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DNA double-strand break (DSB) repair is not only key to genome
stability but is also an important anticancer target. Through an
shRNA library-based screening, we identified ubiquitin-conjugat-
ing enzyme H7 (UbcH7, also known as Ube2L3), a ubiquitin E2
enzyme, as a critical player in DSB repair. UbcH7 regulates both
the steady-state and replicative stress-induced ubiquitination
and proteasome-dependent degradation of the tumor suppressor
p53-binding protein 1 (53BP1). Phosphorylation of 53BP1 at the N
terminus is involved in the replicative stress-induced 53BP1 degra-
dation. Depletion of UbcH7 stabilizes 53BP1, leading to inhibition
of DSB end resection. Therefore, UbcH7-depleted cells display in-
creased nonhomologous end-joining and reduced homologous re-
combination for DSB repair. Accordingly, UbcH7-depleted cells are
sensitive to DNA damage likely because they mainly used the error-
prone nonhomologous end-joining pathway to repair DSBs. Our
studies reveal a novel layer of regulation of the DSB repair choice
and propose an innovative approach to enhance the effect of radio-
therapy or chemotherapy through stabilizing 53BP1.
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Prompt response to double-strand breaks (DSBs) caused by,
for example, ionization radiation (IR), requires sequential and

coordinated assembly of DNA damage response (DDR) proteins
at damage sites (1). Recent research findings reveal key roles of
the tumor suppressor p53-binding protein 1 (53BP1) and BRCA1
in the decision making of DSB repair. 53BP1, together with Rif1,
suppress BRCA1-dependent homologous recombination (HR),
thereby promoting nonhomologous end-joining (NHEJ) in G1
phase (2–6). Conversely, BRCA1 antagonizes 53BP1/Rif1, favoring
HR in S and G2 phases (7, 8). In the absence of BRCA1 or with
enhanced retention of 53BP1 at DSB sites, cells primarily use the
error-prone NHEJ to repair DSBs throughout the cell cycle, which
leads to gene rearrangement, cell death, and increased sensitivity
to anticancer therapies (9–11). Consistently, BRCA1-null mice are
early embryonic lethal (12, 13) and codepletion of TP53BP1 res-
cued the lethality phenotype of BRCA1-null mice (12–14).
Low expression level of 53BP1 was found to be associated with

poor clinical outcome in triple negative breast cancer patients
with BRCA1 mutation (12, 15), as well as resistance to geno-
toxins and poly(ADP-ribose) polymerase inhibitors (12, 16, 17).
This finding is probably because loss of 53BP1 restored HR and
promoted cell survival (12–14). Reduced expression of 53BP1 was
also observed in tumors from the brain (18), lymph node (19), and
pancreas (20). These data indicate that loss of 53BP1 might be
a common mechanism for advanced tumors to evade from ra-
diotherapy or chemotherapy. However, molecular mechanisms
controlling the protein level of 53BP1 remain less well understood.
Here we show that UbcH7, an E2 enzyme involved in the

ubiquitin (Ub) pathway, controls the protein stability of 53BP1,
thereby determining the DSB repair choice. Loss of UbcH7
stabilizes 53BP1, forcing cells to choose NHEJ, but not HR, to
repair DSBs, which poses a significant threat to cells treated with
DNA damage, especially S-phase genotoxins, such as campto-
thecin (CPT), a topoisomerase 1 (Top1) inhibitor. The ternary
CPT-Top1-DNA complex places a roadblock in the path of ad-
vancing DNA replication forks, leading to replication fork collapse

and generation of one-ended DSBs. Such one-ended DSBs re-
quire HR, but not NHEJ, to repair (8). In contrast, repair of one-
ended DSBs by NHEJ leads to radial chromosomes and cell death
(12–14). Therefore, stabilization of 53BP1 by UbcH7 depletion
increased the sensitivity of cancers cells to CPT and other DNA
damaging agents. Our data suggest a novel strategy in enhancing
the anticancer effect of radiotherapy or chemotherapy through
stabilizing or increasing 53BP1.

Results
Screening of Novel Ub Genes in DDR. Given the importance of
protein ubiquitination in DDR (21, 22), we intended to identify
novel Ub genes in DDR and DSB repair through a lentiviral
shRNA-based screening with two validated shRNA vectors for
each gene. We focused on E2s because of the feasibility of tar-
geting ∼30 genes and included E3 ligases with known roles in
DDR (e.g., RNF8 and RNF168, and so forth). We reasoned that
if a Ub gene is involved in DDR, then depletion of that gene
should impair Chk1 phosphorylation at Ser-345, a gold standard
of DDR activation (23). After two rounds of screening (Fig. S1),
we observed that cells depleted of UbcH7 exhibited significantly
less Chk1 phosphorylation than control cells by DNA damage
(Fig. 1A, lanes 2 and 4). The level of phosphorylated Chk1
correlated with the knock down effect of UbcH7 (Fig. 1A, lanes
2, 4, and 6), indicating that UbcH7 might be a rate-limiting factor
for Chk1 phosphorylation. UbcH7 depletion stabilized Chk1
(Fig. 1A), consistent with previous reports (24, 25).
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UbcH7 was initially identified as the E2 enzyme that interacts
with the E3 ligase, E6AP (26–28). UbcH7 can form a complex
with BRCA1 in vitro, but failed to support the BRCA1-mediated
Ub ligase activity (29). A recent study suggested that depletion of
UbcH7 increased 53BP1 retention at DSBs sites (30). However,
how exactly UbcH7 regulates DDR and DSB repair is unknown.

Depletion of UbcH7 Impaired Chk1 Phosphorylation. We also ob-
served reduced Chk1 phosphorylation in a number of cell lines
with transient UbcH7 depletion by different DNA damaging
agents (Fig. 1B and Fig. S2 A–C). When we assessed the time
dependence of Chk1 phosphorylation, we noticed a slight delay
in the onset of Chk1 phosphorylation by CPT (Fig. S2D, lanes 3
and 8); however, it appears more significant that UbcH7-
depleted cells failed to maintain Chk1 phosphorylation (Fig.
S2D, lanes 4, 5, and 9–10). These results indicate that UbcH7-
depleted cells have defects in maintaining Chk1 phosphorylation.
To understand if the Chk1 phosphorylation defects are de-

pendent on the enzymatic activity of UbcH7, we transfected
UbcH7 knockdown HEK293T cells with shRNA-resistant Flag-
UbcH7 WT or a catalytically dead (C86S) mutant, and examined
CPT-induced Chk1 phosphorylation. The results showed that the
UbcH7 WT, but not the C86S mutant, rescued Chk1 phos-
phorylation by CPT (Fig. 1B, lanes 2, 4, and 6). The level of
phosphorylated Chk1 was even lower in cells expressing the
C86S mutant (Fig. 1B, lanes 4 and 8), indicating that C86S may
function as a dominant-negative mutant of endogenous UbcH7.
These data suggest that DNA damage-induced Chk1 phos-
phorylation depends on UbcH7’s enzymatic activity.

Depletion of UbcH7 Inhibited DSB End Resection. Long stretches of
single-strand DNA (ssDNA) are key for the maintenance of
Chk1 phosphorylation and for the initiation of HR (23, 31). In
DSB, ssDNA is generated through the 5′ to 3′ end resection of
DSBs. Therefore, we asked if UbcH7-depleted cells are defective
in DSB end resection by evaluating foci formation of RPA, the
ssDNA-binding protein (31).
UbcH7 is primarily expressed in the cytoplasm with diffuse

nuclear staining, and the signal is lost with UbcH7 stable si-
lencing (Fig. S2E). UbcH7 did not form foci after IR or other
DNA damaging agents, suggesting that UbcH7 does not directly
participate in DDR initiation. However, UbcH7-depleted cells
formed significantly fewer RPA foci than control cells (Fig. 1 C
and D, maximum difference measured at 15 h). 53BP1 inhibits
HR through inhibiting DSB end resection (7). Therefore, we
assessed 53BP1 foci by IR. The results showed that UbcH7-
depleted cells displayed more 53BP1 foci than control cells, es-
pecially at earlier time points (Fig. 1 E and F). UbcH7-depleted

cells also formed more large 53BP1 foci (Fig. S3A), consistent
with a recent report (30). Importantly, overexpression of UbcH7
WT, but not the C86S mutant, reversed the increased 53BP1 foci
in UbcH7 depleted cells (Fig. S3B). These results suggest that
UbcH7 depletion suppressed DSB end resection, likely because
of the increased and enlarged 53BP1 foci formation at DSB sites.

Loss of UbcH7 Impaired the Long-Term Cell Viability After DNA
Damage. We then asked whether depletion of UbcH7 would af-
fect cell viability. We found no difference in growth between
control and UbcH7-depleted cells under nonstressful conditions
(Fig. 2A). These findings are similar to previous studies of
UbcM4, the mouse ortholog of UbcH7 (32). These data suggest
that UbcH7 is not required for normal cell proliferation. How-
ever, UbcH7 depletion significantly reduced the long-term cell
viability by DNA damage, including UV light and IR (Fig. 2 B
and C; see also CPT in Fig. 6C). Again, expressing the UbcH7
WT but not the C86S mutant reversed the increased sensitivity of
UbcH7-depleted cells to DNA damage (Fig. S3C). These results
suggest that loss of UbcH7 is deleterious to cell viability in the
presence of DNA damage.

UbcH7 Regulates Ubiquitination and Proteasome-Dependent Degradation
of 53BP1. Because UbcH7 is an E2 enzyme, we hypothesized that
it regulates DSB repair through controlling ubiquitination and
degradation of key DDR proteins. To this end, we monitored
protein levels of a number of DDR proteins in the presence or
absence of UbcH7. We repeatedly observed that 53BP1 is sig-
nificantly elevated in UbcH7-depleted cells (Fig. 3A). On the
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Fig. 1. Depletion of UbcH7 impairs Chk1 phosphor-
ylation induced by DNA damage. (A) A549 control or
UbcH7-depleted cells (from two individual shRNA
vectors) were treated with 2 mM hydroxyurea (HU)
for 4 h, and immunoblotted with anti–pS345-Chk1
and anti-UbcH7 antibodies. The same membrane for
pS345-Chk1 was stripped and reblotted with anti-
Chk1 antibodies. (B) HEK293T cells were infected
with shRNA lentiviral vector for control or UbcH7 for
24 h, transfected with RNAi-resistant Flag-UbcH7 WT
or C86S mutant for an additional 48 h, treated with
500 nM CPT for 4 h, and immunoblotted as in A. (C)
A549 control or UbcH7-depleted cells grown on glass
coverslips were treated with 5 Gy IR and released for
1, 4, 15, and 24 h. The cells were fixed and immu-
nostained with anti-RPA antibodies. Representative
images are shown. (Scale bar: 10 μm.) (D) Quantita-
tion of RPA foci number per cell from C. Data repre-
sent mean and SD from at least 50 cells. *P < 0.05. (E) Parallel cell samples from C were stained with anti-53BP1 antibodies and representative images were
shown. (Scale bar: 10 μm.) (F) Quantitation of 53BP1 foci per cell from E. Data represent mean and SD from at least 50 cells. *P < 0.05.
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Fig. 2. Depletion of UbcH7 increased cellular sensitivity to DNA damaging
agents. (A) Equal number of viable cells from A549 control or UbcH7 de-
pletion was plated in 12-well plates at day 0. The cell number was counted
for the following 4 d. Data represent mean and SD from three wells. (B and
C) A549 control or UbcH7-depleted cells were treated with increasing doses
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violate assay. Data represent mean and SD. *P < 0.05.
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other hand, the cofactor for 53BP1, Rif1, showed no change (Fig.
3A). We further showed that the increased expression of 53BP1
is mostly specific to UbcH7, but not other E2s (Fig. S4). We then
measured the mRNA level of TP53BP1 by quantitative PCR
(qPCR). The results showed comparable levels of TP53BP1 be-
tween control and UbcH7-depleted cells (Fig. 3B), suggesting
that UbcH7 controls the level of 53BP1 via posttranscriptional
regulation.
We subsequently assessed the protein stability of 53BP1 in

the presence of cycloheximide (CHX) to block de novo protein
synthesis. The results showed that depletion of UbcH7 signifi-
cantly increased the protein stability of 53BP1 (Fig. 3 C and D).
The stability of the known UbcH7 target, Chk1, was also in-
creased (Fig. 3C). Again, overexpression of the UbcH7 WT, but
not the C86S mutant, reversed the increased protein stability of
53BP1 (Fig. S5A). To understand how UbcH7 regulates the
protein stability of 53BP1, we asked if UbcH7 forms a complex
with 53BP1. Indeed, we detected UbcH7 from protein complexes
immunoprecipitated by the anti-53BP1 antibody (Fig. 3E, lane 2
in IP). Interestingly, we observed a twofold increase in the in-
teraction between 53BP1 and UbcH7 after CPT treatment (Fig.
3E, lanes 2 and 3 in IP). These data suggest that UbcH7 interacts
with 53BP1 and DNA damage, or at least CPT treatment,
increases such an interaction.
To understand if 53BP1 undergoes proteasome-dependent

degradation, we cotreated cells with CHX and the proteasome
inhibitor, MG132. Cotreatment with MG132 almost completely
blocked degradation of 53BP1 by CHX in control cells [Fig. 3F,
lanes 2 and 3 in whole-cell extracts (WCE)]. Importantly, 53BP1
was stable in UbcH7 depleted cells (Fig. 3F, lanes 5 and 6 in
WCE). We further confirmed that 53BP1 is ubiquitinated in
A549 control cells (Fig. 3F, lanes 1–3 in IP). However, the levels
of ubiquitinated 53BP1 proteins were significantly lower in
UbcH7-depleted cells than in control cells, despite the finding
that more 53BP1 proteins were pulled down (Fig. 3F). Taken
together, these results suggest that UbcH7 regulates ubiquiti-
nation and proteasome-dependent degradation of 53BP1.

UbcH7 Depletion Enhances NHEJ While Suppressing HR for DSB Repair.
53BP1 endorses NHEJ while suppressing HR for DSB repair (7).
Because UbcH7-depleted cells expressed more 53BP1 proteins
and formed more 53BP1 foci by IR, we measured DSB repair in

these cells. We first assessed IR-induced foci formation of Ligase
IV, the key NHEJ repair protein. UbcH7-depleted cells exhibi-
ted more Ligase IV foci than control cells (Fig. 4 A and B)
without altering the levels of Ligase IV proteins (Fig. 5D). Sec-
ond, we measured NHEJ using a cell-based assay and the results
showed that NHEJ was significantly increased in UbcH7-
depleted cells (Fig. 4C), consistent with the results of 53BP1 and
Ligase IV foci formation.
UbcH7-depleted cells also expressed high levels of Chk1. To

preclude the possibility that increased Chk1 contributed to the en-
hanced NHEJ, we assessed the effect of overexpression of a Chk1
K436R mutant on NHEJ. We previously showed that this Chk1
mutant is resistant to ubiquitination and degradation (33), mim-
icking the situation of increased Chk1 protein levels in UbcH7-
depleted cells. Our analysis suggests that increasing the protein
level of Chk1 alone does not promote NHEJ (Fig. S5 B and C).
Subsequently, we measured HR using the well-established in

vivo HR reporter assay (34). Transient depletion of UbcH7 in
U2-OS cells also stabilized 53BP1 (Fig. 4F) and these cells dis-
played reduced HR compared with control cells (Fig. 4E), al-
though the inhibition in HR by UbcH7 depletion was less severe
than depletion of BRCA1 (Fig. S5D). Finally, to verify that 53BP1
is critical for the DSB repair shift in UbcH7-depleted cells, we
used lentiviral sh53BP1 to reduce the increased expression of
53BP1 by UbcH7 depletion (Fig. 4 D and F). We observed that
inhibiting 53BP1 expression reversed both the enhanced NHEJ
and the suppressed HR by UbcH7 depletion (Fig. 4 C–E and Fig.
S5D). Although depletion of several other E2s affected NHEJ or
HR, UbcH7 seems to be the only one that induces DSB repair
shift, correlating with its impact on the level of 53BP1 (Figs. S4
and S6). Taken together, these data suggest that 53BP1 is the key
downstream target of UbcH7 in DSB repair.

Increased 53BP1 Is Responsible for Chk1 Phosphorylation Defects by
UbcH7 Depletion. To understand if the increased expression of
53BP1 is also responsible for Chk1 phosphorylation defects, we
infected A549 control or UbcH7-depleted cells with sh53BP1
lentivirus, treated cells with CPT, and monitored Chk1 phos-
phorylation. The results showed that codepletion of 53BP1 res-
cued the Chk1 phosphorylation defects in UbcH7-depleted cells
(Fig. 5A, lanes 2, 6, and 8). These changes are unlikely because
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of cell cycle arrest, as only marginal changes in the cell cycle
profile were observed (Fig. S7).

Replicative Stresses Induce UbcH7-Dependent Degradation of 53BP1.
During analysis, we repeatedly observed that CPT treatment
reduced the level of 53BP1 (Figs. 3E and 5A). We further
showed that CPT treatment induced a time-dependent reduction
in the levels of 53BP1 proteins in control, but not in UbcH7-
depleted cells (Fig. 5 B and C). This finding is consistent with the
increased interaction between 53BP1 and UbcH7 after CPT
treatment (Fig. 3E), indicating that CPT treatment induces
degradation of 53BP1.
To try to expand this observation, we monitored the level of

53BP1 after IR. However, unlike CPT, IR treatment did not
induce obvious decrease in 53BP1 (Fig. 5D). We further ob-
served that agents that specifically induce replicative stress, in-
cluding CPT, HU, and aphidicolin—but not others, like
etoposide, taxol, or IR—reduced the protein level of 53BP1 (Fig.
S8 A–D). The CPT-induced degradation of 53BP1 in control,
but not in UbcH7-depleted cells, is blocked by cotreatment with
MG132 (Fig. 5E). We also observed the same results for over-
expressed GFP-53BP1 WT (Fig. S8E, lanes 1 and 2). Further-
more, we confirmed that CPT induces ubiquitination of 53BP1
(Fig. S8F). These lines of findings suggest that replicative stress
induces ubiquitination and proteasome-dependent degradation
of 53BP1 in a UbcH7-dependent manner.
To understand how replicative stress induces 53BP1 degra-

dation, we asked if phosphorylation of 53BP1 is involved. 53BP1
undergoes ATM/ATR-dependent phosphorylation at 28 S/T-Q
sites at its N terminus, and such phosphorylation plays an im-
portant role in regulating the DSB repair function of 53BP1 (35).
We compared the protein stability of 53BP1 WT and a mutant
with all these 28 S/T phosphorylation sites mutated to A (des-
ignated as the S28A mutant) in the presence of CPT. The results
show that CPT induced time-dependent degradation of the GFP-
53BP1 WT, but not the S28A mutant (Fig. 5F). As a positive
control (24), Chk1 was degraded after 8 h of CPT treatment in
cells expressing both the WT and the S28A mutant (Fig. 5F),
indicating a functional degradation system in these cells. These
data suggest that phosphorylation is involved in replicative stress
induced degradation of 53BP1.

Degradation of 53BP1 Is Required for the Repair of CPT-Induced DSBs.
CPT and its analogs are widely used in the clinic (36, 37); they
are specifically toxic to S phase cells and the lethality of CPTs
stems from their ability to generate DSBs. Such DSBs are one-
ended as a result of collision of replication forks with the ternary
CPT-Top1-DNA complex and require HR, but not NEHJ, to
repair because of the lack of a partner end (8). Failure to do so

leads to aberrant chromosomes and eventually cell death (12–
14). Therefore, cells need to suppress NHEJ while promoting
HR in response to CPTs for survival (8). However, molecular
mechanisms underlying the DSB repair choice (i.e., favoring HR
while suppressing NHEJ) are unclear. We hypothesize that cells
suppress NHEJ in response to CPT through inducing UbcH7-
dependent degradation of 53BP1.
If our hypothesis were correct, we would predict that CPT

inhibits NHEJ while enhancing HR in a way dependent on the
UbcH7/53BP1 axis. Indeed we observed that CPT reduced NHEJ
and enhanced HR by roughly 50% and 30%, respectively, in
control cells (Fig. 6 A and B), consistent with the reduction in the
protein level of 53BP1 (Fig. 5A). Such changes in NHEJ and HR
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were not observed in UbcH7-depleted cells (Fig. 6 A and B).
However, codepletion of 53BP1 allowed CPT to restore its in-
hibition and promotion in NHEJ and HR, respectively, in
UbcH7-depleted cells (Figs. 6 A and B). If 53BP1 is critical in the
DSB repair shift, we would expect that overexpression of 53BP1WT
should enhance NHEJ while suppressing HR, as did the UbcH7-
depleted cells. To address this issue, we transfected Flag-53BP1 WT
or the S28A mutant in regular U2-OS and the U2-OS DR cells to
measure NHEJ and HR, respectively. The results showed that
overexpressing the WT, and to a much lesser extent the S28A mu-
tant, induced NHEJ while suppressing HR (Fig. S9 A and B). There
results suggest that despite the increased protein stability, the S28A
mutant is functionally impaired in shifting DSB repair, consistent
with previous report that phosphorylation at the N terminus is im-
portant for 53BP1’s DSB repair function (35). Taken together, these
data suggest a critical role of the protein level of 53BP1 (WT) in the
decision making of repairing CPT-induced DSBs.

UbcH7-Depleted Cells Are Extremely Sensitive to CPT. Because
UbcH7-depleted cells repair CPT-induced DSBs by NHEJ, they
should be much more sensitive to CPT than control cells. The
results showed that UbcH7-depleted cells indeed exhibited sig-
nificantly increased sensitivity to CPT compared with control cells
(Fig. 6C). Importantly, codepletion of 53BP1 with UbcH7 re-
stored the cellular sensitivity to the level of control cells (Fig. 6C).
We noticed that the increased sensitivity of UbcH7 depletion

to CPT is much greater than that to IR or UV (Figs. 2 and 6C),
reinforcing the idea that DSBs generated by CPT rely more on
HR to repair. These findings also suggest that stabilizing 53BP1
increases the sensitivity of cancer cells to DSB-inducing agents,
particularly those that perturb DNA replication. To test this
idea, we overexpressed GFP, GFP-53BP1 WT, or the S28A
mutant in cells and exposed them to CPT. Our data showed that
overexpression of 53BP1 WT, and to a much lesser degree the
S28A mutant, significantly increased the cell killing of CPT (Fig.
6D), despite the fact that the S28A mutant expressed at similar

levels as the WT (Fig. S9C). On the other hand, GFP control
cells survived CPT treatment (Fig. 6D), indicating repair of CPT-
induced damage in these cells. Together, these findings suggest
that UbcH7 depletion particularly increases the sensitivity of
cancer cells to replication stresses that generate one-ended DSBs.

Discussion
In this study, we identify a novel role of the E2 enzyme UbcH7 in
DSB repair. We propose a model for the role of UbcH7 in DSB
repair through controlling the steady-state level of 53BP1, the
key player in the decision making of DSB repair (Fig. 6E). Based
on our model, we expect to observe an inverse correlation between
UbcH7 and 53BP1 in cells. To test this idea, we analyzed the levels
of UbcH7 and 53BP1 proteins in a panel of eight breast cell lines.
The results indeed showed an inverse correlation between these
two proteins (Fig. S10A), especially in triple-negative breast can-
cer cells, with a Pearson correlation coefficient R value at −0.7251
(Fig. S10B). These data suggest that the UbcH7/53BP1 axis may
play an important role in the pathophysiology of human cancers
and lay groundwork for further testing this idea using human tu-
mor tissues in the future. It will be interesting to test this model in
normal cells, as well as in stem cells in future trials.
Several studies reported the screening of genes in regulating

the recruitment of 53BP1 to DNA damage sites (38–40). De-
pletion of UbcH7 was reported to increase the size of 53BP1 foci
(30), similar to our observation. Our results suggest that this is
likely because UbcH7-depleted cells express elevated levels of
53BP1, allowing the formation of more and larger 53BP1 foci at
DSB sites. The E2 enzyme RAD6 indirectly regulates 53BP1 foci
through modulating RNF168 (41). Here, our results revealed
that regulating 53BP1 levels has as strong impact as regulating
the foci formation of 53BP1 on the DSB repair choice.
As an E2 enzyme, UbcH7 regulates a wide range of substrates,

including Chk1 (24, 25). Our data strongly suggest that it is 53BP1,
but not Chk1 or other substrates that contributed to the DSB repair
function of UbcH7. First, codepletion of 53BP1 almost completely
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reversed the DSB repair shift induced by UbcH7 depletion.
Second, overexpression of 53BP1 WT, but not Chk1, induced
the same phenotype as UbcH7 depletion. Third, Chk1 was re-
ported to promote HR (42); yet, UbcH7-depleted cells displayed
significantly reduced HR despite the increased levels of Chk1
proteins.
The de-ubiquitin enzyme, USP28, stabilizes 53BP1 (43),

supporting our conclusion that protein ubiquitination regu-
lates the stability of 53BP1. The endosomal/lysosomal pro-
tease Cathepsin L cleaves 53BP1, especially in the absence of
A-type lamins (44). Here we provided insights that phosphorylation
of 53BP1 is involved in its degradation. Interesting future inves-
tigations should include the identification of the E3 ligases re-
sponsible for 53BP1 ubiquitination and determine how exactly
phosphorylation coordinates with replicative stress—or at least
CPT—induced 53BP1 degradation. In addition, it is would be
worthwhile to test the interplay between Cathepsin L- and
UbcH7-dependent 53BP1 degradation. In all, advances in basic
mechanisms and cancer therapeutic potentials in the current

report will facilitate our understanding of DSB repair choice and
cell survival to DNA damage.

Materials and Methods
shRNA Screening. Lentiviral shRNA was constructed in A549 cells to screen Ub
genes whose depletion impaired DNA damage-induced Chk1 phosphorylation.
We used immunoblotting to assess Chk1 phosphorylation using the specific
anti–pS345-Chk1 antibodies. We repeated the screening process two times,
and potential positive hits were further screened for at least two more times.

DSB Repair Assays. A plasmid (the pEGFP-C1 vector) and the well-estab-
lished U2-OS DR reporter cell line (34) were used to measure NHEJ and
HR, respectively. Both rely on the production of GFP to be measured by
FACS analysis.

See SI Materials and Methods for more detailed discussion.
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