medicine, Queen’s University, Division of Cancer Biology and Genetics, Queen’s Cancer
Research Institute, Kingston, Ontario K7L3N6, Canada; and iDepartment of Pathology and Immunology, Washington University School of Medicine,
St. Louis, MO 63110

Edited by Stephen O’Rahilly, University of Cambridge, Cambridge, United Kingdom, and approved November 7, 2014 (received for review November 4, 2014)

Wolfram syndrome is a genetic disorder characterized by diabetes
and neurodegeneration and considered as an endoplasmic re-
ticulum (ER) disease. Despite the underlying importance of ER
dysfunction in Wolfram syndrome and the identification of two
causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syn-
drome 2 (WFS2), a molecular mechanism linking the ER to death
of neurons and β cells has not been elucidated. Here we implicate
calpain 2 in the mechanism of cell death in Wolfram syndrome.
Calpain 2 is negatively regulated by WFS2, and elevated activation
of calpain 2 byWFS2-knockdown correlates with cell death. Calpain
activation is also induced by high cytosolic calciummediated by the
loss of function of WFS1. Calpain hyperactivation is observed in the
WFS1 knockout mouse as well as in neural progenitor cells derived
from induced pluripotent stem (iPS) cells of Wolfram syndrome
patients. A small-scale small-molecule screen targeting ER calcium
homeostasis reveals that dantrolene can prevent cell death in neu-
ral progenitor cells derived from Wolfram syndrome iPS cells. Our
results demonstrate that calpain and the pathway leading its acti-
vation provides potential therapeutic targets for Wolfram syn-
drome and other ER diseases.
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The endoplasmic reticulum (ER) takes center stage for protein
production, redox regulation, calcium homeostasis, and cell

death (1, 2). It follows that genetic or acquired ER dysfunction
can trigger a variety of common diseases, including neurodegen-
erative diseases, metabolic disorders, and inflammatory bowel
disease (3, 4). Breakdown in ER function is also associated with
genetic disorders such as Wolfram syndrome (5–8). It is chal-
lenging to determine the exact effects of ER dysfunction on the
fate of affected cells in common diseases with polygenic and
multifactorial etiologies. In contrast, we reasoned that it should
be possible to define the role of ER dysfunction in mechanisti-
cally homogenous patient populations, especially in rare diseases
with a monogenic basis, such as Wolfram syndrome (9).
Wolfram syndrome (OMIM 222300) is a rare autosomal re-

cessive disorder characterized by juvenile-onset diabetes mellitus
and bilateral optic atrophy (7). Insulin-dependent diabetes usu-
ally occurs as the initial manifestation during the first decade of
life, whereas the diagnosis of Wolfram syndrome is invariably
later, with onset of symptoms in the second and ensuing decades
(7, 10, 11). Two causative genes for this genetic disorder have
been identified and named Wolfram syndrome 1 (WFS1) and
Wolfram syndrome 2 (WFS2) (12, 13). It has been shown that
multiple mutations in the WFS1 gene, as well as a specific muta-
tion in theWFS2 gene, lead to β cell death and neurodegeneration
through ER and mitochondrial dysfunction (5, 6, 14–16). WFS1

gene variants are also associated with a risk of type 2 diabetes (17).
Moreover, a specificWFS1 variant can cause autosomal dominant
diabetes (18), raising the possibility that this rare disorder is rel-
evant to common molecular mechanisms altered in diabetes and
other human chronic diseases in which ER dysfunction is involved.
Despite the underlying importance of ER malfunction in

Wolfram syndrome, and the identification of WFS1 and WFS2
genes, a molecular mechanism linking the ER to death of neu-
rons and β cells has not been elucidated. Here we show that the
calpain protease provides a mechanistic link between the ER and
death of neurons and β cells in Wolfram syndrome.

Results
The causative genes for Wolfram syndrome, WFS1 and WFS2,
encode transmembrane proteins localized to the ER (5, 12, 13).
Mutations in the WFS1 or WFS2 have been shown to induce
neuronal and β cell death. To determine the cell death pathways
emanating from the ER, we sought proteins associated with
Wolfram syndrome causative gene products. HEK293 cells were
transfected with a GST-tagged WFS2 expression plasmid. The
GST-WFS2 protein was purified along with associated proteins
on a glutathione affinity resin. These proteins were separated by
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SDS/PAGE and visualized by Coomassie staining. Matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF) mass
spectroscopic analysis revealed 13 interacting proteins (Table S1),
and one of the WFS2-associated polypeptides was CAPN2, the
catalytic subunit of calpain 2, a member of the calcium dependent
cysteine proteases family whose members mediate diverse biological
functions including cell death (19–21) (Fig. 1A). Previous studies
have shown that calpain 2 activation is regulated on the ER
membrane and it plays a role in ER stress-induced apoptosis and β
cell death (20, 22–24), which prompted us to study the role of WFS2
in calpain 2 activation.

Calpain 2 is a heterodimer consisting the CAPN2 catalytic sub-
unit and the CAPNS1 (previously known as CAPN4) regulatory
subunit. We first verified that WFS2 interacts with calpain 2 by
showing that endogenous calpain 2 subunits CAPN2 (Fig. 1B) and
CAPNS1 (Fig. 1C) each associated with GST-tagged WFS2 ex-
pressed in HEK293 cells. Endogenous CAPN2 was also found
to be coimmunoprecipated with N- or C-terminal FLAG-tagged
WFS2 expressed in HEK293 cells (Fig. S1 A and B, respectively).
To further confirm these findings, we performed a coimmuno-
precipitation experiment in Neuro2a cells (a mouse neuroblas-
toma cell line) and INS-1 832/13 cells (a rat pancreatic β cell line)
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Fig. 1. WFS2 interacts with CAPN2. (A) Affinity purification ofWFS2-associated proteins from HEK293 cells transfected with GST or GST-WFS2 expression plasmid.
Proteins were separated by SDS/PAGE and visualized by Coomassie blue staining. CAPN2 was identified by MALDI-TOF analysis and denoted by an arrow. (B) GST-
tagged WFS2 was pulled down on a glutathione affinity resin from lysates of HEK293 cells transfected with a GST-WFS2 expression plasmid, and the pulled-down
products were analyzed for CAPN2 by immunoblotting with anti-CAPN2 antibody. (C) GST-tagged WFS2 was pulled down on a glutathione affinity resin from
lysates of HEK293 cells transfected with GST-WFS2 expression plasmid and the pulled-down products were analyzed for CAPNS1 by immunoblotting with anti-
CAPNS1 antibody. (D) Lysates of Neuro2a cells were immunoprecipitated with IgG or anti-calpain 2 antibodies. Lysates of IgG and anti-calpain 2 immunopre-
cipitates were analyzed for WFS2, CAPN2 or actin by immunoblotting. (E) Lysates of INS-1 832/13 cells were immunoprecipitated with IgG or anti-calpain 2
antibody. Lysates of IgG and anti-calpain 2 immunoprecipitates were analyzed for WFS2, CAPN2 or actin by immunoblotting. (F) COS7 cells were transfected with
pDsRed2-ER vector (Center) and stained with anti-calpain 2 antibody (Left). (Right) A merged image is shown. (G) HEK293 cells were transfected with empty
expression plasmid or a CAPN2 expression plasmid. Apoptosis was monitored by immunoblotting analysis of caspase 3 cleavage. (Left) Expression levels of CAPN2
and actin were measured by immunoblotting. (Right) Quantification of immunoblot is shown (n = 3, *P < 0.05).
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and found that endogenous WFS2 interacted with endogenous
CAPN2 (Fig. 1 D and E). WFS2 is known to be a transmembrane
protein localized to the ER. We therefore explored the possibility
that calpain 2 might also localize to the ER. We transfected COS7
cells with pDsRed2-ER vector to visualize ER. Immunofluores-
cence staining of COS7 cells showed that endogenous calpain 2
was mainly localized to the cytosol, but also showed that a small
portion colocalized with DsRed2-ER protein at the ER (Fig. 1F).
Cell fractionation followed by immunoblot further confirmed this
observation (Fig. S1C). Collectively, these results suggest that
calpain 2 interacts with WFS2 at the cytosolic face of the ER.
Calpain hyperactivation has been shown to contribute to cell loss

in various diseases (19), raising the possibility that calpain 2 might
be involved in the regulation of cell death. To verify this issue, we
overexpressed CAPN2, the catalytic subunit of calpain 2, and ob-
served increase of cleaved caspase-3 in HEK293 cells indicating that
hyperactivation of calpain 2 induces cell death (Fig. 1G).
To determine whether WFS2 plays a role in cell survival, we

suppressed WFS2 expression in mouse neuronal NSC34 cells using
siRNA and measured cell death under normal and ER stress
conditions. WFS2 knockdown was associated with increased
cleavage of caspase-3 in normal or ER stressed conditions (Fig. 2 A
and B). We subsequently evaluated calpain 2 activation by mea-
suring the cleavage of alpha II spectrin, a substrate for calpain 2.
RNAi-mediated knockdown of WFS2 induced calpain activation,
especially under ER stress conditions (Fig. 2A).
In patients with Wolfram syndrome, destruction of β cells

leads to juvenile-onset diabetes (25). This finding prompted us to
examine whether WFS2 was also involved in pancreatic β cell
death. As was seen in neuronal cells, knockdown of WFS2 in
rodent β cell lines INS1 832/13 (Fig. 2C) and MIN6 (Fig. S2) was
also associated with increased caspase-3 cleavage under both
normal and ER stress conditions. The association of WFS2 with
calpain 2 and their involvement in cell viability suggested that
calpain 2 activation might be the cause of cell death in WFS2-
deficient cells. To further explore the relationship between WFS2
and calpain 2, we expressed WFS2 together with the calpain 2
catalytic subunit CAPN2 and measured apoptosis. Ectopic ex-
pression of WFS2 significantly suppressed calpain 2-associated
apoptosis under normal and ER stress conditions (Fig. 2D, lane 4
and lane 8, and Fig. 2E). Next, we tested whether CAPN2
mediates cell death induced by WFS2 deficiency. When CAPN2
was silenced in WFS2-deficient cells, apoptosis was partially sup-
pressed compared with untreated WFS2-deficient cells (Fig. 2F).
Taken together, these results suggest that WFS2 is a negative
regulator of calpain 2 proapoptotic functions.
To further confirm that loss of function of WFS2 leads to cell

death mediated by calpain 2, we tested if calpeptin, a calpain in-
hibitor, could prevent cell death in WFS2-deficient cells. In agree-
ment with previous observations, calpeptin treatment prevented
WFS2-knockdown-mediated cell death in neuronal (Fig. 3 A and B)
and β cell lines (Fig. 3C and Fig. S3A). Collectively, these results
indicate that WFS2 is a suppressor of calpain 2-mediated cell death.
CAPN2 is the catalytic subunit of calpain 2. CAPN2 forms

a heterodimer with the regulatory subunit, CAPNS1, which is
required for protease activity and stability. We next explored the
role of WFS2 in CAPN2 and CAPNS1 protein stability. Ectopic
expression or RNAi-mediated knockdown of WFS2 did not
correlate with changes in the steady-state expression of CAPN2
(Fig. S3B). By contrast, overexpression of WFS2 significantly
reduced CAPNS1 protein expression (Fig. 3D) and transient
suppression of WFS2 slightly increased CAPNS1 protein ex-
pression (Fig. 3D). These data suggest that WFS2 might be in-
volved in CAPNS1 protein turnover, which is supported by the
data showing that GST-tagged WFS2 expressed in HEK293 cells
associated with endogenous CAPNS1 (Fig. 1C). To investigate
whether WFS2 regulates CAPNS1 stability through the ubiq-
uitin-proteasome pathway, we treated HEK293 cells ectopically

expressing WFS2 with a proteasome inhibitor, MG132, and then
measured CAPNS1 protein level. MG132 treatment stabilized
CAPNS1 protein in cells ectopically expressing WFS2 (Fig. 3E).
Furthermore, we performed cycloheximide chase experiments
using HEK293 cells ectopically expressing WFS2 and quantified
CAPNS1 protein levels at different time points. Ectopic expression
of WFS2 was associated with significantly accelerated CAPNS1
protein loss, indicating that WFS2 contributes to posttranslational
regulation of CAPNS1 (Fig. 3F). To further assess whether WFS2
is involved in the ubiquitination of CAPNS1, we measured the
levels of CAPNS1 ubiquitination in cells ectopically expressing
WFS2 and observed that CAPNS1 ubiquitination was increased by
ectopic expression of WFS2 (Fig. 3G).
To further investigate the role of WFS2 in calpain 2 regulation,

we collected brain lysates from WFS2 knockout mice. Measured
levels of cleaved spectrin, a well characterized substrate for cal-
pain (26). Notably, protein expression levels of cleaved spectrin,
as well as CAPNS1, were significantly increased in WFS2
knockout mice compared with control mice (Fig. 3H). Collec-
tively, these results indicate that WFS2 inhibits calpain 2 activation
by regulating CAPNS1 degradation mediated by the ubiquitin-
proteasome system.
Calpain 2 is a calcium-dependent protease. WFS1, the other

causative gene for Wolfram syndrome, has been shown to be
involved in calcium homeostasis (27, 28), suggesting that the loss
of function of WFS1 may also cause calpain activation. To
evaluate this possibility, we measured calpain activation levels in
brain tissues from WFS1 brain-specific knockout and control
mice. We observed a significant increase in a calpain-specific
spectrin cleavage product, reflecting higher calpain activation
levels in WFS1 knockout mice compared with control mice (Fig.
4A). The suppression levels of WFS1 in different parts of the
brain were shown in Fig. 4B. To further confirm that calpain is
activated by the loss of WFS1, we looked for other calpain
substrates in brain tissues from WFS1 knockout mice using
a proteomics approach. Two-dimensional fluorescence gel elec-
trophoresis identified 12 proteins differentially expressed be-
tween cerebellums of WFS1 knockout mice and those of control
mice (Fig. 4 C and D). Among these, myelin basic protein (MBP)
is a known substrate for calpain in the brain (29). We measured
myelin basic protein levels in brain lysates from WFS1 knockout
and control mice. Indeed, the cleavage and degradation of my-
elin basic protein was increased in WFS1 knockout mice relative
to control mice (Fig. 4E).
Next, we looked for evidence of increased calpain activity in

Wolfram syndrome patient cells. We created neural progenitor
cells derived from induced pluripotent stem cells (iPSCs) of
Wolfram syndrome patients with mutations in WFS1. Fibroblasts
from four unaffected controls and five patients with Wolfram
syndrome were transduced with four reprogramming genes
(Sox2, Oct4, c-Myc, and Klf4) (30) (Table S2). We produced at
least 10 iPSC clones from each control and Wolfram patient. All
control- and Wolfram-iPSCs, exhibited characteristic human
embryonic stem cell morphology, expressed pluripotency mark-
ers including ALP, NANOG, SOX2, SSEA4, TRA-1–81, and
had a normal karyotype (Fig. 5 A–F). To create neural pro-
genitor cells, we first formed neural aggregates from iPSCs.
Neural aggregates were harvested at day 5, replated onto new
plates to give rise to colonies containing neural rosette struc-
tures. At day 12, neural rosette clusters were collected, replated,
and used as neural progenitor cells. Consistent with the data
from WFS1 and WFS2 knockout mice, we observed that spectrin
cleavage was increased in neural progenitor cells derived from
Wolfram-iPSCs relative to control iPSCs, which indicates in-
creased calpain activity (Fig. 5G).
Because calpain is known to be activated by high calcium, we

explored the possibility that cytoplasmic calcium may be increased
in patient cells by staining neural progenitor cells derived from
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control- and Wolfram-iPSCs with Fura-2, a fluorescent calcium
indicator which enables accurate measurements of cytoplasmic
calcium concentrations. Fig. 5H, Left, shows that cytoplasmic cal-
cium levels were higher in Wolfram-iPSC-derived neuronal cells
relative to control cells. This result was confirmed by staining these
cells with another fluorescent calcium indicator, Fluo-4 (Fig. 5H,
Right). Collectively, these results indicate that loss of function of
WFS1 increases cytoplasmic calcium levels, leading to calpain
activation.
The results shown above argue that the pathway leading to

calpain activation provides potential therapeutic targets for
Wolfram syndrome. To test this concept, we elected to focus on

modulating cytosolic calcium and performed a small-scale screen
to identify chemical compounds that could prevent cell death
mediated by thapsigargin, a known inhibitor for ER calcium
ATPase. Among 73 well characterized chemical compounds that
we tested (Table S3), 8 could significantly suppress thapsigargin-
mediated cell death. These were PARP inhibitor, dantrolene,
NS398, pioglitazone, calpain inhibitor III, docosahexaenoic acid
(DHA), rapamycin, and GLP-1 (Fig. 6A). GLP-1, pioglitazone, and
rapamycin are FDA-approved drugs and have been shown to confer
protection against ER stress-mediated cell death (27, 31–33).
Dantrolene is another FDA-approved drug clinically used for
muscle spasticity and malignant hyperthermia (34). Previous studies
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Fig. 2. WFS2 suppresses cell death mediated by CAPN2. (A) NSC34 cells were transfected with control scrambled siRNA or siRNA directed against WFS2, and then
treated with 0.5μM thapsigargin (TG) for 6 h or untreated (UT). Apoptosis was monitored by immunoblotting analysis of cleaved caspase 3. (Left) Protein levels of
cleaved spectrin, WFS2, and actin were measured by immunoblotting. (Right) Quantifications of cleaved spectrin and cleaved caspase 3 are shown (n = 5, *P < 0.05).
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(UT). Apoptosis was monitored by Annexin V staining followed by flow cytometry analysis. (n = 3, *P < 0.05). (C) INS-1 832/13 cells were transfected with control
scrambled siRNA or siRNA directed against WFS2, and then treated with 0.5 μM thapsigargin (TG) for 6 h or untreated (UT). (Left) Expression levels of cleaved
caspase 3, WFS2, and actin were measured by immunoblotting. (Right) Protein levels of cleaved caspase 3 are quantified (n = 3, *P < 0.05). (D) NSC34 cells were
transfected with empty expression plasmid (Mock), WFS2 expression plasmid, CAPN2 expression plasmid or cotransfected with WFS1 and CAPN2 expression plas-
mids. Twenty-four h post transfection, cells were treated with 5 μg/mL tunicamycin (TM) for 16 h or untreated (UT). Apoptosis was monitored by immunoblotting
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blotting of cleaved caspase 3. (Left) Protein levels of CAPN2, WFS2 and actin were also shown. (Right) Quantification of immunoblotting is shown (n = 3, *P < 0.05).
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have shown that dantrolene is an inhibitor of the ER-localized
ryanodine receptors and suppresses leakage of calcium from the
ER to cytosol (35, 36). We thus hypothesized that dantrolene
could confer protection against cell death in Wolfram syndrome,
and performed a series of experiments to investigate this possi-
bility. We first examined whether dantrolene could decrease cy-
toplasmic calcium levels. As expected, dantrolene treatment de-
creased cytosolic calcium levels in INS-1 832/13 and NSC34
cells (Fig. S4 A and B). We next asked whether dantrolene could

restore cytosolic calcium levels in WFS1-deficient cells. RNAi-
mediated WFS1 knockdown increased cytosolic calcium levels
relative to control cells, and dantrolene treatment restored cyto-
solic calcium levels in WFS1-knockdown INS-1 832/13 cells (Fig.
6B, Left) as well as WFS1-knockdown NSC34 cells (Fig. 6B, Right).
Next, to determine whether dantrolene confered protection in
WFS1-deficient cells, we treated WFS1 silenced INS-1 832/13 cells
with dantrolene and observed suppression of apoptosis (Fig. 6C)
and calpain activity (Fig. 6D). Dantrolene treatment also prevented
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ubiquitin (Ub-FLAG) plasmid or cotransfected withWFS2 expression plasmid and Ub-FLAG plasmid. Cell lysates were immunoprecipitated with FLAG affinity beads and
analyzed for ubiquitin conjugated proteins by immunoblotting. Levels of CAPNS1 and Ub-FLAG protein were measured in the precipitates. WFS2, CAPNS1 and actin
expression was monitored in the input samples. (H) Brain lysates from control and WFS2 knockout mice were analyzed by immunoblotting. Protein levels of cleaved
spectrin and CAPNS1 were determined (Left) and quantified (Center and Right) (each group n = 3, *P < 0.05).
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calpain activation and cell death in WFS1-knockdown NSC34 cells
(Fig. 6E). To verify these observations in patient cells, we pre-
treated neural progenitor cells derived from iPSCs of a Wolfram
syndrome patient and an unaffected parent with dantrolene, and
then challenged these cells with thapisgargin. Thapsigargin-induced
cell death was increased in neural progenitor cells derived from the

Wolfram syndrome patient relative to those derived from the un-
affected parent, and dantrolene could prevent cell death in the
patient iPSC-derived neural progenitor cells (Fig. 6F). In addition,
we treated brain-specific WFS1 knockout mice with dantrolene
and observed evidence of suppressed calpain activation in brain
lysates from these mice (Fig. 6G). Collectively, these results argue
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that dantrolene could prevent cell death in Wolfram syndrome by
suppressing calpain activation.

Discussion
Growing evidence indicates that ER dysfunction triggers a range
of human chronic diseases, including diabetes, atherosclerosis,
inflammatory bowel disease, and neurodegenerative diseases
(3, 4, 37–39). However, currently there is no effective therapy
targeting the ER for such diseases due to the lack of clear un-
derstanding of the ER’s contribution to the pathogenesis of
these diseases. Although Wolfram syndrome is a rare disease and
therefore not a focus of drug discovery efforts, the homogeneity
of the patient population and disease mechanism has enabled us

to identify a potential target, a calcium-dependent protease,
calpain. Our results provide new insights into how the pathways
leading to calpain activation cause β cell death and neuro-
degeneration, which are schematically summarized in Fig. 6H.
There are two causative genes for Wolfram syndrome, WFS1

and WFS2. The functions of WFS1 have been extensively studied
in pancreatic β cells. It has been shown that WFS1-deficient
pancreatic β cells have high baseline ER stress levels and im-
paired insulin synthesis and secretion. Thus, WFS1-deficient β
cells are susceptible to ER stress mediated cell death (5, 6, 32,
40–42). The functions of WFS2 are still not clear. There is evi-
dence showing that impairment of WFS2 function can cause
neural atrophy, muscular atrophy, and accelerate aging in mice
(14). WFS2 has also been shown to be involved in autophagy (43).
However, although patients with both genetic types of Wolfram
syndrome suffer from the same disease manifestations, it was not
clear if a common molecular pathway was altered in these
patients. Our study has demonstrated, to our knowledge for the
first time, that calpain hyperactivation is the common molecular
pathway altered in patients with Wolfram syndrome. The mech-
anisms of calpain hyperactivation are different in the two genetic
types of Wolfram syndrome. WFS1 mutations cause calpain ac-
tivation by increasing cytosolic calcium levels, whereas WFS2
mutations lead to calpain activation due to impaired calpain
inhibition.
Previously, Wolfram syndrome studies focused on pancreatic

β cell function (5, 40, 41). However, patients also suffer from
neuronal manifestations. MRI scans of Wolfram syndrome pa-
tients showed atrophy in brain tissue implying neurodegeneration
in patients (7, 10). To investigate the mechanisms of neuro-
degeneration in Wolfram syndrome human cells, we established
Wolfram syndrome iPSC-derived neural progenitor lines and
confirmed the observations found in rodent cells and animal
models of Wolfram syndrome. Differentiation of these iPSC-
derived neural progenitor cells into specific types of neurons
should be carried out in the future to better understand which
cell types are damaged in Wolfram syndrome; this will lead to
a better understanding of the molecular basis of this disease and
provide cell models for future drug development.
Calpain activation has been found to be associated with type 2

diabetes and various neuronal diseases including Alzheimers,
traumatic brain injury and cerebral ischemia, suggesting that
regulation of calpains is crucial for cellular health (23). We
discovered that calpain inhibitor III could confer protection
against thapsigargin mediated cell death (Fig. 6A). Our data also
demonstrates that calpeptin treatment was beneficial for cells
with impaired WFS2 function. These results suggest that tar-
geting calpain could be a novel therapeutic strategy for Wolfram
syndrome. However, calpain is also an essential molecule for cell
survival (44). Controlling calpain activation level is a double-
bladed sword. We should carefully monitor calpain functions in
treating patients with Wolfram syndrome (44).
Calpain activation is tightly regulated by cytosolic calcium lev-

els. In other syndromes that increase cytosolic calcium level in
pancreatic β cells, patients experience a transient or permanent
period of hyperinsulinaemic hypoglycemia. This hyperinsulinaemic
hypoglycemia can be partially restored by an inhibitor for ATP-
sensitive potassium (KATP) channels or a calcium channel antag-
onist that prevents an increase in cytosolic calcium levels (45, 46).
Although patients with Wolfram syndrome do not experience
a period of hyperinsulinaemic hypoglycemia, small molecule
compounds capable of altering cellular calcium levels may prevent
calpain 2 activation and hold promise for treating patients with
Wolfram syndrome. Treatment of WFS1-knockdown cells with
dantrolene and ryanodine could prevent cell death mediated by
WFS1 knockdown. Dantrolene is a muscle relaxant drug pre-
scribed for multiple sclerosis, cerebral palsy or malignant hyper-
thermia (47). Dantrolene inhibits the ryanodine receptors and
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reduces calcium leakage from the ER to cytosol, lowering cytosolic
calcium level. The protective effect of dantrolene treatment on
WFS1-deficient cells suggests that dysregulated cellular calcium
homeostasis plays a role in the disease progression of Wolfram
syndrome. In addition, it has been shown that stabilizing ER cal-
cium channel function could prevent the progression of neuro-
degeneration in a mouse model of Alzheimer’s disease (48).
Therefore, modulating calcium levels may be an effective way to
treat Wolfram syndrome or other ER diseases.
Dantrolene treatment did not block cell death mediated by

WFS2 knockdown, suggesting that WFS2 does not directly affect
the ER calcium homeostasis (Fig. S4 D and E). RNAi-mediated
WFS1 knockdown in HEK293 cells significantly reduced the
activation levels of sarco/endoplasmic reticulum calcium trans-
port ATPase (SERCA), indicating that WFS1 may play a role in
the modulation of SERCA activation and ER calcium levels (Fig.
S5). It has been shown that WFS1 interacts with the Na+/K+

ATPase β1 subunit and the expression of WFS1 parallels that of
Na+/K+ ATPase β1 subunit in a variety of settings, suggesting that
WFS1 may function as an ion channel or regulator of existing
channels (42). Further studies on this topic would be necessary to
completely understand the etiology of Wolfram syndrome.
Our study reveals that dantrolene can prevent ER stress-

mediated cell death in human and rodent cell models as well as
mouse models of Wolfram syndrome. Thus, dantrolene and
other drugs that regulate ER calcium homeostasis could be used
to delay the progression of Wolfram syndrome and other dis-
eases associated with ER dysfunction, including type 1 and type
2 diabetes.

Materials and Methods
Human Subjects. Wolfram syndrome patients were recruited through the
Washington University Wolfram Syndrome International Registry website
(wolframsyndrome.dom.wustl.edu). The clinic protocol was approved by the
Washington University Human Research Protection Office and all subjects
provided informed consent if adults and assent with consent by parents if
minor children (IRB ID 201107067 and 201104010).

Animal Experiments. WFS1 brain-specific knockout mice were generated by
breeding the Nestin-Cre transgenic mice (Jackson Laboratory) with WFS1
floxed mice (40). WFS2 whole body knockout mice are purchased from MRC
Harwell. All animal experiments were performed according to procedures
approved by the Institutional Animal Care and Use Committee at the
Washington University School of Medicine (A-3381-01).

Calcium Levels. Calcium levels in cells were measured by Fura-2 AM dye and
Fluo-4 AM dye (Life Technology) Inifinite M1000 (Tecan). Cells were plated in
96-well plates at 25,000 cells per well and stained with 4 μg/mL Fura-2 dye
along with 2.5 mM probenecid for 30 min, then the cells were washed with
PBS and kept in the dark for another 30 min to allow cleavage of AM ester.
Fluorescence was measured at excitation wavelength 510 nm and emission
wavelengths 340 nm and 380 nm. Then background subtractions were per-
formed with both emission wavelengths. The subtraction result was used to
calculate 340/380 ratios.

For Fluo-4 AM staining, neural progenitor cells were plated in 24-well
plates at 200,000 cells per well. After staining with Fluo-4 AM dye for 30min
along with 2.5 mM probenecid, cells were washed and resuspended in
PBS. Incubation for a further 30 min was performed to allow complete
deesterification of intracellular AM esters. Then, samples were measured
by flow cytometry at the FACS core facility of Washington University School
of Medicine using a LSRII instrument (BD). The results were analyzed by
FlowJo ver.7.6.3.

Statistical Analysis. Two-tailed t tests were used to compare the two treat-
ments. P values below 0.05 were considered significant. All values are shown
as means ± SD if not stated. Please see SI Materials and Methods for
complete details.
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