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Introduction
The advancement in biotechnologies has revolutionized 
numerous disciplines including biology and medicine. Several 
high-throughput platforms including whole genome arrays 
and the next-generation sequencing instruments are avail-
able for profiling large-scale omics data. These cutting edge 
biotechnologies have spurred rapid biomarker discovery and 
personalized medicine approach in multiple diseases, in par-
ticular, cancer research. In recent years, genomewide profiling 
utilizing these technologies has been carried out to identify 
biomarkers associated with cancer development and progres-
sion. In this paper, we consider the matched pairs samples for 
identifying differentially expressed biomarkers between two 
groups. Matched/paired study design is commonly used in 
omics/biomarkers profiling because it automatically accounts 
for confounding factors. Examples of matched/paired designs 
include profiling n (1) tumor and adjacent normal lesions, 
(2) pre- and post-drug treatment samples, or (3) one-to-one 
matching of patients by demographic covariates (eg, age, 
gender, race, etc.) from the two groups of interest. We will 

use the tumor versus normal samples hereafter for expository 
purpose.

Ideally, one expects a total of 2n samples from such 
matched/paired design. However, in practice, circum-
stances such as RNA degradation, array failure, or insuffi-
cient resources could result in a subset of patients missing in 
either the tumor or matched normal biomarker profiles. For 
example, n1(,n) patients have both the tumor and matched 
normal profiles, whereas n2 and n3 patients have only tumor 
and normal samples, respectively. Such incomplete or miss-
ing paired samples are also known as partially matched 
samples.

Several methods have been developed to analyze partially 
matched data generated from the Gaussian distribution.1–4 
Recently, Kuan and Huang5 and Yu et  al.6 extended the 
approach to non-parametric setting, which does not require 
the Gaussian assumption. Specifically in Kuan and Huang,5 
we introduced a simple and robust method for analyzing 
partially matched samples based on the weighted Z-test 
to combine the P-values computed using (1) paired sample 
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tests (eg, paired t-test or Wilcoxon sign rank test) on the n1 
matched pairs and (2) two-sample tests (eg, two-sample t-test 
or Mann–Whitney test) on the incomplete n2 and n3 pairs. 
The P-value pooling approach has been shown to achieve good 
operating characteristics compared to existing methods.

As alluded earlier, matched/paired design is an appeal-
ing approach to avoid confounding. However, when a subset 
of samples has incomplete pairs in partially matched samples 
scenarios, this can result in unbalanced covariates between the 
tumor and normal groups. Nonetheless, the above-mentioned 
methods assume that the confounding factors among the n2 
and n3 incomplete matched pairs are absent or negligible. If 
this assumption does not hold, the conclusions drawn from 
these methods are no longer valid. In this paper, we introduce 
an approach to adjust for potential confounders based on pro-
pensity score matching method in partially matched samples. 
Our paper is organized into five sections. In Section  2, we 
describe the proposed method, followed by Sections 3 and 4, 
which demonstrate the operating characteristics of the pro-
posed approach in simulations and case study, respectively. 
We conclude with a discussion in Section 5.

Method
Let (Xi, Yi) be a matched pair for subject i, i = 1, …, n, where 
Xi and Yi are the tumor and normal measurements, respec-
tively. Without loss of generality, we assume that (Xi, Yi) are  
complete matched pairs for i = 1, …, n1; Yi ’s are missing for i = 
n1 + 1, … , n1 + n2, and Xi ’s are missing for i = n1 + n2 + 1, …, 
n1  +  n2  +  n3. That is, n1 patients have both the tumor and 
matched normal profiles, whereas n2 and n3 patients have only 
tumor or normal samples, respectively. Let Zi = (Z1i, …, Zpi) 
denote the p covariates for subject i, for instance, Z1i = age, 
Z2i  =  gender, etc. The first step is to create pseudo-pairs 
between the n2 and n3 incomplete pairs by matching the cova-
riate information. We will use propensity score method to 
accomplish this step. To simplify the notation, we introduce 
subscript j to denote sample j, j = 1, …, n2 + n3 among the 
incomplete pairs, and let Zj denote the corresponding covari-
ate information. Let Oj denote the measurement for subject j. 
Note that Oj = Xj for j = 1, …, n2 and Oj = Yj for j = n2 + 1, …, 
n2 + n3. We also let Gj denote the group indicator for sample j, 
ie, Gj = 1 and 2 for normal and tumor samples, respectively.

Propensity score method. The propensity score method, 
introduced by Rosenbaum and Rubin,7 is a popular approach 
in observational studies to create balance in multiple con-
founding covariates between the two groups. The propensity 
score is defined as

	 ( 2| )j je P G= = jZ

There are several approaches for estimating ej, includ-
ing logistic regression and machine learning techniques such as 
boosted regression,8 classification trees (CART), and random 
forests. A comparison of these methods is provided in Lee et al.9

There are four main methods for removing confound-
ing effects based on ej, namely (1) propensity score matching, 
(2) stratification on propensity score, (3) covariate adjustment 
using propensity score, and (4) inverse probability weighting 
by propensity score. We refer the readers to Austin10 for a 
review on these different approaches. In this paper, we con-
sider two approaches based on propensity scores to account for 
confounding effects. The first approach is covariate adjustment 
using propensity score via a linear model

	 0j G j e j jO G eβ β β ε= + + + 	 (1)

where εj ∼ N(0, 1) if the biomarker measurements are approxi-
mately Gaussian distributed after appropriate normalization 
and transformation. Otherwise, one can use the generalized 
linear model11 with appropriate link function for non-Gaussian 
data. One can then evaluate if the expression of tumor is sig-
nificantly different from normal by testing the hypothesis H0: 
β

g
 = 0.

The second approach is based on Mahalanobis distance on 
covariate ranks with propensity score caliper12 for matching the 
covariates between the n2 tumor and n3 normal samples from 
incomplete pairs. Let rj be the vectors of covariate ranks for 
sample j. The Mahalanobis distance between sample j in the 
tumor group and sample k in the normal group is defined as

	
1( ) ( )jk j k j kd r r r r−= − Σ −′


where 

Σ is the estimated pooled covariance matrix for the 

ranks. On the other hand, the propensity score caliper c is 
defined as the maximum propensity score distance between 
sample j and k allowed within a match. In other words,

	

1( ) ( ) if ( , )
otherwise

j k j k j k
jk

r r r r D e e c
d

− − Σ − ≤′= ∞



The choice of caliper width is related to bias–variance 
trade-off where small caliper width results in bias reduction 
but at the expense of increasing variance, and vice versa.13 
A few studies have been conducted to investigate the opti-
mal caliper width in propensity score matching, including the 
work of Austin13 and Wang et al.14 Based on these works and 
our own experience in propensity score matching, we recom-
mend using caliper width equal to 0.2 of the standard devia-
tion of the logit of the propensity score, which tends to have 
better performance, ie,

	 ( )2 2
1 2

| log it( ) log it( )|
( , ) and 0.2

/ 2
j k

j k

e e
D e e c

γ γ

−
= =

+

where 2
Gγ  is the variance of logit of the propensity score in 

the Gth group. The samples are matched using the optimal 
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full matching algorithm.15–17 Matching algorithm aims to 
group tumor and normal samples that have similar covariates, 
ie, small djk. Optimal full matching subdivides the samples 
into collection of matched sets S, where each set consists of a 
tumor with any number of normal samples or a normal sample 
with any number of tumors by minimizing the net discrep-
ancy Σj,k∈Sdjk.15,17 The Olsen’s algorithm is used to create opti-
mal matching (see Hansen15 and Hansen and Klopfer16 for 
details).

Test statistics for matched set. The tumor and normal 
samples within each matched set tend to be correlated since 
they have comparable baseline covariates.7,18 For one-to-one 
pairing, one usually uses paired sample t-test or Wilcoxon 
signed-rank test to test if the expression level of tumors is 
significantly different from the normal samples. However, in 
the full matching scenario, each tumor is paired with several 
normal samples and vice versa; thus, the paired sample t-test 
or Wilcoxon signed-rank test needs to be generalized to such 
one-to-many pairing. In this paper, we consider a generaliza-
tion of the paired sample t-test under the scenario that the 
biomarker measurements are approximately Gaussian distrib-
uted. Following Rosner,19 a generalized paired sample t-test 
can be derived based on a one-way random effects ANOVA 
model given by

	
, 1, ,s s s s sd X Y s Sα δ ε= − = + + = …

where α is the overall within-pair mean difference between 
tumor and normal samples, 2~ (0, )s DNδ σ  is the random effect 
for the sth pairing, 2~ (0, )s sNε σ  is the random error, and 
S is the total number of matched sets. In addition, σs = σ2 

(1/m1s + 1/m2s) where m1s and m2s are the number of tumors and 
normals in matched set s, respectively. The hypothesis for test-
ing if the expression of tumor is different from normal samples 
translates into testing α = 0. The test statistic is given by

	
1/ 2

11
ˆ ˆ /( )t Vα=

where

	

{ }
( ){ } { }

3 2 2
1 1

23 2 2 2
1 1 1 1

ˆ( ) / 2
11 ˆ ˆ( ) / 2 ( )

S S
s s s s s

S S S S
s s s s s s s s s s

w d w
V

w w d w w d

α

α α

= =

= = = =

Σ − − Σ
=

Σ Σ − − Σ − Σ − 
 

and

	
2 2

1
ˆ ˆs

D s
w

σ σ
=

+

σ2 is estimated using the usual unbiased estimator, whereas α 
and 2

Dσ  are estimated using numerical methods (see Rosner19 
for details). For large samples, the P-value of t̂  can be obtained 
from the asymptotic distribution N(0, 1). For small samples, 
the P-value can be computed from the permutation test, by 

permuting the labels of tumor and normal samples within 
each matched set. Suppose there are m1s tumors and a total of 
Ns samples in matched set s, then the total number of possible 
permutations is ( )11

s
s

NS
s m=Π .

On the other hand, the generalized non-parametric test 
for one-to-many pairing can be carried out via the aligned 
rank test of Hodges and Lehmann20 if the data are non-
Gaussian. We refer the readers to Hodges and Lehmann,20 
and Heller et al.21 for additional details on implementing the 
aligned rank test.

P-values pooling. We follow the idea of our earlier work 
in Kuan and Huang5 to test if the biomarker is significantly up 
or down regulated in tumor compared to normal samples by 
pooling the P-values from the n1 complete and (n2, n3) incom-
plete pairs. The P-value for the n1 complete matched pairs is 
computed using either the paired sample t-test or Wilcoxon 
signed-rank test, denoted as p1. On the other hand, the 
P-value for the incomplete pairs p2 is computed based on the 
linear model using propensity score as covariate (equation (1) 
of Section 2.1), the generalized t-test, or aligned signed rank 
test (Section 2.2). The next step is to pool the two P-values 
by borrowing the idea of meta-analysis. Several methods are 
available for pooling P-values including the inverse normal 
and Fisher’s methods. In Kuan and Huang,5 we showed that 
pooling P-values based on weighted Z-test has good operat-
ing characteristics compared to other methods. The weighted 
Z-test for combining the P-values is based on transforming 
the P-values into Z-score Za = Φ−1(1 – pk), k = 1, 2. The com-
bined P-value by the weighted Z-test5,22 is given by

	

1 1 2 2
2 2
1 2

1c
w Z w Z

p
w w

 +
= − Φ 

+ 
	 (2)

where wk ’s are the corresponding weights. Although different 
choices of weights have been proposed in the literature, Kuan 
and Huang,5 Zaykin23 showed that setting the weights as the 
square root of the sample sizes works well in practice. Thus, 
we set 1 12w n=  and 2 2 3w n n= + . In addition, pooling 
P-values is only meaningful if p1 and p2 are computed from 
one-sided hypothesis tests to avoid directional conflict. One 
can obtain a two-sided combined P-value as follows. Let 
p1 and p2 be the one-sided P-value for the same alternative 
(eg, “greater”) hypothesis, and pc be the combined one-sided 
P-value from equation (2). The two-sided P-value is given by

	

*
2 if 1/ 2

2(1 ) otherwise
c c

c
c

p p
p

p

<=  −

Simulation
We carry out simulation to evaluate the performance of pro-
pensity score method to adjust for potential confounders in 
partially matched samples. n paired sample measurements 
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(Xij, Yij) of a biomarker i for the tumor and matched normal 
group are generated from bivariate Gaussian distribution,

	

2
1 2

2
1 2

log( )
~ ,

log( )
ij X X X Y

ij Y X Y Y

X Z Z
NY Z Z

µ β β σ ρσ σ

µ β β ρσ σ σ

+ −     
       + −          

where Z1 and Z2 are confounders, and µX and µY are the true 
mean expressions for tumor and normal groups, respectively. 
We consider (n1, n2, n3) = (70, 15, 15), (50, 25, 25), and (30, 
35, 35) and set σX = σY = 1, whereas ρ ∼ U(0, 1) to capture 
various degrees of correlation between tumor and normal 
matched pairs. In addition, we set µY  =  0 and µX =  0, 0.1, 
0.2, …, 0.5 for different effect sizes, and β = 0, 0.5, 1, and 2 for 
zero, moderate, strong, and very strong confounding effects. 
To simulate unbalanced confounders arising from incomplete 
matched pairs, we generate Z1, Z2 ∼ N(0, 1) for i = 1, …, n1, 
Z1 ∼ N(−0.2, 1), Z2 ∼ N(0.2, 1) for i = n1 + 1, …, n1 + n2, 
and Z1  ∼  (0.2, 1), Z2  ∼  N(–0.2, 1) for i = n1  +  n2  +  1, …, 
n1 + n2 + n3.

We compare the performance of the following methods 
in our simulation studies:

a.	 Gold standard (Gold-std): The P-value was computed from 
paired sample t-test on n1 + n2 + n3 original matched pairs 
assuming complete data set. This is the reference test.

b.	 Paired only: The P-value was computed from paired 
sample t-test on the n1 complete matched pairs only, and 
discarding the n2 and n3 incomplete pairs.

c.	 Two sample: Combining the P-value from paired sample 
t-test on the complete n1 matched pairs and the P-value 
from two-sample t-test on the incomplete n2 and n3 sam-
ples using the weighted Z-test approach.5

d.	 Propensity score with full matching (FM-PS): Combining 
the P-value from paired sample t-test on the complete n1 
matched pairs and the P-value from generalized t-test on 
full matched data by Mahalanobis distance with propensity 
score caliper c = 0.2 on the incomplete n2 and n3 samples.

e.	 Propensity score with regression adjustment (Reg-PS): 
Combining the P-value from paired sample t-test on the 
complete n1 matched pairs and the P-value from linear 
regression model using propensity score as covariate on 
the incomplete n2 and n3 samples.

Single biomarker. We first evaluate the performance 
of propensity score methods in adjusting for unbalanced 
covariates in single biomarker setting. Table  1 reports the 
average empirical Type I error at nominal α =  0.05 over 
10,000 replications. When there is no confounding effect, 
ie, β = 0, all the methods control the Type I error. However, 
for β ≠ 0, the two-sample method exhibits the largest Type 
I error inflation. On the other hand, paired only, FM-PS, 
and Reg-PS methods control the Type I error under all the 

scenarios considered in the simulation. Figure 1  shows the 
average power for different combinations of n1, n2, n3, and 
β for methods that control the Type I error (empirical Type 
I error  #  0.055). As expected, missing samples in incom-
plete matched pairs reduce the power compared to complete 
data set (Gold-std). However, incorporating the incomplete 
matched pairs with proper adjustment for confounders via 
FM-PS or Reg-PS methods exhibit increased statistical 
power compared to using only the n1 paired samples when 
n2 and n3 are substantially large. When n2 and n3 are small 
relative to n1, using only the n1 paired samples is compa-
rable to methods that incorporate n2 and n3. Both FM-PS 
and Reg-PS methods show comparable performance in this 
simulation study.

Multiple biomarkers. As omics data involve test-
ing multiple biomarkers simultaneously (within a multiple 
hypothesis testing framework), we also simulate the observa-
tions from multiple biomarkers setting. We consider 1000 
biomarkers and repeat each simulation setting over 100 
replications. We use the false discovery rate (FDR) proce-
dure of Benjamini and Hochberg24 to adjust for multiple 
hypothesis testing. Figure  2 reports the average empirical 
FDR for the different methods at nominal FDR  =  0.05. 
Similar to the single biomarker case, two-sample method 
exhibits the largest inflated empirical FDR for β ≠ 0. On the 
other hand, FM-PS, Reg-PS, and paired only methods con-
trol the FDR across the different scenarios. Figure 3 shows  

Table 1. Average empirical Type I error at nominal α = 0.05. Italicized 
values indicate that the empirical Type I error is greater than 0.055.

Method β = 0 β = 0.5 β = 1 β = 2

n1 = 70, n2 = 15, n3 = 15

Gold-std 0.0455 0.0473 0.0503 0.0501

Paired only 0.0479 0.0494 0.0490 0.0518

Two-sample 0.0475 0.0643 0.0794 0.0922

FM-PS 0.0462 0.0485 0.0469 0.0476

Reg-PS 0.0480 0.0502 0.0441 0.0442

n1 = 50, n2 = 25, n3 = 25

Gold-std 0.0527 0.0541 0.0495 0.0541

Paired only 0.0486 0.0536 0.0534 0.0531

Two-sample 0.0476 0.1044 0.1460 0.1809

FM-PS 0.0483 0.0467 0.0465 0.0485

Reg-PS 0.0494 0.0476 0.0443 0.0416

n1 = 30, n2 = 35, n3 = 35

Gold-std 0.0522 0.0543 0.0483 0.0489

Paired only 0.0507 0.0494 0.0499 0.0465

Two-sample 0.0522 0.1712 0.2805 0.3663

FM-PS 0.0449 0.0454 0.0422 0.0460

Reg-PS 0.0524 0.0479 0.0452 0.0446
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the empirical false nondiscovery rate (FNR) for the meth-
ods under comparison. FNR is an analog of Type II error 
in multiple hypothesis testing settings, and is defined as the 
proportion of false negatives among the total number of 
non-rejection. Empirical FNR is large when the number of 
incomplete matched pairs is large. On the other hand, both 
FM-PS and Reg-PS methods result in lower FNR compared 
to paired only method.

Case Study
We illustrate the proposed propensity score adjustment for par-
tially matched samples on a publicly available DNA methylation 
data from Selamat et al.25 (downloaded from Gene Expression 
Omnibus (GEO) under accession number GSE32861). The 
data set consists of 58 matched pairs of lung adenocarcinoma 
and adjacent non-tumor lung tissue after removing paired sam-
ple 3023_T/N.25 Methylation for these samples was profiled 
using the Illumina HumanMethylation27 BeadChip, which 
covers 27,578 CpGs. We use a subset of baseline covariates 
measured for each sample (ie, age, smoking status, stage, recur-
rence, KRAS mutation, EGFR mutation, and LKB1 mutation) 

to illustrate the performance of the different methods. Age and 
stage are continuous and ordinal variables, respectively, whereas 
the other covariates are binary variables.

We randomly choose n1 out of 58 matched pairs to be 
complete matched pairs. Next, we generate 58 − n1 indicator 
variables, ie, δk, k = 1, …, 58 − n1, where

	

exp( )
( 1)

1 exp( )

t
k

k t
k

Z
P

Z
β

δ
β

= =
+

and

	

Age Smoke Stage Recur
EGFR LKB1

t
k k k k k

k k k

Z
KRAS

β = − + −

+ − +

after standardizing each covariate. This function generates  
approximately equal number of 0s and 1s on average. Among the 
remaining 58 – n1 pairs, we set n2 pairs to be missing in non-tumor 
lung tissue corresponding to those with δk = 1, and the remaining 
to be missing in lung adenocarcinoma. We consider n1 = 10, 20, 
30, 40, and for each n1, the process is repeated 50 times.
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Figure 1. Average power at nominal α = 0.05. Sample size (n1, n2, n3) and effect of confounding β are indicated in the header of each plot. Power curves 
for methods that did not control Type I error (ie, empirical Type I error . 0.055) are not shown. 
Notes: ○: Gold-std, ∆: FM-PS, +: Reg-PS, × : two-sample, and ◊: paired only.
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We apply FM-PS, Reg-PS, two-sample, and paired only 
methods on the logit-transformed methylation β-values, ie, 
log(β/(1 − β))26,27 of each CpG. Since CpGs that are truly dif-
ferentially methylated between lung adenocarcinoma and non-
tumor lung tissues are unknown in the case study, we use the 
results from paired sample t-test on the full 58 matched pairs 
as Gold-std. We define the true positive CpGs as the subset 
of CpGs that are significant at the Benjamini and Hochberg24 
FDR of 0.05 for the Gold-std method. We compare the list of 
significant CpGs identified by FM-PS, Reg-PS, two-sample, 
and paired only methods at FDR = 0.05 to the true positive 
CpGs. In Table 2, we report the average empirical FDR, FNR, 
and average true positive (ATP) CpGs identified by each 
method. The ATP CpG is also the number of overlapping 
CpGs identified by each method and the Gold-std method. 
Two-sample method declares a larger number of false positives 
as indicated by the inflated empirical FDR. In this case study, 
the effect of confounding is moderate; thus, FM-PS, Reg-PS, 
and paired only methods are able to control the FDR. However, 
both FM-PS and Reg-PS methods have lower FNR and larger 
ATP compared to paired only method. This shows that the 

propensity score method for partially matched samples is able 
to adjust for confounders and improve the power of detecting 
differentially methylated CpGs.

We carry out a gene ontology (GO) analysis to provide 
biological insights into the list of significant CpGs at 
FDR = 0.05 identified from the Gold-std method using the 
Bioconductor package topGO.28 We consider both the elim 
Fisher’s exact test (elim.Fisher) and elim Kolmogorov–Smirnov 
test (elim.KS) implemented in topGO based on Alexa et al.29 
The elim method has been shown to improve interpretation of 
the GO analysis by integrating GO graph topology and itera-
tively removing genes that map to significant GO terms from a 
higher level GO terms.29 The P-values from each of the test are 
adjusted via the Benjamini–Hochberg method.24 Tables  3–5 
report the GO terms corresponding to biological process (BP), 
molecular function (MF), and cellular component (CC) that 
exhibit adjusted P-values ,0.05 by both the elim.Fisher and 
elim.KS test, respectively. For example, the BP GO analysis 
identifies a GO term related to positive regulation of ERK1 
and ERK2 cascade, which has been shown to be implicated in 
lung adenocarcinomas.30,31
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Figure 2. Average empirical FDR at nominal FDR = 0.05. Sample size (n1, n2, n3) and effect of confounding β are indicated in the header of each plot.  
Notes: ○: Gold-std, ∆: FM-PS, +: Reg-PS, × : two-sample, and ◊: paired only.
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Discussion
Partially matched samples could give rise to unbalanced cova-
riate distribution among the incomplete matched pairs in 
large-scale matched pair omics studies. This paper extends the 
P-value pooling method of Kuan and Huang5 to a framework 
based on propensity score for adjusting unbalanced covariate 
distribution among the incomplete matched pairs. We consider 
two approaches using propensity score, namely, (1) full match-
ing followed by generalized t-test (FM-PS) and (2) propensity 
score as covariate in regression model (Reg-PS). Both methods 
are able to reduce the number of false positives by account-
ing for the confounders. Currently, we use the full matching 
approach based on Mahalanobis distance with propensity score 
calipers15–17 and the one-way random effects ANOVA model19 
for deriving the generalized paired t-test. One can also use 
other matching algorithms based on propensity score.10

In this paper, we assume that the biomarker mea-
surements are properly transformed such that they are 
approximately Gaussian distributed. If Gaussian assumption 
is violated, one can replace the generalized paired t-test with 
the generalized non-parametric aligned rank test of Hodges 
and Lehmann20 and Heller et  al.21 in FM-PS method, and 

Table 2. Average empirical FDR, FNR, and ATP at nominal 
FDR = 0.05.

Method Paired only Two- 
sample

FM-PS Reg-PS

n1 = 10, n2 = 24, n3 = 24

FDR 0.0304 0.0822 0.0285 0.0256

FNR 0.5439 0.2121 0.4649 0.4478

ATP 3457 13722 6908 7527

n1 = 20, n2 = 19, n3 = 19

FDR 0.0322 0.0625 0.0256 0.0247

FNR 0.4443 0.1897 0.4053 0.3810

ATP 7690 14014 8941 9568

n1 = 30, n2 = 14, n3 = 14

FDR 0.0352 0.0537 0.0393 0.0333

FNR 0.3512 0.1632 0.3241 0.2948

ATP 10422 14395 11183 11715

n1 = 40, n2 = 9, n3 = 9

FDR 0.0354 0.0648 0.0404 0.0534

FNR 0.2404 0.1193 0.2269 0.1803

ATP 12955 15028 13201 13973
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Figure 3. Average empirical FNR at nominal FDR = 0.05. Sample size (n1, n2, n3) and effect of confounding β are indicated in the header of each plot. 
FNR values for methods that did not control FDR (ie, empirical FDR . 0.055) are not shown. 
Notes: ○: Gold-std, ∆: FM-PS, +: Reg-PS, × : two-sample, and ◊: paired only.
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Table 3. Significant BP GO terms for the CpGs identified by the Gold-std method in the lung adenocarcinoma case study. The reported P-values 
are adjusted via the Benjamini–Hochberg FDR control.24

Biological Process

GO ID Term Annotated Significant Expected elim.Fisher elim.KS

GO:0007268 Synaptic transmission 1153 803 685.54 2.18e-07 2.54e-17

GO:0048704 Embryonic skeletal system morphogenesis 159 120 94.54 0.0122 1.94e-ll

GO:0031424 Keratinization 58 53 34.49 0.00019 2.97e-ll

GO:0007155 Cell adhesion 1577 1067 937.64 0.0122 7.27e-08

GO:0048265 Response to pain 54 46 32.11 0.0139 9.22e-08

GO:0009952 Anterior/posterior pattern specification 350 246 208.1 0.0283 1.21e-07

GO:0007156 Homophilic cell adhesion 177 133 105.24 0.0102 1.29e-07

GO:0007186 G-protein coupled receptor signaling pat. 1035 721 615.38 0.000349 6.24e-06

GO:0007193 Adenylate cyclase-inhibiting G-protein c. 91 73 54.11 0.0122 6.24e-06

GO:0007267 Cell-cell signaling 1923 1319 1143.36 0.0122 6.24e-06

GO:0070374 Positive regulation of ERK1 and ERK2 cas. 0.174 128 103.46 0.0201 3.26e-05

GO:0050911 Detection of chemical stimulus involved. 19 19 11.3 0.0161 4.15e-05

GO:0001755 Neural crest cell migration 80 65 47.57 0.0122 4.15e-05

GO:0023019 Signal transduction involved in regulati. 33 30 19.62 0.0201 4.15e-05

GO:0007204 Elevation of cytosolic calcium ion conce. 326 240 193.83 0.0322 9.08e-05

GO:0048484 Enteric nervous system development 30 28 17.84 0.0139 9.73e-05

GO:0030198 Extracellular matrix organization 537 375 319.28 0.0102 9.73e-05

GO:0021527 Spinal cord association neuron different. 27 25 16.05 0.0322 0.000155

GO:0042742 Defense response to bacterium 209 150 124.27 0.0313 0.000266

GO:0006954 Inflammatory response 845 564 502.41 0.0217 0.000556

GO:0030855 Epithelial cell differentiation 905 611 538.09 0.0139 0.00112

GO:0045666 Positive regulation of neuron differenti. 112 86 66.59 0.0217 0.00185

GO:0030335 Positive regulation of cell migration 428 294 254.48 0.0139 0.00265

GO:0019233 Sensory perception of pain 137 105 81.46 0.0122 0.00301

GO:0048485 Sympathetic nervous system development 45 40 26.76 0.0122 0.00496

GO:0045165 Cell fate commitment 417 299 247.94 0.034 0.00999

GO:0007215 Glutamate receptor signaling pathway 88 75 52.32 0.0122 0.0181

GO:0021846 Cell proliferation in forebrain 43 38 25.57 0.0139 0.0194

GO:0007631 Feeding behavior 155 117 92.16 0.0122 0.0273
 

replace regular linear regression with generalized linear mod-
els.11 For instance, in our case study on DNA methylation, 
the analysis is carried out on the logit transformed beta val-
ues (also known as M values). An alternative approach is to 
analyze the untransformed beta values using beta regression 
in the Reg-PS method. The choice of analyzing DNA methy-
lation data on either beta values or M values is an ongoing 
active research.32,33

Both the FM-PS and Reg-PS methods exhibit compa-
rable performance in both our simulations and case study. 
In this paper, we assume a linear propensity score–outcome 
relationship that enables us to apply direct adjustment with 
a linear propensity score term in Reg-PS. In such cases, 
Reg-PS method is computationally more efficient and eas-
ier to implement compared to FM-PS method. However, 

if the propensity score–outcome relationship is non-linear, 
one will need to consider more complicated models, for 
instance, the generalized additive model (GAM) as pro-
posed in Myers and Louis.34 In such cases, the FM-PS 
method may be a better alternative as this approach does 
not require specification of the propensity score–outcome 
relationship. Thus, we recommend that the users compare 
the results from both Reg-PS and FM-PS methods in 
practice.
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Table 5. Significant CC GO terms for the CpGs identified by the Gold-std method in the lung adenocarcinoma case study. The reported P-values 
are adjusted via the Benjamini–Hochberg FDR control.24

Cellular Component

GO ID Term Annotated Significant Expected elim.Fisher elim.KS

GO:0005887 Integral to plasma membrane 2079 1443 1242.77 3.14e-14 3.64e-35

GO:0005576 Extracellular region 3134 2161 1873.41 1.35e-09 1.82e-27

GO:0005615 Extracellular space 1398 964 835.68 5.49e-ll 4.19e-25

GO:0005886 Plasma membrane 6289 4079 3759.38 2.08e-05 2.84e-14

GO:0005578 Proteinaceous extracellular matrix 547 402 326.98 1.32e-07 1.39e-13

GO:0016021 Integral to membrane 6898 4421 4123.42 0.000363 1.86e-ll

GO:0045211 Postsynaptic membrane 294 209 175.74 0.00296 4.46e-10

GO:0008076 Voltage-gated potassium channel complex 117 92 69.94 0.0012 7.64e-10

GO:0030054 Cell junction 1197 776 715.53 0.0105 2.57e-06

GO:0034774 Secretory granule lumen 105 79 62.77 0.0419 0.00149
 

Table 4. Significant MF GO terms for the CpGs identified by the Gold-std method in the lung adenocarcinoma case study. The reported P-values 
are adjusted via the Benjamini–Hochberg FDR control.24

Molecular Function

GO ID Term Annotated Significant Expected elim.Fisher elim.KS

GO:0004930 G-protein coupled receptor activity 741 566 440.86 2.51e-10 1.67e-22

GO:0004984 Olfactory receptor activity 67 62 39.86 7.72e-07 2.26e-15

GO:0005509 Calcium ion binding 977 654 581.27 0.000243 1.29e-13

GO:0043565 Sequence-specific DNA binding 1129 735 671.71 0.00888 5.34e-12

GO:0005201 Extracellular matrix structural constitu. 123 95 73.18 0.00634 1.81e-08

GO:0005234 Extracellular-glutamate-gated ion channe. 29 26 17.25 0.0283 6.5e-07

GO:0005125 Cytokine activity 332 234 197.53 0.00604 1.33e-05

GO:0005230 Extracellular ligand-gated ion channel a. 122 99 72.58 0.0147 3.79e-05

GO:0004890 GABA-A receptor activity 33 29 19.63 0.0283 6e-05

GO:0015269 Calcium-activated potassium channel acti. 27 25 16.06 0.0192 0.000132

GO:0004888 Transmembrane signaling receptor activit. 1333 979 793.08 0.0363 0.000591

GO:0005540 Hyaluronic acid binding 32 29 19.04 0.0179 0.00185

GO:0015293 Symporter activity 213 152 126.73 0.0216 0.00232

GO:0020037 Heme binding 201 144 119.59 0.0216 0.00558

GO:0005506 Iron ion binding 238 169 141.6 0.0192 0.00558

GO:0016918 Retinal binding 28 25 16.66 0.0363 0.0104

GO:0005242 Inward rectifier potassium channel activ. 37 32 22.01 0.0283 0.0126

GO:0015279 Store-operated calcium channel activity 16 16 9.52 0.0229 0.0212

GO:0008227 G-protein coupled amine receptor activit. 67 58 39.86 0.0216 0.0315
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