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Abstract

Regulations in various countries permit the reuse of health information without patient 

authorization provided the data is “de-identified”. In the United States, for instance, the Privacy 

Rule of the Health Insurance Portability and Accountability Act defines two distinct approaches to 

achieve de-identification; the first is Safe Harbor, which requires the removal of a list of 

identifiers and the second is Expert Determination, which requires that an expert certify the re-

identification risk inherent in the data is sufficiently low. In reality, most healthcare organizations 

eschew the expert route because there are no standardized approaches and Safe Harbor is much 

simpler to interpret. This, however, precludes a wide range of worthwhile endeavors that are 

dependent on features suppressed by Safe Harbor, such as gerontological studies requiring detailed 

ages over 89. In response, we propose a novel approach to automatically discover alternative de-

identification policies that contain no more re-identification risk than Safe Harbor. We model this 

task as a lattice-search problem, introduce a measure to capture the re-identification risk, and 

develop an algorithm that efficiently discovers polices by exploring the lattice. Using a cohort of 

approximately 3000 patient records from the Vanderbilt University Medical Center, as well as the 

Adult dataset from the UCI Machine Learning Repository, we also experimentally verify that a 

large number of alternative policies can be discovered in an efficient manner.
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1. INTRODUCTION

In 2009, the Obama administration pledged $10 billion per year over the next five years to 

implement standards-based health information technologies in the United States to further 

the adoption of tools, such as electronic health records, at an unprecedented pace [12]. 

Health information systems already accumulate data on vast populations (e.g., Kaiser 
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Permanente covers over 8 million patients [6]), which makes them attractive for reuse in a 

wide array of notable endeavors beyond primary care operations, such as for health policy 

analysis, quality assurance investigations, biomedical research studies, and epidemiology 

[22]. However, it is often difficult to solicit authorization from the number of patients 

necessary to support such promising secondary applications. Consider, emerging methods in 

clinical genomics require data on tens of thousands of individuals to generate statistically 

significant correlations [5]. As such, regulations in various countries permit health 

information to be shared without patient authorization provided that the data is 

“deidentified”.

Data protection regulations often define multiple routes to achieve de-identification. In the 

United States, for instance, the Privacy Rule of the Health Insurance Portability and 

Accountability Act (HIPAA) outlines two mechanisms by which de-identification can be 

satisfied: 1) Safe Harbor and 2) Expert Determination [9]. The Safe Harbor policy is a 

cookbook approach enumerating eighteen identifiers that must be removed from patients’ 

records in order for the data to be designated as de-identified (Appendix A provides details 

on this method). The Expert Determination method, in contrast, states that health 

information can be shared in any way provided an expert certifies it is a small risk that the 

residual information in a disseminated record could be used to identify the patient.

In practice, most healthcare organizations shy away from the expert standard in favor of 

Safe Harbor. This is not because it is a preferred option, but because 1) there are no 

standardized methods (or consensus) for satisfying the expert approach within the HIPAA 

Privacy Rule, 2) there is a lack of readily available open source software for applying 

methods that mitigate re-identification risk in health information, and 3) health managers 

often find it difficult to determine the identifiability of health information in practice. 

However, de-identifying data based on Safe Harbor is often problematic, because it limits 

researchers’ ability to perform various studies. For instance, epidemiologists often require 

detailed geographic information; however, Safe Harbor only permits the disclosure of three-

digit zip codes, which can limit accuracy in model development and evaluation [4]. 

Similarly, the field of gerontology, which is concerned with elderly individuals, is 

significantly hampered because Safe Harbor requires that all ages above 89 be forced into a 

single top-coded value of 90 or greater.

In the healthcare domain, various approaches have been proposed to support the Expert 

Determination process. In particular, binning strategies, such as k-anonymity [23], have 

received significant attention over the past several years [7, 10, 11]. These approaches 

protect privacy by grouping records into bins of a minimum size. For instance, k-anonymity 

stipulates each disclosed record must be equivalent to k − 1 other records on a set of 

potentially identifying attributes. Binning methods have a stronger privacy protection 

requirement than Safe Harbor, but Safe Harbor can still be used for providing a maximal 

risk threshold or act as a reasonable baseline for comparison [2].

The overarching goal of this paper is to introduce an approach that automatically discovers 

de-identification policy alternatives. Specifically, this paper makes the following 

contributions:
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1. We formulate the problem of alternative de-identification policy discovery. In 

particular, we represent policies that can be discovered from a dataset in a concise 

form using a lattice structure. By using this structure together with a flexible data 

modification strategy, our approach allows discovering a large number of 

alternative policies from the dataset.

2. We design an algorithm to search the aforementioned structure that is both efficient 

and effective at discovering alternative de-identification policies. Our approach 

tunes the fidelity of potentially identifying attributes to find alternative policies of 

equal or lesser risk to Safe Harbor.

3. We evaluate the proposed approach with real patient demographics from a large 

healthcare provider and a publicly available research dataset. Our results suggest 

that our approach can find a large number of alternative policies in an efficient 

manner.

For the purposes of this work, we focus on the demographics of patients that have been 

shown to be vulnerable to simple attacks on identity obfuscation and for which population 

statistics have been made publicly available.

The remainder of this paper is organized as follows. In Section 2, our approach for 

discovering alternative de-identification policies and an algorithm that realizes it are 

presented. In Section 3, we perform an evaluation of our approach with a public and a 

private dataset, the latter of which is derived from a real electronic medical record system 

and serves as a case study. In Section 4, we discuss the contributions and limitations of our 

approach, as well as possible ways in which it can be extended. Then, in Section 5 we 

provide intuition into how our work relates to prior perspectives and methods of data 

protection with particular attention to health information. In Section 6, we summarize and 

conclude the work.

2. METHODS

A system that automatically discovers de-identification policies must be practical. It should 

not force a health data manager to accept any particular de-identification solution. Rather, it 

needs to empower managers with permissible alternative de-identification solutions. 

Furthermore, these solutions must be tailored to each specific dataset.

This section describes such a system. We begin with a description of the system’s overall 

architecture. Next, we formalize the notion of policies and how to evaluate risk in the 

context of existing healthcare regulations, such as the HIPAA Safe Harbor standard, as well 

as what might be an acceptable alternative under the HIPAA Expert Determination standard. 

Finally, we introduce an algorithm to search the policy space and discover de-identification 

alternatives.

2.1 Architecture

Before delving into the details of the system, we provide an overview of the de-

identification policy discovery process. Figure 1 depicts the architecture of a system that 
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realizes our approach. The process is initiated when the health data manager supplies the 

following information: 1) a dataset to be de-identified, 2) aggregate statistics for the 

population from which the records in the dataset were derived, and 3) a re-identification risk 

threshold for the dataset. Given this information, the system issues a search for de-

identification policies with risk that is no greater than the predefined threshold. The risk 

threshold may be supplied by the data manager or it may be estimated from a predefined 

baseline policy. To situate this research within the domain of healthcare, and the HIPAA 

Privacy Rule specifically, we propose setting the risk threshold for a dataset to the risk 

derived from the Safe Harbor policy.

2.2 Policy Representation

Before we can search for alternative de-identification policies, we need a common 

formalism to relate the HIPAA Safe Harbor policy with alternatives. To clarify what 

constitutes a de-identification policy, we introduce the following formalism. Without loss of 

generality, we assume that health data is organized in a table from which explicit identifiers, 

such as personal names have been removed. The table is comprised of a set of records {T1, 

… , Tn}, each of which corresponds to a specific patient and contains a set of attributes A = 

{A1, A2, … , Am}. Each attribute Ai takes values in a range r(Ai), which contains values that 

appear in at least one of the records. For instance, the range for the attribute Age could be 

{0, 1, 2, … , 119}.

The set of attributes A is further partitioned into sets Q and S, such that Q ⋃ S = A and Q ⋂ 

S = ⊘. Q contains quasi-identifiers, i.e., attributes that may be used to reveal a patients’ 

identity [8], while S contains all other attributes. In the healthcare domain, Q usually 

contains patient demographics, such as Age, Zip Code, Race, and Gender, which can be 

found in public resources with personal identities, such as state voter registration lists [23]. 

In contrast, S tends to consist of clinical information, such as diagnoses, treatments, or 

laboratory reports.

For privacy protection purposes, it is often the case that specific values of a quasi-identifier 

Ai are replaced by more general but semantically consistent values. This process, called 

generalization, maps one or more values in Ai to the same generalized value. For instance, a 

generalization of Age could map all values {0, … , 119} in r(Age) to a generalized value 

0-119. There may be many different ways to generalize values, but, typically, the allowable 

generalized values are organized into a generalization hierarchy. Consider for example the 

hierarchy for Age illustrated in Figure 2. All values {0, 1, 2, … , 119} in r(Age) form the 

leaves of the hierarchy (due to space constraints, the leaves are shown … in Figure 2). Now, 

if we map each of these values to a five-year range, we obtain the generalized values 0-4, 

5-9, … , 115-119, each of which is the immediate ancestor of all the leaf-level values it 

replaces (e.g., the values 0, … , 4 have 0-4 as their immediate ancestor). A generalization 

hierarchy can have more than two levels. For example, if the age value can also be mapped 

to 10-year intervals, we can extend the hierarchy by assigning two consecutive five-year 

intervals to each 10-year interval as shown in Figure 2 (e.g., 0-4 and 5-9 will have 0-9 as 

their immediate ancestor). The topmost level of the hierarchy, however, must contain a 

single value (*) that represents all values in r(Ai). Given a hierarchy for a quasi-identifier Ai, 
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we define a de-identification policy as a function that maps each value in r(Ai) to a 

generalized value that is contained in the hierarchy.

There are many ways to map specific values to generalized versions according to a 

hierarchy, which lead to different generalization models. One of these models, called full 

domain generalization [15], forces all values to be mapped to the same level of the 

hierarchy. This model has been applied in the healthcare domain [10, 11]; however, it is 

restrictive and often limits the practical utility of health data unnecessarily [16]. With 

respect to the HIPAA Privacy Rule, full domain generalization is particularly problematic 

because it does not efficiently model the Safe Harbor de-identification policy and the range 

of alternative de-identification policies (e.g., generalized values that are 5-year intervals). 

Our critique is supported through the following scenario. Consider Figure 2, which 

illustrates a traditional generalization hierarchy for Age. In this hierarchy, ages are 

generalized from one- → five- → ten- → twenty-year ranges. While full domain 

generalization dictates that all values must be assigned to the same level in this hierarchy, 

HIPAA Safe Harbor policy states that all ages under 89 can be retained intact (i.e., as leaf-

value levels in the hierarchy) and ages over 89 must be grouped together into the value 

90-119. As such, we cannot accommodate the Safe Harbor policy by generalizing the values 

using the full domain generalization model within this hierarchy. Rather, to represent this 

policy we need to amend the hierarchy as depicted in Figure 3. Notice, in the new hierarchy 

we generalize all values less than 90 to single year values until all ages over 90 reach the 

Safe Harbor grouping of 90-119. After this point, we can begin the generalization of the 

ages less than 90 to values with larger age intervals. Yet, while this hierarchy permits the 

representation of Safe Harbor, notice that it prevents the representation of a policy that 

specifies all ages should be generalized into equally-sized age intervals!

A more flexible alternative to full domain generalization is the full subtree generalization 

model [14]. According to this model, subtrees of values in the hierarchy (i.e., consecutive 

values such as 0, … , 4) are mapped to a generalized value represented as their closest 

common ancestor in the hierarchy. When this model is applied to generalize the age values 

according to the hierarchy of Figure 3, the values 0, … , 4 can be mapped to their closest 

common ancestor 0-4, while the values 20, … , 39 to their closest common ancestor 20-39. 

Since this model permits values to map to different levels of a generalization hierarchy, it 

enables finding a larger number of potentially useful de-identification policies and thus we 

adopt it in our approach.

Following [14], we represent a de-identification policy α as a bit-string. For reference 

purposes, the value of the ith bit bi is denoted α[bi]. The representation for each quasi-

identifier Ai consists of n − 1 bits, where n is the number of values in r(Ai). The bits are 

ordered with respect to the values. When a bit is set to 1, the corresponding value in the 

range is retained in its most specific form (i.e., a leaf-level value in the hierarchy), and when 

a bit is set to 0, the corresponding value is generalized with the leaf that is adjacent to it in 

the hierarchy, if one exists. Consider for example generalizing the age values {0, … , 4} to 

their closest common ancestor 0-4. The vector corresponding to this generalization is 

[0,0,0,0]. Policies that model multiple quasi-identifiers concatenate the bit vector for each 
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attribute. Figure 4 illustrates an example dataset and the resulting projections of several 

different policies.

2.3 Risk Evaluation

A policy indicates how to project the specific values of a dataset into a generalized form. 

However, a policy does not indicate the degree to which the resulting dataset is vulnerable to 

re-identification. A policy can, in fact, lead different datasets to different degrees of re-

identification risks [3]. Thus, the risk must be computed directly from the records in the 

dataset.

To determine the re-identification risk for a particular dataset, we compute the expected 

number of records that can be linked to the correct corresponding identified individuals in 

the population. We base our re-identification risk metric on the distinguishability metric 

proposed by Truta and colleagues [24]. Informally, we say that the amount of risk a record 

contributes is proportional to the number of people the record matches with respect to its 

quasi-identifier. Formally, we define the re-identification risk for a dataset D to be

(1)

where g(d) is the frequency of the set of quasi-identifiers of record d ∈ D in the population 

and γ a positive-valued scaling factor that dictates how much a group size dampens the risk. 

For this work, we set γ equal to 1, which has a natural interpretation in that the amount of 

risk a patient record contributes is exactly inversely proportional to their group size. As 

such, a patient record that is unique in the population contributes a privacy risk of 1, 

whereas a a record in a group of five contributes a privacy risk of 0.2. This function has 

range (0, ∣D∣], where ∣D∣ is the size of the dataset D. In practice, this value will often be 

normalized by the size of the dataset, resulting in a range of (0, 1].

In prior research, such as [24], the group size was computed directly from the dataset. In 

other words, the group size for a given record would be the frequency of the set of quasi-

identifiers of this record in D. This computation is relevant when a quasi-identifier is defined 

over attributes for which population statistics are unknown. However, this usually leads to a 

conservative estimate of the group size. In reality, it is often the case that statistics about the 

population from which the dataset was derived are available, which lead to group sizes that 

tend to be larger. In particular, in the context of the HIPAA Privacy Rule, the distribution of 

the combination of demographic attributes in the Safe Harbor policy, such as Age and ZIP 

Code, as well as other notable features, such as Ethnicity and Gender is made publicly 

available by the U.S. Census Bureau (e.g., number of 50-year old white males living in a 

particular ZIP). Thus, we follow the work of [13] and use the Census data to set gd.

Having defined the risk measure, we prove that it is monotonic in Theorem 2.1. This 

property is important to using this measure in discovering alternative policies, as we will 

show in the next section.
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THEOREM 2.1 (MONOTONICITY). Let α and β be policies on a generalization lattice. If α is an 

ancestor of β, then risk(α(D), P) ≤ risk(β(D), P), where risk(a(D), P) is the risk of 

anonymizing D according to a policy α.

Proof—Let α(d), β(d) be the policy mapped versions of d ∈ D, with corresponding group 

sizes of g(α(d)), g(β(d)). If is an ancestor of β, then it directly follows that g(α(d)) ≤ g(β(d)). 

Thus, by Equation 1, we have that risk(α(d), P) ≤ risk(β(d), P). Since this holds true for all 

records in D, it is guaranteed that risk(α(D), P) ≤ risk(β(D), P).

2.4 Policy Search

The representation of policies as bit vectors enables a natural partial ordering to the space of 

all policies that can be found using the full subtree generalization model. In particular, the 

policies can be ordered on a generalization lattice structure. Due to space restrictions, we do 

not formally present the way such a lattice is constructed, but refer the reader to [15] for 

details. An example of a lattice is shown in Figure 5. The bottom of the lattice (level 0) 

corresponds to a policy in which each quasi-identifier is given with full specificity for every 

possible value. On the other hand, the top of the lattice (level 6) corresponds to a policy in 

which each quasi-identifier is generalized to the most general level (*) of a hierarchy. Edges 

between policies on the lattice connect policies which have the smallest possible difference 

in the way values are generalized. This difference corresponds to two values being 

generalized differently or a one bit difference in our bit-string representation.

Armed with a way to represent all possible policies, we will characterize the policies that 

our approach attempts to discover. First, we define a dominating policy as follows.

DEFINITION 2.1 (DOMINATING POLICY). Given dataset D, a generalization lattice containing policies α 

and β, and a re-identification risk threshold T, we say that α dominates β if risk(α(D), P) ≤ T 

and α is a descendant of β.

A dominating policy is therefore a more desirable deidentification solution than the policy it 

dominates. Furthermore, due to the monotonicity property of our risk measure shown in 

Theorem 1, we know that the dominating policy will always be a descendant of the 

dominated one.

Based on the notion of dominating policies, we also define a risk-minimal policy as a policy 

that is not dominated by any of its descendant policies in the lattice, as explained in 

Definition 2.2.

DEFINITION 2.2 (RISK-MINIMAL POLICY). Given a dataset D, a generalization lattice, and a re-

identification risk threshold T, a policy α is risk-minimal if and only if: (i) risk(α(D), P) ≤ T, 

and (ii) α is not dominated by any of its descendants in the generalization lattice.

A risk-minimal policy is thus a policy that it is safe according to the risk measure, but none 

of its descendants is. Note that the set of all the risk-minimal policies for a dataset contains 

the best alternative policies that can be discovered. However, discovering risk minimal 

policies is impractical because it requires ordering a combinatorially large number of 

policies within the same level of a generalization lattice, which is computationally 
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expensive. Assume for example that the policy represented as 00001 in Figure 4 satisfies the 

risk threshold. This implies that all of its immediate descendants 00011, 00101, 01001, 1001 

need to be checked to determine if 00001 is risk-minimal. More generally, for a policy 

whose bit-string contains z zeros, all z − 1 immediate descendants have to be examined.

To minimize the overhead of discovering alternative policies while still guaranteeing that 

these policies will be safe, we somewhat relax the properties of a risk-minimal policy by 

requiring a single descendant of this policy to have an unacceptably large risk. We call such 

a policy a boundary policy and define it as follows.

DEFINITION 2.3 (BOUNDARY POLICY). Given dataset D, a generalization lattice, and re-identification 

risk threshold T, a policy α is a boundary policy if and only if: (i) risk(α(D), P) ≤ T, and (ii) 

there exists another policy β, such that β is a descendant of α in the generalization lattice and 

risk(β(D), P) > T.

Using the lattice-based representation of policies and the above definition, we formally 

define the problem of discovering alternative policies as explained below.

PROBLEM 2.1 ( POLICY DISCOVERY). Given a dataset D, a generalization lattice, and a threshold T, 

find all boundary policies.

Thus, in this work we attempt to discover boundary policies that are not dominated in the 

generalization lattice. As our experiments illustrate, this is sufficient to discover a large 

number of alternative de-identification policies. Before presenting our algorithm to find 

alternative de-identification policies, called Bisecting Policy Search, we introduce a simple 

heuristic called Directed Policy Search. The latter heuristic is used as a basis for 

comparison.

2.4.1 Directed Policy Search—The Directed Policy Search algorithm implements a 

directed walk on the generalization lattice and is initiated by selecting a random policy in the 

lattice. If the policy has risk no greater than the threshold, then we walk down the lattice, 

randomly choosing a child of the current policy, until we find a policy with risk that is above 

the threshold. When such a policy is reached, we report the parent of the current policy as a 

boundary policy. If, on the other hand, the initial policy had risk greater than the threshold, 

we walk up the lattice, randomly choosing a parent of the current policy, until we find a 

policy that has risk no greater than the threshold. At this point, the current policy is reported 

as a boundary policy.

Algorithm 1

Bisecting Policy Search (BPS)

Input: n, number of iterations; T, maximal acceptable risk;
 D, dataset for evaluation; P, population statistics de-
 fined over the attributes in the quasi-identifier Q

Output: solutions, list of boundary policies

1: solutions ← ∅;

2: for i = 0 to n do
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3:    max ← [0, 0, 0, …,0]

4:    min ← [1, 1, 1, …,1]

5:    while levelsBetween(min, max) ≥ 2 do

6:      currentPolicy ← halfwayPoint(min, max)

7:      currentRisk ← risk(policy(D), P)

8:      if currentRisk ≤ T then

9:       max ← currentPolicy

10:      else

11:       min ← currentPolicy

12:      end if

13:     end while

14:     solutions ← solutions ⋃ max

15: end for

16: return solutions

2.4.2 Bisecting Policy Search—We leverage the monotonicity property of risk in the 

lattice to find boundary policies in a more efficient manner. Specifically, our Bisecting 

Policy Search (BPS) strategy, shown in Algorithm 1 utilizes a binary search on the lattice. 

The inputs to the algorithm are the number of iterations n to search for policies, the dataset 

D to de-identify, the relevant population statistics P, and the maximal level of 

reidentification risk to be accepted for a policy T (set to the level of risk data anonymized 

using Safe Harbor incurs in our experiments). The output of the algorithm is a list of 

boundary policies.

Here, we provide a walkthrough of the search process. In step 1, the set of solutions is 

initialized to the empty set. The bisecting search is then repeated for the number of iterations 

specified in the input n. During each search, the variables max and min are initialized to the 

most general policy and the most specific policies on the lattice, respectively. This is done to 

provide a bound on the search space that includes all possible policies. The search space is 

repeatedly halved by selecting a policy that is halfway between min and max. This is called 

the current policy (currentPolicy). The reidentification risk for the current policy is then 

computed (Step 7) using the modified version of Equation 1, which we refer to as 

currentRisk. The risk of the policy determines its acceptability and thus the portion of the 

lattice which can be eliminated from the search. The acceptability is determined by a simple 

comparison to evaluate if its risk is no greater the risk threshold (Step 8).

Each step on the lattice halves the search space, eventually resulting in a convergence of min 

and max. An iteration of the search halts when min and max are on adjacent levels. To 

determine if two policies are on adjacent levels, we apply the levelsBetween function (Step 

5), which counts the Hamming distance between policies α and β:
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where ⊕ is the bitwise XOR. This essentially returns the number of levels that exist between 

the two policies. The policy found as a result of the search is added to the set of solutions.

During the search process, it is possible to choose the halfway point completely at random 

by finding the bit positions where the policies disagree and flipping half of the. However, to 

orient the system toward generating a diversity of de-identification solutions, we instead 

choose from among these options using a probability distribution derived from a set of 

weights. We use two sets of weights in this computation. The first weight is based on the 

size of the range of the attribute that each bit in position i, or bi represents.

This weighting scheme prevents us from falling too frequently into policies which 

generalize small domains. For example, the attribute of Gender only has two values, and the 

impact of generalizing the two together is very large. By choosing it less often, we can 

explore a wider variety of solutions.

The second weight is based on previous solutions. The weight for a bit is proportional to the 

number of times that the bit has been set in previous solutions.

This weighting also has the effect of finding more diverse solutions. If a particular bit has 

been set in many previous solutions, we reduce the probability of choosing it in the future.

We combine the weights through an additive formula:

Now, imagine there are x policies to choose from, then the probability that we choose the 

available policy with the change in bit i is .

Let us return to the example dataset in Figure 4 to illustrate an example. Table 1 shows one 

iteration of the BPS algorithm which would result in a report that policy 10010 is a boundary 

policy. The resulting projection of the example dataset on this policy is in Figure 4.

3. EXPERIMENTS

3.1 Materials

For this study, we selected several datasets to evaluate the proposed de-identification policy 

discovery method. The first dataset corresponds to the demographics of a set of 2984 

patients from the Vanderbilt University Medical Center, 12 of which have age 90 or greater. 

This dataset is of interest because the patient records are currently being used for an NIH-

sponsored genome-wide association study on native electrical conduction within the 

ventricles of the heart (further details are available in [18]). The second dataset is based on 
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the publicly available Adult corpus, consisting of 32,561 records, 43 of which have age 90 

or greater, which has been used to evaluate numerous data anonymization algorithms [14, 

15, 16]. We refer to these datasets as the Van and Adult datasets, respectively. For 

demonstration purposes, we explore the space of policies in the combined domain of 

{Gender, Race, Age}. The Race domain differs for the two datasets. In Van, Race is a 7-

valued attribute, while in Adult, Race is a 5-valued attribute.

For the purposes of this study, we make the assumption that the U.S. state of residence for 

all records in both datasets was Tennessee. This assumption is used with reference to the 

population statistics. We use population statistics derived from the 2000 U.S. Census, Tables 

PCT12 A-G, available from American Fact Finder. These tables detail the number of people 

of each gender, by age, in a particular geographic division, each table representing one of 

the Census’s seven race classifications.

All experiments were run on a machine with an Intel Core 2 Duo processor at 2.00 GHz 

with 2 GB of RAM.

3.2 Results

The evaluation is organized into two subsections on efficiency and effectiveness.

3.2.1 Efficiency—In the first set of experiments we investigated the efficiency of the 

approach. We begin the assessment with an amortized analysis to demonstrate the benefits 

of the BPS approach. Table 2 summarizes the runtime of the BPS and Directed search 

algorithms. Both algorithms were run for 100 iterations (i.e., they discovered 100 boundary 

nodes in the lattice). The table reports the mean and standard deviation of the search time 

per iteration. For the Van dataset, the mean search time for the BPS approach required 4 

seconds on average, whereas the Directed approach required over ten times as much time at 

47 seconds. A t-test yielded that the BPS approach was faster than Directed by a statistically 

significant margin at the 95% confidence level. For the Adult dataset, the BPS approach was 

once again faster by almost ten times (statistically significant at the 95% confidence level); 

it required 16 seconds on average, whereas the Directed approach required 109.

To illustrate the real world applicability, we move beyond summary statistics and illustrate 

how long the policy discovery process requires across iterations of the algorithm. Figure 6 

provides a visualization of the cumulative search time as a function of the number of 

iterations (i.e., at the xth iteration, this graph reports the total time to complete the discovery 

of x boundary policies). Notice that the policy discovery process appears to follow a linear 

trend for both search algorithms and datasets.

This is interesting because we implemented the search algorithms in a manner that retains 

the re-identification risk results of each alternative policy found during the execution of the 

algorithm. It was expected that this would lessen the quantity of time allocated to the search 

process over time. We performed an autoregressive analysis to determine if the runtime at 

iteration x − 1 predicted the runtime at iteration x, but observed only a weak correlation. As 

an example, Figure 7 illustrates that for the BPS algorithm with the Van dataset, a 

logarithmic trend characterizes only 16% of the variance in the system. Thus, while we 
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recognize that 100 may be a relatively small number of iterations, it appears that the number 

of paths in the lattice that result in reidentification risk less than Safe Harbor is extremely 

large, such that a heuristic-based approach for policy discovery is justified.

3.2.2 Effectiveness—In the second set of experiments, we evaluate the quality of 

solutions discovered by the policy search algorithms. As mentioned earlier, the policy 

discovery algorithm completes an iteration when a node satisfies the boundary condition. 

However, it is possible, that in a subsequent iteration of the algorithm, a dominating solution 

will be discovered. The BPS algorithm incorporates a heuristic to bias starting nodes in an 

iteration to prevent domination whereas the Directed algorithm did not. To evaluate the 

effectiveness of this heuristic, we computed how many of the boundary nodes discovered in 

100 iterations of the algorithm were non-dominating. If the solutions are not on the same 

path in the generalization lattice, then 100 polices will be non-dominating, but if all are on 

the same path only one would be non-dominating. Figure 8 illustrates how many of the x 

iterations were found to be non-dominating. For a detailed analysis, Figure 8 illustrates the 

results for the Van dataset. Here it can be seen that for the first 25 runs, both the BPS and 

Directed algorithm are competitive and discover zero non-dominating solutions. After this 

point though, the BPS algorithm outperforms the Directed algorithm at an increasing rate. 

By the 100th iteration, the BPS algorithm discovered 95 non-dominating policies, whereas 

the Directed algorithm discovered only 83 (i.e., 13% less).

It is also important to recognize that there is a difference in the number of nodes searched 

per iteration. Recall, the Directed algorithm uses a walk from an initial randomly selected 

node to the boundary policy, whereas the BPS algorithm uses a more intelligent skip-based 

approach. As a result, it is expected that the BPS algorithm discovers alternative de-

identification policies with less nodes searched than the Directed algorithm.

Figure 9 illustrates that BPS discovers solutions in a fraction of the nodes searched than 

Directed. This finding was implied in the runtime analysis, but this figure clearly illustrates 

that at the completion of the policy discovery process, for the Adult dataset BPS has 

searched only 670 nodes in the lattice, whereas Directed has searched 5140 as shown in 

Figure 9(b). A similar result was observed for the Vanderbilt dataset (Figure 9(a)).

3.3 Example Alternatives

Table 3 provides examples of the types of alterative (non-dominated) policies that were 

discovered for the Van dataset. By manual inspection, the exemplars appear to represent 

different types of policies. We represent these policies by the generalizations required for 

each attribute. Only the values which are generalized together are displayed. All other values 

are kept in their most specific form. For context, the first row shows the Safe Harbor policy. 

The first alterative corresponds to the situation in which the gender attribute is completely 

generalized while retaining full specificity in the ages of the patients. Recall, there were 12 

patients over the age of 89, which Safe Harbor prohibits disclosing in detail. The second 

alternative shows that gender can be retained, but the value of Asian must be generalized 

with the “Other” race value. The third alternative shows that both gender and race can be 
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retained in their most specific form when the ages of 52 and 53 are grouped into a single 

52-53 value.

4. DISCUSSION

In this work, we utilized a formalism that allows us to compare the HIPAA Safe Harbor and 

alternative de-identification policies with the aim of finding a process to satisfy the Expert 

Determination standard. This formalism enables the use of full-subtree generalization to 

construct a lattice with properties that enable efficient searching. We evaluated our search 

strategy and the results illustrate that it performs significantly faster than a directed walk. It 

is important to recognize that many policies were found that have reidentification risk that is 

equal (or lower) than Safe Harbor for both of the datasets we examined. Moreover, these 

policies were varied in the portions of the attributes in which generalizations occurred. This 

suggests that even for epidemiologists and researchers in gerontology there may be policies 

which will keep needed information intact while providing privacy protection. Though this 

work focused on certain demographics, it could easily be extended to include other 

attributes, such as ZIP code. This would provide a rich, detailed field for comparison and 

further highlight the advantages of a bisecting strategy. Such detail is not available for the 

Adult dataset, but it could be simulated using available population statistics from the U.S. 

Census.

There are several limitations of the work that we wish to mention to spur future research. 

First, while we prove that such alternatives exist, it remains to the healthcare community to 

decide whether such a system will be adopted. We believe that our approach is interpretable, 

such that it can be presented to Institutional Review Boards, and qualify under the Expert 

Determination as a “documented method”.

Second, one of the hazards with looking at a large search space to find possible solutions, 

without some kind of a priori assumptions about which solutions are better, is the potential 

for a glut of information provided to the end user. While we maintain that it should be up to 

the health data manager to determine which solutions work for their dataset, we believe that 

an interesting research area is in determining how possible de-identification solutions could 

be presented to a data manager to support their decisions in a comprehensible, user-friendly 

manner. One particular direction that is promising is in the application of clustering. If the 

deidentification solutions, as reported by the algorithm, can be grouped into clusters, the 

data manager could be supplied with examples from each cluster to assist in reasoning about 

which are the most appropriate for their dataset. Along this line of research, it may be 

possible to combine the search algorithm from this paper with post-processing into a single 

step, as has been achieved in genetic algorithms [21]. Such algorithms typically represent 

solutions with bit-strings and employ powerful strategies to retain the most ”desired” 

solutions. However, to employ these algorithms, we need to accurately measure the 

“goodness” of solutions, which is not straightforward in the healthcare domain.

Third, there were certain assumptions we made about reidentification risk which should be 

considered. Notably, the risk metric we applied assumes an attacker is equally interested in 

all records, which may not always be the case. Additionally, the risk measure considers 
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“identity” disclosure; i.e., the linking of a patient’s identity to their record, which is a 

common threat in the healthcare domain. Extensions with alternative protection models, 

such as those that prevent the association of an individual to their sensitive information (e.g., 

a diagnosis code) are still possible and the subject of future research.

5. RELATED WORK

The problem of re-identification has attracted significant interest and is typically mitigated 

by modifying data in a way that reduces the re-identification risk to an acceptable level. 

Data modification can be performed by perturbation methods, including additive noise, data 

swapping, and synthetic data generation (see [1, 25] for surveys). While these methods 

preserve certain aggregate statistics, they generate data that does not correspond to real 

patients (e.g., they could swap the age of a 90-year old with that of a 20-year old, affecting 

the validity of a geriatric study). This implies the records can no longer be analyzed 

individually, which is crucial in a number of healthcare applications, such as 

epidemiological studies [20].

Thus, our approach does not use perturbation methods to discover policies, but employs 

generalization [23], a technique that replaces values in quasi-identifiers with others that are 

more general but semantically consistent. Generalized records are truthful and can be 

examined individually. For example, when the age value 90 for patient is replaced by the 

generalized value 90-99, this patient’s actual age can still be inferred from the generalized 

one. Generalization can be performed using a number of different models [15]. These 

include full domain generalization, a model in which all the values of a quasi-identifier are 

mapped to generalized values that lie at the same level of a given hierarchy, and full subtree 

generalization, a model in which only subtrees of values in the hierarchy of a quasi-identifier 

are replaced by generalized values in a way that the path from each original value to the root 

in the hierarchy contains no more than one generalized value. We have adopted the full 

subtree generalization model in our approach for the reasons discussed in Section 2.2.

Generalization plays a central role in ensuring that data can be safely released according to a 

number of different privacy principles. Perhaps the most well-established of these principles 

is k-anonymity [23], which requires each record in the released data to have the same 

generalized values with at least other k-1 records over the quasi-identifiers, which limits the 

probability of re-identifying a patient to . Subsequent methods strengthen the protection 

provided by this principle by imposing further restrictions on the frequency of attributes 

which are not treated as quasi-identifiers (e.g, a patient’s diagnosis). Examples of these 

principles include l-diversity [19] and t-closeness [17]. We note that our policy discovery 

approach is independent of the underlying privacy principle and can be modified to support 

all of these principles. In fact, since the measures of [19] and [17] are all monotonic, we 

simply need to check whether a policy satisfies one of these principles instead of having an 

acceptable level of risk as we currently do. A complete treatment of this issue is, however, a 

part of our future work.
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6. CONCLUSIONS

Regulations, such as the HIPAA Privacy Rule, permit the dissemination of patient data if it 

meets a de-identification standard. Currently, most organizations de-identify health data by 

adhering to the Safe Harbor policy, which is easy to apply, but limits the data utility. In this 

paper, we proposed a process to satisfy a de-identification alternative known as Expert 

Determination, which can facilitate more flexible disclosure policies. Our approach uses 

Safe Harbor to set a threshold of re-identification risk admissible in a shared dataset, and 

then explores the space of alternative de-identification policies in an efficient and effective 

manner to find polices with risk no greater than the threshold. Furthermore, our approach is 

generalizable in that it can be used with several other privacy principles and policies. Our 

experimental evaluation utilized both patient records and census data to demonstrate that 

there are many potential de-identification alternatives to Safe Harbor that can satisfy the 

Expert Determination standard. In future research, we anticipate extending this research to 

assist health data managers in reasoning about which alternatives are the best option for their 

particular dataset.
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APPENDIX A: SAFE HARBOR POLICY

Section §164.514 of the HIPAA Privacy Rule provides the de-identification standard for 

health information. Following this standard, health information is not individually 

identifiable if it does not identify the individual or if the covered entity has no reasonable 

basis to believe it can be used to identify the individual. The Safe Harbor policy specifies 

that a list of “identifiers of the individual or of relatives, employers, or household members 

of the individual, are removed”. For reference, Table 4 provides the list.

8. REFERENCES

[1]. Adam N, Wortman J. Security control methods for statistical databases. ACM Comput. Surv. 
1989; 21:515–556.

[2]. Beach, J. Health care databases under HIPAA: statistical approaches to de-identification of 
protected health information. Presented at DIMACS Workshop on Privacy & Confidentiality of 
Health Data; 2003. 

[3]. Benitez K, Malin B. Evaluating re-identification risks with respect to the HIPAA privacy rule. 
Journal of the American Medical Informatics Association. 2010; 17(2):169–177. [PubMed: 
20190059] 

[4]. Boulos M, Curtis A, AbdelMalik P. Musings on privacy issues in health research involving 
disaggregate geographic data about individuals. International Journal of Health Geographics. 
2009; 8:46. [PubMed: 19619311] 

[5]. Burton P, Hansell A, Fortier I, et al. Size matters: just how big is big?: Quantifying realistic 
sample size requirements for human genome epidemiology. International Journal of 
Epidemiology. 2008; 38:263–273. [PubMed: 18676414] 

[6]. Charette R. Kaiser Permanente marks completion of its electronic health records implementation. 
IEEE Spectrum. Mar 8.2010 

Benitez et al. Page 15

IHI. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



[7]. Chiang Y, Hsu T, Kuo S, et al. Preserving confidentiality when sharing medical database with the 
cellsecu system. International Journal of Medical Informatics. 2003; 71:17–23. [PubMed: 
12909154] 

[8]. Dalenius T. Finding a needle in a haystack or identifying anonymous census records. Journal of 
Official Statistics. 1986; 2:329–336.

[9]. Department of Health and Human Services. Standards for privacy of individually identifiable 
health information, final rule. CFR. Aug.2002 45:160–164.

[10]. El Emam K, Dankar F. Protecting privacy using k-anonymity. Journal of the American Medical 
Informatics Association. 2008; 15(5):627–637. [PubMed: 18579830] 

[11]. El Emam K, Dankar F, Issa R, et al. A globally optimal k-anonymity method for the de-
identification of health data. Journal of the American Medical Informatics Association. 2009; 
16(5):670–682. [PubMed: 19567795] 

[12]. Freking, K. Stimulus includes help for doctors. Associated Press; Jan 14. 2009 

[13]. Golle, P. Revisiting the uniqueness of simple demographics in the US population. ACM WPES; 
2006. p. 77-80.

[14]. Iyengar, V. Transforming data to satisfy privacy constraints. SIGKDD; 2002. p. 279-288.

[15]. LeFevre, K.; DeWitt, D.; Ramakrishnan, R. Incognito: Efficient full-domain k-anonymity. 
SIGMOD; 2005. p. 49-60.

[16]. LeFevre, K.; DeWitt, D.; Ramakrishnan, R. Mondrian multidimensional k-anonymity. ICDE; 
2006. p. 25

[17]. Li, N.; Li, T.; Venkatasubramanian, S. t-closeness: privacy beyond k-anonymity and l-diversity. 
ICDE; 2007. p. 106-115.

[18]. Loukides G, Denny J, Malin B. The disclosure of diagnosis codes can breach research 
participants’ privacy. Journal of the American Medical Informatics Association. 2010; 17:322–
327. [PubMed: 20442151] 

[19]. Machanavajjhala, A.; Gehrke, J.; Kifer, D.; Venkitasubramaniam, M. l-diversity: privacy beyond 
k-anonymity. ICDE; 2006. p. 24

[20]. Marsden-Haug N, Foster V, Gould P, et al. Code-based syndromic surveillance for influenzalike 
illness by international classification of diseases. Emerging Infectious Diseases. 2007; 13:207–
216. [PubMed: 17479881] 

[21]. Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recognition. 
2000; 33:1455–1465.

[22]. Safran C, Bloomrosen M, Hammond WE, et al. Toward a national framework for the secondary 
use of health data. Journal of the American Medical Informatics Association. 2007; 14:1–9. 
[PubMed: 17077452] 

[23]. Sweeney L. k-anonymity: a model for protecting privacy. International Journal on Uncertainty, 
Fuzziness and Knowledge-based Systems. 2002; 10(5):557–570.

[24]. Truta, T.; Fotouhi, F.; Barth-Jones, D. Disclosure risk measures for microdata. International 
Conference on Scientific & Statistical Databases Management; 2003. p. 15-22.

[25]. Willenborg, L.; Waal, TD. Statistical Disclosure Control in Practice. Vol. ume 111. Springer; 
1996. 

Benitez et al. Page 16

IHI. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
A general architecture of the alternative policy discovery process.
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Figure 2. 
Standard generalization hierarchy for Age.
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Figure 3. 
A generalization hierarchy that supports the HIPAA Safe Harbor policy for Age.
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Figure 4. 
Sample dataset and data sharing policies, where Gender and Age are quasi-identifiers.

Benitez et al. Page 20

IHI. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Example lattice for the de-identification policies that can be discovered from the sample 

dataset in Figure 4.
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Figure 6. 
Analysis of policy search runtime for the datasets.
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Figure 7. 
Autoregressive analysis of policy discovery time of iteration x on iteration x − 1 for the BPS 

algorithm with the Van dataset.
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Figure 8. 
Effectiveness plots at the iteration level for the Vanderbilt dataset.
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Figure 9. 
Effectiveness plots at the node search level.
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Table 1

One iteration of the BPS algorithm.

Step Upper
Bound

Lower
Bound

Current
Policy

Policy
Acceptable?

1 00000 11111 10010 Yes

2 10010 11111 10110 No

3 10010 10110 None None
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Table 2

Summarized runtime analysis. Time per iteration of search for boundary solution.

METRIC Directed BPS

Van Adult Van Adult

Average (seconds) 47.52 109.53 4.01 16.36

St. Dev. 2.03 8.94 1.85 2.00
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Table 3

Examples of discovered alternative de-identification policies for the Vanderbilt dataset.

Generalizations

Policy Gender Race Age Risk

Safe Harbor ∅ ∅ [90-120] 0.90917

Alt. 1 [M,F] ∅ ∅ 0.47628

Alt. 2 ∅ [Asian, Other] ∅ 0.85703

Alt. 3 ∅ ∅ [52-53] 0.87498
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Table 4

Safe Harbor blacklist of the HIPAA Privacy Rule.

1. Names

2. All geographic subdivisions smaller than a state, includ-
ing street address, city, county, precinct, ZIP code, and their
equivalent geocodes, except for the initial three digits of the
ZIP code if, according to the current publicly available data
from the Bureau of the Census:

a. The geographic unit formed by combining all ZIP codeswith the same three initial digits contains more than 20,000 people; and

b. The initial three digits of a ZIP code for all such geographic units containing 20,000 or fewer people is changed to 000

3. All elements of dates (except year) for dates that are
directly related to an individual, including birth date, ad-
mission date, discharge date, death date, and all ages over
89 and all dates (including year) indicative of such age, ex-
cept that such ages and elements may be aggregated into a
single category of age 90 or older

4. Telephone numbers 5. Fax numbers

6. Email addresses 7. Social security numbers

8. Medical record numbers 9. Health plan beneficiary
numbers

10. Account numbers 11. Certificate / license num
-bers

12. Vehicle identifiers and se-
rial numbers, including license
plate numbers

13. Device identifiers and se-
rial numbers

14. Web Universal Resource
Locators (URLs)

15. Internet Protocol (IP) ad-
dresses

16. Biometric identifiers, in-
cluding finger and voice prints

17. Full-face photographs and
any comparable images

18. Any other unique, identifying number, characteristic, or
code
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